Does the Development of Vaccines Advance Solutions for Tuberculosis?

Author(s): Manaf AlMatar*, Essam A. Makky, Husam AlMandeal, Emel Eker, Begüm Kayar, Işıl Var, Fatih Köksal.

Journal Name: Current Molecular Pharmacology

Volume 12 , Issue 2 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Abstract:

Background: Mycobacterium tuberculosis (Mtb) is considered as one of the most efficacious human pathogens. The global mortality rate of TB stands at approximately 2 million, while about 8 to 10 million active new cases are documented yearly. It is, therefore, a priority to develop vaccines that will prevent active TB. The vaccines currently used for the management of TB can only proffer a certain level of protection against meningitis, TB, and other forms of disseminated TB in children; however, their effectiveness against pulmonary TB varies and cannot provide life-long protective immunity. Based on these reasons, more efforts are channeled towards the development of new TB vaccines. During the development of TB vaccines, a major challenge has always been the lack of diversity in both the antigens contained in TB vaccines and the immune responses of the TB sufferers. Current efforts are channeled on widening both the range of antigens selection and the range of immune response elicited by the vaccines. The past two decades witnessed a significant progress in the development of TB vaccines; some of the discovered TB vaccines have recently even completed the third phase (phase III) of a clinical trial.

Objective: The objectives of this article are to discuss the recent progress in the development of new vaccines against TB; to provide an insight on the mechanism of vaccine-mediated specific immune response stimulation, and to debate on the interaction between vaccines and global interventions to end TB.

Keywords: Vaccine, Mycobacterium tuberculosis, immune response, clinical trials, public health, End TB.

[1]
Team, V.A.M. WHO vaccine-preventable diseases: monitoring system; , 2004. global summary. WHO Department of Immunization, Vaccines and Biologicals. WHO document production services, Geneva, Switzerland.
[2]
AlMatar, M.; Makky, E.A.; Yakıcı, G.; Var, I.; Kayar, B.; Köksal, F. Antimicrobial peptides as an alternative to anti-tuberculosis drugs. Pharmacol. Res., 2017, 128, 288-305.
[3]
Cohn, D.L. Treatment of latent tuberculosis infection: renewed opportunity for tuberculosis control. Clin. Infect. Dis., 2000, 31, 120-124.
[4]
AlMatar, M.; Makky, E.A.; Var, I.; Kayar, B.; Köksal, F. Novel compounds targeting InhA for TB therapy. Pharmacol. Rep., 2017, 70, 217-226.
[5]
Chang, S.; Cataldo, J. A systematic review of global cultural variations in knowledge, attitudes and health responses to tuberculosis stigma. Int. J. Tuberc. Lung Dis., 2014, 18, 168-173.
[6]
Dye, C.; Scheele, S.; Dolin, P.; Pathania, V.; Raviglione, M. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by in an urban community. Int. J. Tuberc. Lung Dis., 2005, 9, 970-976.
[7]
Dheda, K.; Barry, C.E., III; Maartens, G. Tuberculosis. The Lancet, 2016, 387, 1211-1226.
[8]
Cardona, P.J. The progress of therapeutic vaccination with regard to tuberculosis. Front. Microbiol., 2016, 7, 1536.
[9]
Moliva, J.I.; Turner, J.; Torrelles, J.B. Prospects in Mycobacterium bovis Bacille Calmette et Guerin (BCG) vaccine diversity and delivery: why does BCG fail to protect against tuberculosis? Vaccine, 2015, 33, 5035-5041.
[10]
Knight, G.M.; Griffiths, U.K.; Sumner, T.; Laurence, Y.V.; Gheorghe, A.; Vassall, A.; Glaziou, P.; White, R.G. Impact and cost-effectiveness of new tuberculosis vaccines in low-and middle-income countries. Proc. Natl. Acad. Sci., 2014, 111, 15520-15525.
[11]
Cayabyab, M.J.; Macovei, L.; Campos-Neto, A. Current and novel approaches to vaccine development against tuberculosis. Front. Cell. Infect. Microbiol., 2012, 2, 154.
[12]
Brennan, M.J.; Thole, J. Tuberculosis vaccines: A strategic blueprint for the next decade. Tuberculosis, 2012, 92, S6-S13.
