Nanotherapeutics for the Treatment of Cancer and Arthritis

Author(s): Pal Patel , Nikita Meghani , Krupa Kansara , Ashutosh Kumar* .

Journal Name: Current Drug Metabolism

Volume 20 , Issue 6 , 2019


Graphical Abstract:


Abstract:

Background: Nanotechnology is gaining significant attention worldwide for the treatment of complex diseases such as AIDS (acquired immune deficiency syndrome), cancer and rheumatoid arthritis. Nanomedicine is the application of nanotechnology used for diagnosis and treatment for the disease that includes the preservation and improvement of human health by covering an area such as drug delivery using nanocarriers, nanotheranostics and nanovaccinology. The present article provides an insight into several aspects of nanomedicine such as usages of multiple types of nanocarriers, their status, advantages and disadvantages with reference to cancer and rheumatoid arthritis.

Methods: An extensive search was performed on the bibliographic database for research article on nanotechnology and nanomedicine along with looking deeply into the aspects of these diseases, and how all of them are co-related. We further combined all the necessary information from various published articles and briefed to provide the current status.

Results: Nanomedicine confers a unique technology against complex diseases which includes early diagnosis, prevention, and personalized therapy. The most common nanocarriers used globally are liposomes, polymeric nanoparticles, dendrimers, metallic nanoparticles, magnetic nanoparticles, solid lipid nanoparticles, polymeric micelles and nanotubes among others.

Conclusion: Nanocarriers are used to deliver drugs and biomolecules like proteins, antibody fragments, DNA fragments, and RNA fragments as the base of cancer biomarkers.

Keywords: Nanotechnology, nanocarriers, cancer, head and neck cancer, breast cancer, rheumatoid arthritis.

[1]
Mukherjee, B. Nanosize drug delivery system. Curr. Pharm. Biotechnol., 2013, 14(15), 1221.
[2]
Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine, 2012, 8(2), 147-166.
[3]
Boulaiz, H.; Alvarez, P.J.; Ramirez, A.; Marchal, J.A.; Prados, J.; Rodriguez-Serrano, F.; Peran, M.; Melguizo, C.; Aranega, A. Nanomedicine: Application areas and development prospects. Int. J. Mol. Sci., 2011, 12(5), 3303-3321.
[4]
Zhang, L.; Gu, F.; Chan, J.; Wang, A.; Langer, R.; Farokhzad, O. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83(5), 761-769.
[5]
Oliveira, I.M.; Gonçalves, C.; Reis, R.L.; Oliveira, J.M. Engineering nanoparticles for targeting rheumatoid arthritis: Past, present, and future trends. Nano Res., 2018, 11(9), 4489-4506.
[6]
Prasad, L.K.; O’Mary, H.; Cui, Z. Nanomedicine delivers promising treatments for rheumatoid arthritis. Nanomedicine (Lond.), 2015, 10(13), 2063-2074.
[7]
Duncan, R.; Gaspar, R. Nanomedicine(s) under the microscope. Mol. Pharm., 2011, 8(6), 2101-2141.
[8]
Riehemann, K.; Schneider, S.W.; Luger, T.A.; Godin, B.; Ferrari, M.; Fuchs, H. Nanomedicine-challenge and perspectives. Angew. Chem. Int. Ed. Engl., 2009, 48(5), 872-897.
[9]
Shiekh, F.A. Personalized nanomedicine: Future medicine for cancer treatment. Int. J. Nanomedicine, 2013, 8, 201-202.
[10]
Tosi, G.; Ruozi, B.; Belletti, D. Nanomedicine: The future for advancing medicine and neuroscience. Nanomedicine (Lond.), 2012, 7(8), 1113-1116.
[11]
Surendiran, A.; Sandhiya, S.; Pradhan, S.C.; Adithan, C. Novel applications of nanotechnology in medicine. Indian J. Med. Res., 2009, 130(6), 689-701.
[12]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[13]
Dhar, S.; Kolishetti, N.; Lippard, S.J.; Farokhzad, O.C. Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc. Natl. Acad. Sci. USA, 2011, 108(5), 1850-1855.
[14]
Liu, L.; Sun, L.; Wu, Q.; Guo, W.; Li, L.; Chen, Y.; Li, Y.; Gong, C.; Qian, Z.; Wei, Y. Curcumin loaded polymeric micelles inhibit breast tumor growth and spontaneous pulmonary metastasis. Int. J. Pharm., 2013, 443(1-2), 175-182.
[15]
Yu, M.; Jie, X.; Xu, L.; Chen, C.; Shen, W.; Cao, Y.; Lian, G.; Qi, R. Recent advances in dendrimer research for cardiovascular diseases. Biomacromolecules, 2015, 16(9), 2588-2598.
[16]
Wu, L.P.; Ficker, M.; Christensen, J.B.; Trohopoulos, P.N.; Moghimi, S.M. Dendrimers in medicine: Therapeutic concepts and pharmaceutical challenges. Bioconjug. Chem., 2015, 26(7), 1198-1211.
[17]
Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci., 2010, 2(4), 282-289.
[18]
Edmundson, M.C.; Capeness, M.; Horsfall, L. Exploring the potential of metallic nanoparticles within synthetic biology. N. Biotechnol., 2014, 31(6), 572-578.