[13]
Fennelly, K.P.; Jones-López, E.C.; Ayakaka, I.; Kim, S.; Menyha, H.; Kirenga, B.; Muchwa, C.; Joloba, M.; Dryden-Peterson, S.; Reilly, N. Variability of infectious aerosols produced during coughing by patients with pulmonary tuberculosis. Am. J. Respir. Crit. Care Med., 2012, 186, 450-457.
[14]
Lawn, S.D.; Zumla, A.I. Tuberculosis. The Lancet, 2011, 378, 57-72.
[15]
Riley, R.; Mills, C.; Nyka, W.; Weinstock, N.; Storey, P.; Sultan, L.; Riley, M.; Wells, W. Aerial dissemination of pulmonary tuberculosis. A two-year study of contagion in a tuberculosis ward. Am. J. Hyg., 1959, 70, 185-196.
[16]
Sturgill-Koszycki, S.; Schlesinger, P.H.; Chakraborty, P.; Haddix, P.L.; Collins, H.L.; Fok, A.K.; Allen, R.D.; Gluck, S.L.; Heuser, J.; Russell, D.G. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science, 1994, 263, 678-681.
[17]
Behar, S.M.; Divangahi, M.; Remold, H.G. Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat. Rev. Microbiol., 2010, 8, 668.
[18]
Divangahi, M.; Chen, M.; Gan, H.; Desjardins, D.; Hickman, T.T.; Lee, D.M.; Fortune, S.; Behar, S.M.; Remold, H.G. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat. Immunol., 2009, 10, 899.
[19]
Guirado, E.; Schlesinger, L.S.; Kaplan, G. Macrophages in tuberculosis: Friend or foe. In Seminars in immunopathology. Springer, 2013, 35 563-583.
[20]
Samstein, M.; Schreiber, H.A.; Leiner, I.M.; Sušac, B.; Glickman, M.S.; Pamer, E.G. Essential yet limited role for CCR2+ inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. eLife, 2013, 2, e01086.
[21]
Chackerian, A.A.; Alt, J.M.; Perera, T.V.; Dascher, C.C.; Behar, S.M. Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect. Immun., 2002, 70, 4501-4509.
[22]
Reece, S.T.; Kaufmann, S.H. Floating between the poles of pathology and protection: can we pin down the granuloma in tuberculosis? Curr. Opin. Microbiol., 2012, 15, 63-70.
[23]
Silva, C.L.; Lowrie, D.B. Identification and characterization of murine cytotoxic T cells that kill Mycobacterium tuberculosis. Infect. Immun., 2000, 68, 3269-3274.
[24]
Gengenbacher, M.; Rao, S.P.; Pethe, K.; Dick, T. Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology, 2010, 156, 81-87.
[25]
Wayne, L.G.; Hayes, L.G. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect. Immun., 1996, 64, 2062-2069.
[26]
Shaler, C.R.; Horvath, C.; Lai, R.; Xing, Z. Understanding delayed T-cell priming, lung recruitment, and airway luminal T-cell responses in host defense against pulmonary tuberculosis. Clin. Dev. Immunol., 2012, 2012, 1-13.
[27]
Mulligan, M.J.; Bernstein, D.I.; Frey, S.; Winokur, P.; Rouphael, N.; Dickey, M.; Edupuganti, S.; Spearman, P.; Anderson, E.; Graham, I. Point-of-use mixing of influenza H5N1 vaccine and MF59 adjuvant for pandemic vaccination preparedness: antibody responses and safety. A phase 1 clinical trial. Open Forum Infec. Dis., Oxford University Press, 2014, 1, 102.
[28]
Pouliot, K.; Buglione-Corbett, R.; Marty-Roix, R.; Montminy-Paquette, S.; West, K.; Wang, S.; Lu, S.; Lien, E. Contribution of TLR4 and MyD88 for adjuvant monophosphoryl lipid A (MPLA) activity in a DNA prime–protein boost HIV-1 vaccine. Vaccine, 2014, 32, 5049-5056.
[29]
Shen, H.; Tesar, B.M.; Walker, W.E.; Goldstein, D.R. Dual signaling of MyD88 and TRIF is critical for maximal TLR4-induced dendritic cell maturation. J. Immun., 2008, 181, 1849-1858.
[30]
Werninghaus, K.; Babiak, A.; Groß, O.; Hölscher, C.; Dietrich, H.; Agger, E.M.; Mages, J.; Mocsai, A.; Schoenen, H.; Finger, K. Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRγ–Syk–Card9–dependent innate immune activation. J. Exp. Med., 2009, 206, 89-97.
[31]
Fochesato, M.; Dendouga, N.; Boxus, M. Comparative preclinical evaluation of AS01 versus other adjuvant systems in a candidate herpes zoster glycoprotein E subunit vaccine. Hum. Vaccin. Immunother., 2016, 12, 2092-2095.
[32]
Derrick, S.C.; Yang, A.; Parra, M.; Kolibab, K.; Morris, S.L. Effect of cationic liposomes on BCG trafficking and vaccine-induced immune responses following a subcutaneous immunization in mice. Vaccine, 2015, 33, 126-132.
[33]
Moyle, P.M. Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines. Biotechnol. Adv., 2017, 35, 375-389.
[34]
Baldwin, S.L.; Bertholet, S.; Reese, V.A.; Ching, L.K.; Reed, S.G.; Coler, R.N. The importance of adjuvant formulation in the development of a tuberculosis vaccine. J. Immunol., 2012, 188, 2189-2197.
[35]
Bertholet, S.; Ireton, G.C.; Ordway, D.J.; Windish, H.P.; Pine, S.O.; Kahn, M.; Phan, T.; Orme, I.M.; Vedvick, T.S.; Baldwin, S.L. A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci. Transl. Med., 2010, 2, 53-74.
[36]
Wang, X.; Zhang, J.; Liang, J.; Zhang, Y.; Teng, X.; Yuan, X.; Fan, X. Protection against Mycobacterium tuberculosis infection offered by a new multistage subunit vaccine correlates with increased number of IFN-γ+ IL-2+ CD4+ and IFN-γ+ CD8+ T cells. PLoS One, 2015, 10, e0122560.
[37]
Ma, J.; Tian, M.; Fan, X.; Yu, Q.; Jing, Y.; Wang, W.; Li, L.; Zhou, Z. Mycobacterium tuberculosis multistage antigens confer comprehensive protection against pre-and post-exposure infections by driving Th1-type T cell immunity. Oncotarget, 2016, 7, 63804.
[38]
Philips, J.A.; Ernst, J.D. Tuberculosis pathogenesis and immunity. Annu. Rev. Pathol., 2012, 7, 353-384.
[39]
Singh, M.; O’Hagan, D. Advances in vaccine adjuvants. Nat. Biotechnol., 1999, 17, 1075.
[40]
Ulmer, J.B.; Valley, U.; Rappuoli, R. Vaccine manufacturing: challenges and solutions. Nat. Biotechnol., 2006, 24, 1377.
[41]
Newman, M.J.; Balusubramanian, M.; Todd, C.W. Development of adjuvant-active nonionic block copolymers. Adv. Drug Deliv. Rev., 1998, 32, 199-223.
[42]
Hunter, R.L. Overview of vaccine adjuvants: present and future. Vaccine, 2002, 20, S7-S12.
[43]
Schijns, V.; Brewer, J. Immunopotentiators in Modern Vaccines (IMV-II) held in Malaga, Spain, May 18-20, 2005. Vaccine, 2006, 26, 5391-5392.
[44]
Van Der Meeren, O.; Hatherill, M.; Nduba, V.; Wilkinson, R.J.; Muyoyeta, M.; Van Brakel, E.; Ayles, H.M.; Henostroza, G.; Thienemann, F.; Scriba, T.J.; Diacon, A.; Blatner, G.L.; Demoitié, M-A.; Tameris, M.; Malahleha, M.; Innes, J.C.; Hellström, E.; Martinson, N.; Singh, T.; Akite, E.J.; Khatoon Azam, A.; Bollaerts, A.; Ginsberg, A.M.; Evans, T.G.; Gillard, P.; Tait, D.R. Phase 2b Controlled Trial of M72/AS01E Vaccine to Prevent Tuberculosis. N. Engl. J. Med., 2018, 379, 1621-1634.
[45]
Garçon, N.; Chomez, P.; Van Mechelen, M. GlaxoSmithKline Adjuvant Systems in vaccines: concepts, achievements and perspectives. Expert Rev. Vaccines, 2007, 6, 723-739.