[19]
McBain, S.C.; Yiu, H.H.; Dobson, J. Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomedicine, 2008, 3(2), 169-180.
[20]
Ali, A.; Zafar, H.; Zia, M.; Ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl., 2016, 9, 49-67.
[21]
Din, F.U.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291-7309.
[22]
He, L.; Gu, J.; Lim, L.Y.; Yuan, Z-X.; Mo, J. Nanomedicine-mediated therapies to target breast cancer stem cells. Front. Pharmacol., 2016, 7, 313.
[23]
Torchilin, V.P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res., 2007, 24(1), 1-16.
[24]
Jeong, K.; Kang, C.S.; Kim, Y.; Lee, Y.D.; Kwon, I.C.; Kim, S. Development of highly efficient nanocarrier-mediated delivery approaches for cancer therapy. Cancer Lett., 2016, 374(1), 31-43.
[25]
Rastogi, V.; Yadav, P.; Bhattacharya, S.S.; Mishra, A.K.; Verma, N.; Verma, A.; Pandit, J.K. Carbon nanotubes: An emerging drug carrier for targeting cancer cells. J. Drug Deliv., 2014, 2014670815
[26]
Chow, E.K.; Ho, D. Cancer nanomedicine: From drug delivery to imaging. Sci. Transl. Med., 2013, 5(216)216rv4
[27]
Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161.
[28]
Cheng, L.; Wang, C.; Feng, L.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev., 2014, 114(21), 10869-10939.
[29]
Hubbell, J.A.; Chilkoti, A. Nanomaterials for drug delivery. Science, 2012, 337(6092), 303-305.
[30]
Li, Y.; Huang, Y.; Wang, Z.; Carniato, F.; Xie, Y.; Patterson, J.P.; Thompson, M.P.; Andolina, C.M.; Ditri, T.B.; Millstone, J.E. Polycatechol nanoparticle MRI contrast agents. Small, 2016, 12(5), 668-677.
[31]
Jain, S.; Hirst, D.; O’sullivan, J. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol., 2012, 85(1010), 101-113.
[32]
Gharat, S.A.; Momin, M.; Bhavsar, C. Oral squamous cell carcinoma: Current treatment strategies and nanotechnology-based approaches for prevention and therapy. Crit. Rev. Ther. Drug Carrier Syst., 2016, 33(4), 363-400.
[33]
Afifi, M.M.; El Sheikh, S.M.; Abdelsalam, M.M.; Ramadan, H.; Omar, T.A.; El Tantawi, M.; Abdel-Razek, K.M.; Mohamed, M. Therapeutic efficacy of plasmonic photothermal nanoparticles in hamster buccal pouch carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 2013, 115(6), 743-751.
[34]
Hirsch, L.R.; Gobin, A.M.; Lowery, A.R.; Tam, F.; Drezek, R.A.; Halas, N.J.; West, J.L. Metal nanoshells. Ann. Biomed. Eng., 2006, 34(1), 15-22.
[35]
Wu, Y-N.; Chen, D-H.; Shi, X-Y.; Lian, C-C.; Wang, T-Y.; Yeh, C-S.; Ratinac, K.R.; Thordarson, P.; Braet, F.; Shieh, D-B. Cancer-cell-specific cytotoxicity of non-oxidized iron elements in iron core-gold shell NPs. Nanomedicine, 2011, 7(4), 420-427.
[36]
Wu, Y-N.; Yang, L-X.; Shi, X-Y.; Li, I-C.; Biazik, J.M.; Ratinac, K.R.; Chen, D-H.; Thordarson, P.; Shieh, D-B.; Braet, F. The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials, 2011, 32(20), 4565-4573.
[37]
Melancon, M.P.; Lu, W.; Zhong, M.; Zhou, M.; Liang, G.; Elliott, A.M.; Hazle, J.D.; Myers, J.N.; Li, C.; Stafford, R.J. Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials, 2011, 32(30), 7600-7608.
[38]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med., 2016, 1(1), 10-29.
[39]
Arany, S.; Benoit, D.S.; Dewhurst, S.; Ovitt, C.E. Nanoparticle-mediated gene silencing confers radioprotection to salivary glands in vivo. Mol. Ther., 2013, 21(6), 1182-1194.
[40]
Caponigro, F.; Cornelia, P.; Budillon, A.; Bryce, J.; Avallone, A.; De Rosa, V.; Ionna, F.; Cornelia, G. Phase I study of Caelyx (doxorubicin HCL, pegylated liposomal) in recurrent or metastatic head and neck cancer. Ann. Oncol., 2000, 11(3), 339-342.
[41]
Samad, A.; Sultana, Y.; Aqil, M. Liposomal drug delivery systems: An update review. Curr. Drug Deliv., 2007, 4(4), 297-305.
[42]
Lin, L.T.; Chang, C.Y.; Chang, C.H.; Wang, H.E.; Chiou, S.H.; Liu, R.S.; Lee, T.W.; Lee, Y.J. Involvement of let-7 microRNA for the therapeutic effects of Rhenium-188-embedded liposomal nanoparticles on orthotopic human head and neck cancer model. Oncotarget, 2016, 7(40), 65782-65796.
[43]
Heiser, C.; Hofauer, B.; Scherer, E.; Schukraft, J.; Knopf, A. Liposomal treatment of xerostomia, odor, and taste abnormalities in patients with head and neck cancer. Head Neck, 2016, 38(Suppl. 1), E1232-E1237.