[46]
Olafsdottir, T.; Lingnau, K.; Nagy, E.; Jonsdottir, I. IC31, a Two- Component Novel Adjuvant Mixed with a Conjugate Vaccine Enhances Protective Immunity against Pneumococcal Disease in Neonatal Mice. Scand. J. Immunol., 2009, 69, 194-202.
[47]
van Dissel, J.T.; Arend, S.M.; Prins, C.; Bang, P.; Tingskov, P.N.; Lingnau, K.; Nouta, J.; Klein, M.R.; Rosenkrands, I.; Ottenhoff, T.H. Ag85B–ESAT-6 adjuvanted with IC31® promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in naïve human volunteers. Vaccine, 2010, 28, 3571-3581.
[48]
Nemes, E.; Geldenhuys, H.; Rozot, V.; Rutkowski, K.T.; Ratangee, F.; Bilek, N.; Mabwe, S.; Makhethe, L.; Erasmus, M.; Toefy, A.; Mulenga, H.; Hanekom, W.A.; Self, S.G.; Bekker, L-G.; Ryall, R.; Gurunathan, S. DiazGranados, C.A.; Andersen, P.; Kromann, I.; Evans, T.; Ellis, R.D.; Landry, B.; Hokey, D.A.; Hopkins, R.; Ginsberg, A. M.; Scriba, T.J.; Hatherill, M. Prevention of M. tuberculosis Infection with H4:IC31 Vaccine or BCG Revaccination. N. Engl. J. Med., 2018, 379, 138-149.
[49]
Davidsen, J.; Rosenkrands, I.; Christensen, D.; Vangala, A.; Kirby, D.; Perrie, Y.; Agger, E.M.; Andersen, P. Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6, 6′-dibehenate)-a novel adjuvant inducing both strong CMI and antibody responses. Biochim. Biophys. Acta, 2005, 1718, 22-31.
[50]
Baldwin, S.L.; Bertholet, S.; Reese, V.A.; Ching, L.K.; Reed, S.G.; Coler, R.N. The importance of adjuvant formulation in the development of a tuberculosis vaccine. J. Immunol., 2012, 188, 2189-2197.
[51]
Milicic, A.; Kaur, R.; Reyes-Sandoval, A.; Tang, C-K.; Honeycutt, J.; Perrie, Y.; Hill, A.V. Small cationic DDA: TDB liposomes as protein vaccine adjuvants obviate the need for TLR agonists in inducing cellular and humoral responses. PLoS One, 2012, 7, e34255.
[52]
Latif, N.; Bachhawat, B.K. The effect of surface charges of liposomes in immunopotentiation. Biosci. Rep., 1984, 4, 99-107.
[53]
McNeil, S.E.; Rosenkrands, I.; Agger, E.M.; Andersen, P.; Perrie, Y. Subunit vaccines: Distearoylphosphatidylcholine-based liposomes entrapping antigen offer a neutral alternative to dimethyldioctadecylammonium-based cationic liposomes as an adjuvant delivery system. J. Pharm. Sci., 2011, 100, 1856-1865.
[54]
Fomsgaard, A.; Karlsson, I.; Gram, G.; Schou, C.; Tang, S.; Bang, P.; Kromann, I.; Andersen, P.; Andreasen, L.V. Development and preclinical safety evaluation of a new therapeutic HIV-1 vaccine based on 18 T-cell minimal epitope peptides applying a novel cationic adjuvant CAF01. Vaccine, 2011, 29, 7067-7074.
[55]
Carmona-Ribeiro, A.; Chaimovich, H. Salt-induced aggregation and fusion of dioctadecyldimethylammonium chloride and sodium dihexadecylphosphate vesicles. Biophys. J., 1986, 50, 621-628.
[56]
Luuk, A.T.; Snippe, H.; Jansze, M.; Willers, J.M. Combinations of two synthetic adjuvants: synergistic effects of a surfactant and a polyanion on the humoral immune response. Cell. Immunol., 1985, 92, 203-209.
[57]
Foged, C.; Arigita, C.; Sundblad, A.; Jiskoot, W.; Storm, G.; Frokjaer, S. Interaction of dendritic cells with antigen-containing liposomes: Effect of bilayer composition. Vaccine, 2004, 22, 1903-1913.
[58]
Hui, S.W.; Langner, M.; Zhao, Y.L.; Ross, P.; Hurley, E.; Chan, K. The role of helper lipids in cationic liposome-mediated gene transfer. Biophys. J., 1996, 71, 590-599.
[59]
Zuhorn, I.; Hoekstra, D. On the mechanism of cationic amphiphile-mediated transfection. To fuse or not to fuse: İs that the question? J. Membr. Biol., 2002, 189, 167-179.
[60]
Brandt, L.; Elhay, M.; Rosenkrands, I.; Lindblad, E.B.; Andersen, P. ESAT-6 subunit vaccination against Mycobacterium tuberculosis. Infect. Immun., 2000, 68, 791-795.
[61]
Zaks, K.; Jordan, M.; Guth, A.; Sellins, K.; Kedl, R.; Izzo, A.; Bosio, C.; Dow, S. Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J. Immunol., 2006, 176, 7335-7345.
[62]
Bal, S.M.; Hortensius, S.; Ding, Z.; Jiskoot, W.; Bouwstra, J.A. Co-encapsulation of antigen and Toll-like receptor ligand in cationic liposomes affects the quality of the immune response in mice after intradermal vaccination. Vaccine, 2011, 29, 1045-1052.
[63]
Choe, J.; Kelker, M.S.; Wilson, I.A. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science, 2005, 309, 581-585.
[64]
Bell, J.K.; Askins, J.; Hall, P.R.; Davies, D.R.; Segal, D.M. The dsRNA binding site of human Toll-like receptor 3. Proc. Natl. Acad. Sci., 2006, 103, 8792-8797.
[65]
Heffernan, M.J.; Kasturi, S.P.; Yang, S.C.; Pulendran, B.; Murthy, N. The stimulation of CD8+ T cells by dendritic cells pulsed with polyketal microparticles containing ion-paired protein antigen and poly (inosinic acid)-poly (cytidylic acid). Biomaterials, 2009, 30, 910-918.
[66]
Luo, Y.; Wang, B.; Hu, L.; Yu, H.; Da, Z.; Jiang, W.; Song, N.; Qie, Y.; Wang, H.; Tang, Z. Fusion protein Ag85B-MPT64190–198-Mtb8. 4 has higher immunogenicity than Ag85B with capacity to boost BCG-primed immunity against Mycobacterium tuberculosis in mice. Vaccine, 2009, 27, 6179-6185.
[67]
Lee, K-W.; Jung, J.; Lee, Y.; Kim, T-Y.; Choi, S-Y.; Park, J.; Kim, D-S.; Kwon, H-J. Immunostimulatory oligodeoxynucleotide isolated from genome wide screening of Mycobacterium bovis chromosomal DNA. Mol. Immunol., 2006, 43, 2107-2118.
[68]
Pimm, M.V.; Baldwin, R.W.; Polonsky, J.; Lederer, E. Immunotherapy of an ascitic rat hepatoma with cord factor (trehalose‐6, 6′‐dimycolate) and synthetic analogues. Int. J. Cancer, 1979, 24, 780-785.
[69]
Liu, X.; Da, Z.; Wang, Y.; Niu, H.; Li, R.; Yu, H.; He, S.; Guo, M.; Wang, Y.; Luo, Y. A novel liposome adjuvant DPC mediates Mycobacterium tuberculosis subunit vaccine well to induce cell-mediated immunity and high protective efficacy in mice. Vaccine, 2016, 34, 1370-1378.
[70]
Ribeiro, A.C.; Chaimovich, H. Preparation and characterization of large dioctadecyldimethylammonium chloride liposomes and comparison with small sonicated vesicles. Biochim. Biophys. Acta, 1983, 733, 172-179.
[71]
Korsholm, K.S.; Petersen, R.V.; Agger, E.M.; Andersen, P. T‐helper 1 and T‐helper 2 adjuvants induce distinct differences in the magnitude, quality and kinetics of the early inflammatory response at the site of injection. Immunology, 2010, 129, 75-86.
[72]
Christensen, D.; Agger, E.M.; Andreasen, L.V.; Kirby, D.; Andersen, P.; Perrie, Y. Liposome-based cationic adjuvant formulations (CAF): Past, present, and future. J. Liposome Res., 2009, 19, 2-11.
[73]
Schwendener, R.A. Liposomes as vaccine delivery systems: a review of the recent advances. Ther. Adv. Vaccines, 2014, 2, 159-182.