[44]
Strieth, S.; Dunau, C.; Michaelis, U.; Jager, L.; Gellrich, D.; Wollenberg, B.; Dellian, M. Phase I/II clinical study on safety and antivascular effects of paclitaxel encapsulated in cationic liposomes for targeted therapy in advanced head and neck cancer. Head Neck, 2014, 36(7), 976-984.
[45]
Mohan, A.; Narayanan, S.; Balasubramanian, G.; Sethuraman, S.; Krishnan, U.M. Dual drug loaded nanoliposomal chemotherapy: A promising strategy for treatment of head and neck squamous cell carcinoma. Eur. J. Pharm. Biopharm., 2016, 99, 73-83.
[46]
Wang, X.; Shi, L.; Tu, Q.; Wang, H.; Zhang, H.; Wang, P.; Zhang, L.; Huang, Z.; Zhao, F.; Luan, H. Treating cutaneous squamous cell carcinoma using 5-aminolevulinic acid polylactic-co-glycolic acid nanoparticle-mediated photodynamic therapy in a mouse model. Int. J. Nanomedicine, 2015, 10, 347.
[47]
Damiani, V.; Falvo, E.; Fracasso, G.; Federici, L.; Pitea, M.; De Laurenzi, V.; Sala, G.; Ceci, P. Therapeutic efficacy of the novel stimuli-sensitive nano-ferritins containing doxorubicin in a head and neck cancer model. Int. J. Mol. Sci., 2017, 18(7), 1555.
[48]
Basak, S.K.; Zinabadi, A.; Wu, A.W.; Venkatesan, N.; Duarte, V.M.; Kang, J.J.; Dalgard, C.L.; Srivastava, M.; Sarkar, F.H.; Wang, M.B. Liposome encapsulated Curcumin-difluorinated (CDF) inhibits the growth of cisplatin resistant head and neck cancer stem cells. Oncotarget, 2015, 6(21), 18504.
[49]
Chang, P-Y.; Peng, S-F.; Lee, C-Y.; Lu, C-C.; Tsai, S-C.; Shieh, T-M.; Wu, T-S.; Tu, M-G.; Chen, M.Y.; Yang, J-S. Curcumin-loaded nanoparticles induce apoptotic cell death through regulation of the function of MDR1 and reactive oxygen species in cisplatin-resistant CAR human oral cancer cells. Int. J. Oncol., 2013, 43(4), 1141-1150.
[50]
Nejad, S.M.; Takahashi, H.; Hosseini, H.; Watanabe, A.; Endo, H.; Narihira, K.; Kikuta, T.; Tachibana, K. Acute effects of sono-activated photocatalytic titanium dioxide nanoparticles on oral squamous cell carcinoma. Ultrason. Sonochem., 2016, 32, 95-101.
[51]
Xie, M.; Zhang, H.; Xu, Y.; Liu, T.; Chen, S.; Wang, J.; Zhang, T. Expression of folate receptors in nasopharyngeal and laryngeal carcinoma and folate receptor-mediated endocytosis by molecular targeted nanomedicine. Int. J. Nanomedicine, 2013, 8, 2443.
[52]
Wang, D.; Fei, B.; Halig, L.V.; Qin, X.; Hu, Z.; Xu, H.; Wang, Y.A.; Chen, Z.; Kim, S.; Shin, D.M. Targeted iron-oxide nanoparticle for photodynamic therapy and imaging of head and neck cancer. ACS Nano, 2014, 8(7), 6620-6632.
[53]
Zhao, Q.; Wang, L.; Cheng, R.; Mao, L.; Arnold, R.D.; Howerth, E.W.; Chen, Z.G.; Platt, S. Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics, 2012, 2, 113-121.
[54]
Moosavi Nejad, S.; Takahashi, H.; Hosseini, H.; Watanabe, A.; Endo, H.; Narihira, K.; Kikuta, T.; Tachibana, K. Acute effects of sono-activated photocatalytic titanium dioxide nanoparticles on oral squamous cell carcinoma. Ultrason. Sonochem., 2016, 32, 95-101.
[55]
Bhirde, A.A.; Patel, V.; Gavard, J.; Zhang, G.; Sousa, A.A.; Masedunskas, A.; Leapman, R.D.; Weigert, R.; Gutkind, J.S.; Rusling, J.F. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano, 2009, 3(2), 307-316.
[56]
Hackenberg, S.; Scherzed, A.; Harnisch, W.; Froelich, K.; Ginzkey, C.; Koehler, C.; Hagen, R.; Kleinsasser, N. Antitumor activity of photo-stimulated zinc oxide nanoparticles combined with paclitaxel or cisplatin in HNSCC cell lines. J. Photochem. Photobiol. B, 2012, 114, 87-93.
[57]
Zhao, H.; Feng, H.; Liu, D.; Liu, J.; Ji, N.; Chen, F.; Luo, X.; Zhou, Y.; Dan, H.; Zeng, X. Self-assembling monomeric nucleoside molecular nanoparticles loaded with 5-FU enhancing therapeutic efficacy against oral cancer. ACS Nano, 2015, 9(10), 9638-9651.