[74]
Pulendran, B. Modulating vaccine responses with dendritic cells and Toll‐like receptors. Immunol. Rev., 2004, 199, 227-250.
[75]
Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol., 2010, 11, 373.
[76]
Holten-Andersen, L.; Doherty, T.; Korsholm, K.; Andersen, P. Combination of the cationic surfactant dimethyl dioctadecyl ammonium bromide and synthetic mycobacterial cord factor as an efficient adjuvant for tuberculosis subunit vaccines. Infect. Immun., 2004, 72, 1608-1617.
[77]
Yu, H.; Jiang, X.; Shen, C.; Karunakaran, K.P.; Jiang, J.; Rosin, N.L.; Brunham, R.C. Chlamydia muridarum T-cell antigens formulated with the adjuvant DDA/TDB induce immunity against infection that correlates with a high frequency of gamma interferon (IFN-γ)/tumor necrosis factor alpha and IFN-γ/interleukin-17 double-positive CD4+ T cells. Infect. Immun., 2010, 78, 2272-2282.
[78]
Andersen, C.A.S.; Rosenkrands, I.; Olsen, A.W.; Nordly, P.; Christensen, D.; Lang, R.; Kirschning, C.; Gomes, J.M.; Bhowruth, V.; Minnikin, D.E. Novel generation mycobacterial adjuvant based on liposome-encapsulated monomycoloyl glycerol from Mycobacterium bovis bacillus Calmette-Guerin. J. Immunol., 2009, 183, 2294-2302.
[79]
Korsholm, K.S.; Andersen, P.L.; Christensen, D. Cationic liposomal vaccine adjuvants in animal challenge models: overview and current clinical status. Expert Rev. Vaccines, 2012, 11, 561-577.
[80]
Gregoriadis, G.; Davis, C. Stability of liposomes invivo and invitro is promoted by their cholesterol content and the presence of blood cells. Biochem. Biophys. Res. Commun., 1979, 89, 1287-1293.
[81]
Lay, M.; Callejo, B.; Chang, S.; Hong, D.K.; Lewis, D.B.; Carroll, T.D.; Matzinger, S.; Fritts, L.; Miller, C.J.; Warner, J.F. Cationic lipid/DNA complexes (JVRS-100) combined with influenza vaccine (Fluzone®) increases antibody response, cellular immunity, and antigenically drifted protection. Vaccine, 2009, 27, 3811-3820.
[82]
Zhang, X.P.; Yang, L.; Shi, H.S.; Zhao, X.; Deng, H.X.; Xiao, W.J.; Mao, Y.Q.; Kan, B.; Liu, Y.L.; Zhang, S.; An, N. C-terminally truncated basic fibroblast growth factor and LPD (liposome-polycation-DNA) complex elicits a protective immune response against murine colon carcinoma. Cancer Biol. Ther., 2010, 10, 276-281.
[83]
Huang, Q.; Yu, W.; Hu, T. Potent antigen-adjuvant delivery system by conjugation of Mycobacterium tuberculosis Ag85B-HspX fusion protein with arabinogalactan-Poly (I: C) conjugate. Bioconjug. Chem., 2016, 27, 1165-1174.
[84]
Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell, 2010, 140, 805-820.
[85]
Sobel, D.O.; Goyal, D.; Ahvazi, B.; Yoon, J-W.; Chung, Y.H.; Bagg, A.; Harlan, D.M. Low dose poly I: C prevents diabetes in the diabetes prone BB rat. J. Autoimmun., 1998, 11, 343-352.
[86]
Goellner, E.M.; Utermoehlen, J.; Kramer, R.; Classen, B. Structure of arabinogalactan from Larix laricina and its reactivity with antibodies directed against type-II-arabinogalactans. Carbohydr. Polym., 2011, 86, 1739-1744.
[87]
Currier, N.; Lejtenyi, D.; Miller, S. Effect over time of in-vivo administration of the polysaccharide arabinogalactan on immune and hemopoietic cell lineages in murine spleen and bone marrow1. Phytomedicine, 2003, 10, 145-153.
[88]
Kumar, H.; Koyama, S.; Ishii, K.J.; Kawai, T.; Akira, S. Cutting edge: Cooperation of IPS-1-and TRIF-dependent pathways in poly IC-enhanced antibody production and cytotoxic T cell responses. J. Immunol., 2008, 180, 683-687.
[89]
Mata-Haro, V.; Cekic, C.; Martin, M.; Chilton, P.M.; Casella, C.R.; Mitchell, T.C. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science, 2007, 316, 1628-1632.
[90]
Mbow, M.L.; De Gregorio, E.; Valiante, N.M.; Rappuoli, R. New adjuvants for human vaccines. Curr. Opin. Immunol., 2010, 22, 411-416.
[91]
Schoenen, H.; Bodendorfer, B.; Hitchens, K.; Manzanero, S.; Werninghaus, K.; Nimmerjahn, F.; Agger, E.M.; Stenger, S.; Andersen, P.; Ruland, J. Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J. Immunol., 2010, 184, 2756-2760.
[92]
Gram, G.J.; Karlsson, I.; Agger, E.M.; Andersen, P.; Fomsgaard, A. A novel liposome-based adjuvant CAF01 for induction of CD8+ cytotoxic T-lymphocytes (CTL) to HIV-1 minimal CTL peptides in HLA-A* 0201 transgenic mice. PLoS One, 2009, 4, e6950.
[93]
Nordly, P.; Agger, E.M.; Andersen, P.; Nielsen, H.M.; Foged, C. Incorporation of the TLR4 agonist monophosphoryl lipid A into the bilayer of DDA/TDB liposomes: physico-chemical characterization and induction of CD8+ T-cell responses in vivo. Pharm. Res., 2011, 28, 553-562.
[94]
O’Garra, A.; Redford, P.S.; McNab, F.W.; Bloom, C.I.; Wilkinson, R.J.; Berry, M.P. The immune response in tuberculosis. Annu. Rev. Immunol., 2013, 31, 475-527.
[95]
Winau, F.; Weber, S.; Sad, S.; De Diego, J.; Hoops, S.L.; Breiden, B.; Sandhoff, K.; Brinkmann, V.; Kaufmann, S.H.; Schaible, U.E. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity, 2006, 24, 105-117.
[96]
Tascon, R.E.; Stavropoulos, E.; Lukacs, K.V.; Colston, M.J. Protection against Mycobacterium tuberculos isInfection by CD8+ T cells requires the production of gamma ınterferon. Infect. Immun., 1998, 66, 830-834.
[97]
van der Wel, N.; Hava, D.; Houben, D.; Fluitsma, D.; van Zon, M.; Pierson, J.; Brenner, M.; Peters, P.J.M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell, 2007, 129, 1287-1298.
[98]
Panas, M.W.; Sixsmith, J.D.; White, K.; Korioth-Schmitz, B.; Shields, S.T.; Moy, B.T.; Lee, S.; Schmitz, J.E.; Jacobs, W.R.; Porcelli, S.A. Gene deletions in Mycobacterium bovis BCG stimulate increased CD8+ T cell responses. Infect. Immun., 2014, 82, 5317-5326.
[99]
Schaible, U.E.; Winau, F.; Sieling, P.A.; Fischer, K.; Collins, H.L.; Hagens, K.; Modlin, R.L.; Brinkmann, V.; Kaufmann, S.H. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat. Med., 2003, 9, 1039.
[100]
Farinacci, M.; Weber, S.; Kaufmann, S.H.E. The recombinant tuberculosis vaccine rBCG ΔureC:hly+ induces apoptotic vesicles for improved priming of CD4+ and CD8+ T cells. Vaccine, 2012, 30, 7608-7614.
[101]
Billeskov, R.; Vingsbo-Lundberg, C.; Andersen, P.; Dietrich, J. Induction of CD8 T cells against a novel epitope in TB10. 4: correlation with mycobacterial virulence and the presence of a functional region of difference-1. J. Immunol., 2007, 179, 3973-3981.
[102]
Billeskov, R.; Grandal, M.V.; Poulsen, C.; Christensen, J.P.; Winter, N.; Vingsbo‐Lundberg, C.; Hoang, T.T.; Van Deurs, B.; Song, Y.H.; Aagaard, C. Difference in TB10. 4 T‐cell epitope recognition following immunization with recombinant TB10. 4, BCG or infection with Mycobacterium tuberculosis. Eur. J. Immunol., 2010, 40, 1342-1354.