[58]
Wang, Z.Q.; Liu, K.; Huo, Z.J.; Li, X.C.; Wang, M.; Liu, P.; Pang, B.; Wang, S.J. A cell-targeted chemotherapeutic nanomedicine strategy for oral squamous cell carcinoma therapy. J. Nanobiotechnology, 2015, 13, 63.
[59]
Harrington, K.J.; Lewanski, C.; Northcote, A.D.; Whittaker, J.; Peters, A.M.; Vile, R.G.; Stewart, J.S. Phase II study of pegylated liposomal doxorubicin (Caelyx) as induction chemotherapy for patients with squamous cell cancer of the head and neck. Eur. J. Cancer, 2001, 37(16), 2015-2022.
[60]
Faivre, S.; Alsabe, H.; Djafari, L.; Janot, F.; Julieron, M.; Domenge, C.; Djazouli, K.; Armand, J.P.; Luboinski, B.; Raymond, E. Locoregional effects of pegylated liposomal doxorubicin (Caelyx) in irradiated area: A phase I-II study in patients with recurrent squamous cell carcinoma of the head and neck. Eur. J. Cancer, 2004, 40(10), 1517-1521.
[61]
Reddy, K.S. Global burden of disease study 2015 provides GPS for global health 2030. Lancet, 2016, 388(10053), 1448-1449.
[62]
Ferlay, J.; Héry, C.; Autier, P.; Sankaranarayanan, R. Global Burden of Breast Cancer.In:Breast Cancer Epidemiology; Christopher, Li, Ed.; Springer: New York, NY, 2010, pp. 1-19.
[63]
Pindiprolu, S.K.S.; Krishnamurthy, P.T.; Chintamaneni, P.K.; Karri, V.V.S.R. Nanocarrier based approaches for targeting breast cancer stem cells. Artif. Cells Nanomed. Biotechnol., 2018, 46(5), 885-898.
[64]
Network, C.G.A. Comprehensive molecular portraits of human breast tumours. Nature, 2012, 490(7418), 61.
[65]
Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Comparisons between different polychemotherapy regimens for early breast cancer: Meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet, 2012, 379(9814), 432-444.
[66]
Sotiriou, C.; Pusztai, L. Gene-expression signatures in breast cancer. N. Engl. J. Med., 2009, 360(8), 790-800.
[67]
Brinton, L.A.; Sherman, M.E.; Carreon, J.D.; Anderson, W.F. Recent trends in breast cancer among younger women in the United States. J. Natl. Cancer Inst., 2008, 100(22), 1643-1648.
[68]
Tanaka, T.; Decuzzi, P.; Cristofanilli, M.; Sakamoto, J.H.; Tasciotti, E.; Robertson, F.M.; Ferrari, M. Nanotechnology for breast cancer therapy. Biomed. Microdevices, 2009, 11(1), 49-63.
[69]
Aapro, M.S. Adjuvant therapy of primary breast cancer: A review of key findings from the 7th international conference, St. Gallen, February 2001. Oncologist, 2001, 6(4), 376-385.
[70]
Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol., 2001, 2(2), 127-137.
[71]
Carty, N.; Foggitt, A.; Hamilton, C.; Royle, G.; Taylor, I. Patterns of clinical metastasis in breast cancer: An analysis of 100 patients. Eur. J. Surg. Oncol., 1995, 21(6), 607-608.
[72]
Grobmyer, S.R.; Zhou, G.; Gutwein, L.G.; Iwakuma, N.; Sharma, P.; Hochwald, S.N. Nanoparticle delivery for metastatic breast cancer. Nanomedicine, 2012, 8, S21-S30.
[73]
Sharma, A.; Jain, N.; Sareen, R. Nanocarriers for diagnosis and targeting of breast cancer. BioMed Res. Int., 2013, 2013960821
[74]
Sinha, R.; Kim, G.J.; Nie, S.; Shin, D.M. Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther., 2006, 5(8), 1909-1917.
[75]
Singh, S.K.; Singh, S.; Lillard Jr, J.W.; Singh, R. Drug delivery approaches for breast cancer. Int. J. Nanomedicine, 2017, 12, 6205.
[76]
Zhang, L.; Gu, F.; Chan, J.; Wang, A.; Langer, R.; Farokhzad, O. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83(5), 761-769.
[77]
Zhang, Y.; Huang, Y.; Li, S. Polymeric micelles: Nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech, 2014, 15(4), 862-871.
[78]
Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B, 2015, 5(5), 442-453.
[79]
Kang, D.I.; Kang, H-K.; Gwak, H-S.; Han, H-K.; Lim, S-J. Liposome composition is important for retention of liposomal rhodamine in P-glycoprotein-overexpressing cancer cells. Drug Deliv., 2009, 16(5), 261-267.
[80]
Dhankhar, R.; Vyas, S.P.; Jain, A.K.; Arora, S.; Rath, G.; Goyal, A.K. Advances in novel drug delivery strategies for breast cancer therapy. Artif. Cells Blood Substit. Immobil. Biotechnol., 2010, 38(5), 230-249.
[81]
Shahin, M.; Soudy, R.; Aliabadi, H.M.; Kneteman, N.; Kaur, K.; Lavasanifar, A. Engineered breast tumor targeting peptide ligand modified liposomal doxorubicin and the effect of peptide density on anticancer activity. Biomaterials, 2013, 34(16), 4089-4097.
[82]
Wong, M-Y.; Chiu, G.N. Simultaneous liposomal delivery of quercetin and vincristine for enhanced estrogen-receptor-negative breast cancer treatment. Anticancer Drugs, 2010, 21(4), 401-410.
[83]
Urbinati, G.; Marsaud, V.; Plassat, V.; Fattal, E.; Lesieur, S.; Renoir, J-M. Liposomes loaded with histone deacetylase inhibitors for breast cancer therapy. Int. J. Pharm., 2010, 397(1-2), 184-193.
[84]
Pillai, G.; Ceballos-Coronel, M.L. Science and technology of the emerging nanomedicines in cancer therapy: A primer for physicians and pharmacists. SAGE Open Med., 2013, 12050312113513759
[85]
Gabizon, A.A. Pegylated liposomal doxorubicin: Metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest., 2001, 19(4), 424-436.
[86]
Park, J.W. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res., 2002, 4(3), 95.
[87]
Jurj, A.; Braicu, C.; Pop, L-A.; Tomuleasa, C.; Gherman, C.D.; Berindan-Neagoe, I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des. Devel. Ther., 2017, 11, 2871.
[88]
Anand, S.; Majeti, B.K.; Acevedo, L.M.; Murphy, E.A.; Mukthavaram, R.; Scheppke, L.; Huang, M.; Shields, D.J.; Lindquist, J.N.; Lapinski, P.E. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat. Med., 2010, 16(8), 909.
[89]
Lee, J.H.; Nan, A. Combination drug delivery approaches in metastatic breast cancer. J. Drug Deliv., 2012, 2012915375
[90]
Shen, S.; Du, X-J.; Liu, J.; Sun, R.; Zhu, Y-H.; Wang, J. Delivery of bortezomib with nanoparticles for basal-like triple-negative breast cancer therapy. J. Control. Release, 2015, 208, 14-24.
[91]
Li, S-Y.; Sun, R.; Wang, H-X.; Shen, S.; Liu, Y.; Du, X-J.; Zhu, Y-H.; Jun, W. Combination therapy with epigenetic-targeted and chemotherapeutic drugs delivered by nanoparticles to enhance the chemotherapy response and overcome resistance by breast cancer stem cells. J. Control. Release, 2015, 205, 7-14.
[92]
Swaminathan, S.K.; Roger, E.; Toti, U.; Niu, L.; Ohlfest, J.R.; Panyam, J. CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. J. Control. Release, 2013, 171(3), 280-287.
[93]
Sun, R.; Shen, S.; Zhang, Y-J.; Xu, C-F.; Cao, Z-T.; Wen, L-P.; Wang, J. Nanoparticle-facilitated autophagy inhibition promotes the efficacy of chemotherapeutics against breast cancer stem cells. Biomaterials, 2016, 103, 44-55.
[94]
Devulapally, R.; Sekar, N.M.; Sekar, T.V.; Foygel, K.; Massoud, T.F.; Willmann Jr, K.; Paulmurugan, R. Polymer nanoparticles mediated codelivery of antimiR-10b and antimiR-21 for achieving triple negative breast cancer therapy. ACS Nano, 2015, 9(3), 2290-2302.
[95]
Wolinsky, J.B.; Grinstaff, M.W. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv. Drug Deliv. Rev., 2008, 60(9), 1037-1055.
[96]
Fuchs, S.; Kapp, T.; Otto, H.; Schöneberg, T.; Franke, P.; Gust, R.; Schlüter, A.D. A surface‐modified dendrimer set for potential application as drug delivery vehicles: synthesis, in vitro toxicity, and intracellular localization. Chem. Eur. J., 2004, 10(5), 1167-1192.
[97]
Wang, P.; Zhao, X-H.; Wang, Z-Y.; Meng, M.; Li, X.; Ning, Q. Generation 4 polyamidoamine dendrimers is a novel candidate of nano-carrier for gene delivery agents in breast cancer treatment. Cancer Lett., 2010, 298(1), 34-49.
[98]
Lu, H-L.; Syu, W-J.; Nishiyama, N.; Kataoka, K.; Lai, P-S. Dendrimer phthalocyanine-encapsulated polymeric micelle-mediated photochemical internalization extends the efficacy of photodynamic therapy and overcomes drug-resistance in vivo. J. Control. Release, 2011, 155(3), 458-464.
[99]
Gupta, U.; Dwivedi, S.K.D.; Bid, H.K.; Konwar, R.; Jain, N. Ligand anchored dendrimers based nanoconstructs for effective targeting to cancer cells. . Int. J. Pharm., 2010, 393(1-2), 186-197.
[100]
Li, J-L.; Wang, L.; Liu, X-Y.; Zhang, Z-P.; Guo, H-C.; Liu, W-M.; Tang, S-H. In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett., 2009, 274(2), 319-326.
[101]
Balakrishnan, S.; Bhat, F.; Raja Singh, P.; Mukherjee, S.; Elumalai, P.; Das, S.; Patra, C.; Arunakaran, J. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR‐2‐mediated pathway in breast cancer. Cell Prolif., 2016, 49(6), 678-697.
[102]
Aires, A.; Ocampo, S.M.; Simões, B.M.; Rodríguez, M.J.; Cadenas, J.F.; Couleaud, P.; Spence, K.; Latorre, A.; Miranda, R.; Somoza, Á. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells. Nanotechnology, 2016, 27(6)065103
[103]
Ahmed, M.; Douek, M. The role of magnetic nanoparticles in the localization and treatment of breast cancer. BioMed Res. Int., 2013, 2013281230
[104]
Thorek, D.L.; Chen, A.K.; Czupryna, J.; Tsourkas, A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann. Biomed. Eng., 2006, 34(1), 23-38.
[105]
Jayakumar, R.; Prabaharan, M.; Nair, S.; Tamura, H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol. Adv., 2010, 28(1), 142-150.
[106]
Marty, M.; Cognetti, F.; Maraninchi, D.; Snyder, R.; Mauriac, L.; Tubiana-Hulin, M.; Chan, S.; Grimes, D.; Antón, A.; Lluch, A. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: The M77001 study group. J. Clin. Oncol., 2005, 23(19), 4265-4274.
[107]
Sahoo, N.G.; Bao, H.; Pan, Y.; Pal, M.; Kakran, M.; Cheng, H.K.F.; Li, L.; Tan, L.P. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: A comparative study. Chem. Commun., 2011, 47(18), 5235-5237.
[108]
Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res., 2008, 68(16), 6652-6660.
[109]
Chen, H.; Ma, X.; Li, Z.; Shi, Q.; Zheng, W.; Liu, Y.; Wang, P. Functionalization of single-walled carbon nanotubes enables efficient intracellular delivery of siRNA targeting MDM2 to inhibit breast cancer cells growth. Biomed. Pharmacother., 2012, 66(5), 334-338.
[110]
Eghtedari, M.; Liopo, A.V.; Copland, J.A.; Oraevsky, A.A.; Motamedi, M. Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett., 2008, 9(1), 287-291.
[111]
Meng, H.; Liong, M.; Xia, T.; Li, Z.; Ji, Z.; Zink, J.I.; Nel, A.E. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano, 2010, 4(8), 4539-4550.
[112]
Zhang, Y.; Zhang, H.; Wang, X.; Wang, J.; Zhang, X.; Zhang, Q. The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials, 2012, 33(2), 679-691.
[113]
Zhang, Y.; Huang, Y.; Li, S. Polymeric micelles: Nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech, 2014, 15(4), 862-871.
[114]
Rapoport, N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci., 2007, 32(8-9), 962-990.
[115]
Cho, K.; Wang, X.; Nie, S.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res., 2008, 14(5), 1310-1316.
[116]
M.A., Sadat S.; Saeidnia, S.; J Nazarali, A.; Haddadi, A. Nano-pharmaceutical formulations for targeted drug delivery against HER2 in breast cancer. Curr. Cancer Drug Targets, 2015, 15(1), 71-86.
[117]
Lee, K.S.; Chung, H.C. Im, S.A.; Park, Y.H.; Kim, C.S.; Kim, S.-B.; Rha, S.Y.; Lee, M.Y.; Ro, J. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res. Treat., 2008, 108(2), 241-250.
[118]
Glasgow, M.D.; Chougule, M.B. Recent developments in active tumor targeted multifunctional nanoparticles for combination chemotherapy in cancer treatment and imaging. J. Biomed. Nanotechnol., 2015, 11(11), 1859-1898.
[119]
Mitragotri, S.; Yoo, J-W. Designing micro-and nano-particles for treating rheumatoid arthritis. Arch. Pharm. Res., 2011, 34(11), 1887-1897.
[120]
Schurgers, E.; Billiau, A.; Matthys, P. Collagen-induced arthritis as an animal model for rheumatoid arthritis: focus on interferon-γ. J. Interferon Cytokine Res., 2011, 31(12), 917-926.
[121]
Dolati, S.; Sadreddini, S.; Rostamzadeh, D.; Ahmadi, M.; Jadidi-Niaragh, F.; Yousefi, M. Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomed. Pharmacother., 2016, 80, 30-41.
[122]
Barnes, T.; Moots, R. Targeting nanomedicines in the treatment of rheumatoid arthritis: Focus on certolizumab pegol. Int. J. Nanomedicine, 2007, 2(1), 3.
[123]
Howard, K.A.; Paludan, S.R.; Behlke, M.A.; Besenbacher, F.; Deleuran, B.; Kjems, J. Chitosan/siRNA nanoparticle-mediated TNF-α knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol. Ther., 2009, 17(1), 162-168.
[124]
McInnes, I.B.; Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol., 2007, 7(6), 429.
[125]
Marrelli, A.; Cipriani, P.; Liakouli, V.; Carubbi, F.; Perricone, C.; Perricone, R.; Giacomelli, R. Angiogenesis in rheumatoid arthritis: A disease specific process or a common response to chronic inflammation? Autoimmun. Rev., 2011, 10(10), 595-598.
[126]
Pham, C.T. Nanotherapeutic approaches for the treatment of rheumatoid arthritis. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2011, 3(6), 607-619.
[127]
Oda, K.; Minata, M. Drug free remission after steroid-dependent disappearance of lymphoproliferative disorder in rheumatoid arthritis patient treated with TNF-alpha blockade: case study. Springerplus, 2015, 4(1), 41.
[128]
Stoll, J.G.; Yasothan, U. Rheumatoid arthritis market. Nat. Rev. Drug Discov., 2009, 8(9), 693-694.
[129]
Koenders, M.I.; Van Den Berg, W.B. Novel therapeutic targets in rheumatoid arthritis. Trends Pharmacol. Sci., 2015, 36(4), 189-195.
[130]
Rubinstein, I.; Weinberg, G.L. Nanomedicines for chronic non-infectious arthritis: The clinician’s perspective. Nanomedicine, 2012, 8, S77-S82.
[131]
Mudshinge, S.R.; Deore, A.B.; Patil, S.; Bhalgat, C.M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J., 2011, 19(3), 129-141.
[132]
Foong, W.; Green, K. Association of liposome‐entrapped [3H] methotrexate with thioglycollate‐elicited macrophages in vitro. J. Pharm. Pharmacol., 1988, 40(3), 171-175.
[133]
Love, W.; Amos, N.; Kellaway, I.; Williams, B. Specific accumulation of technetium-99m radiolabelled, negative liposomes in the inflamed paws of rats with adjuvant induced arthritis: Effect of liposome size. Ann. Rheum. Dis., 1989, 48(2), 143.
[134]
Srinath, P.; Chary, M.; Vyas, S.; Diwan, P. Long-circulating liposomes of indomethacin in arthritic rats-a biodisposition study. Pharm. Acta Helv., 2000, 74(4), 399-404.
[135]
Trif, M.; Guillen, C.; Vaughan, D.M.; Telfer, J.M.; Brewer, J.M.; Roseanu, A.; Brock, J.H. Liposomes as possible carriers for lactoferrin in the local treatment of inflammatory diseases. Exp. Biol. Med., 2001, 226(6), 559-564.
[136]
Kapoor, B.; Singh, S.K.; Gulati, M.; Gupta, R.; Vaidya, Y. Application of liposomes in treatment of rheumatoid arthritis: Quo vadis. ScientificWorldJournal, 2014, 2014978351
[137]
Tarner, I.H.; Müller-Ladner, U. Drug delivery systems for the treatment of rheumatoid arthritis. Expert Opin. Drug Deliv., 2008, 5(9), 1027-1037.
[138]
Van Den Hoven, J.M.; Van Tomme, S.R.; Metselaar, J.M.; Nuijen, B.; Beijnen, J.H.; Storm, G. Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol. Pharm., 2011, 8(4), 1002-1015.
[139]
C̆eponis, A.; Waris, E.; Mönkkönen, J.; Laasonen, L.; Hyttinen, M.; Solovieva, S.A.; Hanemaaijer, R.; Bitsch, A.; Konttinen, Y.T. Effects of low‐dose, noncytotoxic, intraarticular liposomal clodronate on development of erosions and proteoglycan loss in established antigen‐induced arthritis in rabbits. Arthritis Rheum., 2001, 44(8), 1908-1916.
[140]
Metselaar, J.M.; Wauben, M.H.; Wagenaar‐Hilbers, J.P.; Boerman, O.C.; Storm, G. Complete remission of experimental arthritis by joint targeting of glucocorticoids with long‐circulating liposomes. Arthritis Rheum., 2003, 48(7), 2059-2066.
[141]
Metselaar, J.; Van Den Berg, W.; Holthuysen, A.; Wauben, M.; Storm, G.; Van Lent, P. Liposomal targeting of glucocorticoids to synovial lining cells strongly increases therapeutic benefit in collagen type II arthritis. Ann. Rheum. Dis., 2004, 63(4), 348-353.
[142]
Rauchhaus, U.; Kinne, R.; Pohlers, D.; Wiegand, S.; Wölfert, A.; Gajda, M.; Bräuer, R.; Panzner, S. Targeted delivery of liposomal dexamethasone phosphate to the spleen provides a persistent therapeutic effect in rat antigen-induced arthritis. Ann. Rheum. Dis., 2009, 68(12), 1933-1934.
[143]
Khoury, M.; Louis‐Plence, P.; Escriou, V.; Noel, D.; Largeau, C.; Cantos, C.; Scherman, D.; Jorgensen, C.; Apparailly, F. Efficient new cationic liposome formulation for systemic delivery of small interfering RNA silencing tumor necrosis factor α in experimental arthritis. Arthritis Rheum., 2006, 54(6), 1867-1877.
[144]
Fiehn, C.; Muller-Ladner, U.; Gay, S.; Krienke, S.; Freudenberg-Konrad, S.; Funk, J.; Ho, A.; Sinn, H.; Wunder, A. Albumin-coupled methotrexate (MTX-HSA) is a new anti-arthritic drug which acts synergistically to MTX. Rheumatology, 2004, 43(9), 1097-1105.
[145]
Kim, W.U.; Lee, W.K.; Ryoo, J.W.; Kim, S.H.; Kim, J.; Youn, J.; Min, S.Y.; Bae, E.Y.; Hwang, S.Y.; Park, S.H. Suppression of collagen‐induced arthritis by single administration of poly (lactic‐co‐glycolic acid) nanoparticles entrapping type II collagen: a novel treatment strategy for induction of oral tolerance. Arthritis Rheum., 2002, 46(4), 1109-1120.
[146]
Albuquerque, J.; Moura, C.C.; Sarmento, B.; Reis, S. Solid lipid nanoparticles: A potential multifunctional approach towards rheumatoid arthritis theranostics. Molecules, 2015, 20(6), 11103-11118.
[147]
Mansouri, S.; Cuie, Y.; Winnik, F.; Shi, Q.; Lavigne, P.; Benderdour, M.; Beaumont, E.; Fernandes, J.C. Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials, 2006, 27(9), 2060-2065.
[148]
Patel, J.; Jigar, B.; Shah, H.; Patel, D. Novel drug delivery technologies for the treatment of rheumatoid arthritis. Internet J. Med. Tech, 2008, 5(1), 1-11.
[149]
Liu, M.; Dong, J.; Yang, Y.; Yang, X.; Xu, H. Anti-inflammatory effects of triptolide loaded poly (D, L-lactic acid) nanoparticles on adjuvant-induced arthritis in rats. J. Ethnopharmacol., 2005, 97(2), 219-225.
[150]
Chandrasekar, D.; Sistla, R.; Ahmad, F.J.; Khar, R.K.; Diwan, P.V. Folate coupled poly (ethyleneglycol) conjugates of anionic poly (amidoamine) dendrimer for inflammatory tissue specific drug delivery. J. Biomed. Mater. Res. A, 2007, 82(1), 92-103.
[151]
Thomas, T.P.; Goonewardena, S.N.; Majoros, I.J.; Kotlyar, A.; Cao, Z.; Leroueil, P.R.; Baker Jr, J.R. Folate‐targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum., 2011, 63(9), 2671-2680.
[152]
Hayder, M.; Poupot, M.; Baron, M.; Nigon, D.; Turrin, C.-O.; Caminade, A.-M.; Majoral, J.-P.; Eisenberg, R. A.; Fournié, J.-J.; Cantagrel, A. A phosphorus-based dendrimer targets inflammation and osteoclastogenesis in experimental arthritis. Sci. Transl. Med., 2011, 3(81), 81ra35-81ra35.
[153]
Bosch, X. Dendrimers to treat rheumatoid arthritis. ACS Nano, 2011, 5(9), 6779-6785.
[154]
Tsai, C.Y.; Shiau, A.L.; Chen, S.Y.; Chen, Y.H.; Cheng, P.C.; Chang, M.Y.; Chen, D.H.; Chou, C.H.; Wang, C.R.; Wu, C.L. Amelioration of collagen‐induced arthritis in rats by nanogold. Arthritis Rheum., 2007, 56(2), 544-554.
[155]
Huang, Y-J.; Shiau, A-L.; Chen, S-Y.; Chen, Y-L.; Wang, C-R.; Tsai, C-Y.; Chang, M-Y.; Li, Y-T.; Leu, C-H.; Wu, C-L. Multivalent structure of galectin-1-nanogold complex serves as potential therapeutics for rheumatoid arthritis by enhancing receptor clustering. Eur. Cell. Mater., 2012, 23, 170-181.
[156]
Lee, S-M.; Kim, H.J.; Ha, Y-J.; Park, Y.N.; Lee, S-K.; Park, Y-B.; Yoo, K-H. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano, 2012, 7(1), 50-57.
[157]
Lee, H.; Lee, M-Y.; Bhang, S.H.; Kim, B-S.; Kim, Y.S.; Ju, J.H.; Kim, K.S.; Hahn, S.K. Hyaluronate–gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano, 2014, 8(5), 4790-4798.
[158]
Schulze, K.; Koch, A.; Schöpf, B.; Petri, A.; Steitz, B.; Chastellain, M.; Hofmann, M.; Hofmann, H.; von Rechenberg, B. Intraarticular application of superparamagnetic nanoparticles and their uptake by synovial membrane-an experimental study in sheep. J. Magn. Magn. Mater., 2005, 293(1), 419-432.
[159]
Markides, H.; Kehoe, O.; Morris, R.H.; El Haj, A.J. Whole body tracking of superparamagnetic iron oxide nanoparticle-labelled cells-a rheumatoid arthritis mouse model. Stem Cell Res. Ther., 2013, 4(5), 126.
[160]
Prasad, S.R.; Elango, K.; Damayanthi, D.; Saranya, J. Formulation and evaluation of azathioprine loaded silver nanopartilces for the treatment of rheumatoid arthritis. Asian J. Biomed. Pharm. Sci., 2013, 3(23), 1-5.
[161]
Ye, J.; Wang, Q.; Zhou, X.; Zhang, N. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int. J. Pharm., 2008, 352(1-2), 273-279.
[162]
Xue, M.; Jiang, Z-z.; Wu, T.; Li, J.; Zhang, L.; Zhao, Y.; Li, X-j.; Zhang, L-Y.; Yang, S-y. Anti-inflammatory effects and hepatotoxicity of Tripterygium-loaded solid lipid nanoparticles on adjuvant-induced arthritis in rats. Phytomedicine, 2012, 19(11), 998-1006.
[163]
Nagai, N.; Ito, Y. Effect of solid nanoparticle of indomethacin on therapy for rheumatoid arthritis in adjuvant-induced arthritis rat. Biol. Pharm. Bull., 2014, 37(7), 1109-1118.
[164]
Koo, O.M.Y.; Rubinstein, I.; Önyüksel, H. Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis. Pharm. Res., 2011, 28(4), 776-787.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 20
ISSUE: 6
Year: 2019
Page: [430 - 445]
Pages: 16
DOI: 10.2174/1389200220666181127102720
Price: $58

Article Metrics

PDF: 19
HTML: 2