[103]
Lowrie, D.B.; Silva, C.L.; Tascon, R.E. DNA vaccines against tuberculosis. Immunol. Cell Biol., 1997, 75, 591.
[104]
Xing, Z.; Lichty, B.D. Use of recombinant virus-vectored tuberculosis vaccines for respiratory mucosal immunization. Tuberculosis, 2006, 86, 211-217.
[105]
Stenger, S.; Hanson, D.A.; Teitelbaum, R.; Dewan, P.; Niazi, K.R.; Froelich, C.J.; Ganz, T.; Thoma-Uszynski, S.; Melián, A.N.; Bogdan, C. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science, 1998, 282, 121-125.
[106]
Aagaard, C.; Hoang, T.; Dietrich, J.; Cardona, P-J.; Izzo, A.; Dolganov, G.; Schoolnik, G.K.; Cassidy, J.P.; Billeskov, R.; Andersen, P. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat. Med., 2011, 17, 189.
[107]
Colditz, G.A.; Berkey, C.S.; Mosteller, F.; Brewer, T.F.; Wilson, M.E.; Burdick, E.; Fineberg, H.V. The efficacy of bacillus Calmette-Guerin vaccination of newborns and infants in the prevention of tuberculosis: meta-analyses of the published literature. Pediatrics, 1995, 96, 29-35.
[108]
Trunz, B.B.; Fine, P.; Dye, C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. The Lancet, 2006, 367, 1173-1180.
[109]
Roth, A.; Garly, M.; Jensen, H.; Nielsen, J.; Aaby, P. Bacillus Calmette-Guerin vaccination and infant mortality. Expert Rev. Vaccines, 2006, 5, 277-293.
[110]
Lerm, M.; Netea, M. Trained immunity: a new avenue for tuberculosis vaccine development. J. Intern. Med., 2016, 279, 337-346.
[111]
Scriba, T.J.; Kaufmann, S.H.; Henri Lambert, P.; Sanicas, M.; Martin, C.; Neyrolles, O. Vaccination against tuberculosis with whole-cell mycobacterial vaccines. J. Infect. Dis., 2016, 214, 659-664.
[112]
Geoffroy, C.; Gaillard, J.L.; Alouf, J.E.; Berche, P. Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes. Infect. Immun., 1987, 55, 1641-1646.
[113]
Saiga, H.; Nieuwenhuizen, N.; Gengenbacher, M.; Koehler, A.B.; Schuerer, S.; Moura-Alves, P.; Wagner, I.; Mollenkopf, H-J.; Dorhoi, A.; Kaufmann, S.H.E. The Recombinant BCG ΔureC:hly Vaccine Targets the AIM2 Inflammasome to Induce Autophagy and Inflammation. J. Infect. Dis., 2015, 211, 1831-1841.
[114]
Grode, L.; Seiler, P.; Baumann, S.; Hess, J.; Brinkmann, V.; Eddine, A.N.; Mann, P.; Goosmann, C.; Bandermann, S.; Smith, D. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J. Clin. Iinvestigat., 2005, 115, 2472-2479.
[115]
Grode, L.; Ganoza, C.A.; Brohm, C.; Weiner, 3rd, j.; Eisele, B.; Kaufmann, S.H. Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine, 2013, 31, 1340-1348.
[116]
Kaufmann, S.H.; Cotton, M.F.; Eisele, B.; Gengenbacher, M.; Grode, L.; Hesseling, A.C.; Walzl, G. The BCG replacement vaccine VPM1002: from drawing board to clinical trial. Expert Rev. Vaccines, 2014, 13, 619-630.
[117]
Vogelzang, A.; Perdomo, C.; Zedler, U.; Kuhlmann, S.; Hurwitz, R.; Gengenbacher, M.; Kaufmann, S.H. Central Memory CD4+ T Cells Are Responsible for the Recombinant Bacillus Calmette-Guérin Δ ureC: hly Vaccine’s Superior Protection Against Tuberculosis. J. Infect. Dis., 2014, 210, 1928-1937.
[118]
Arbues, A.; Aguilo, J.I.; Gonzalo-Asensio, J.; Marinova, D.; Uranga, S.; Puentes, E.; Fernandez, C.; Parra, A.; Cardona, P.J.; Vilaplana, C. Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine, 2013, 31, 4867-4873.
[119]
Walker, K.; Brennan, M.; Ho, M.; Eskola, J.; Thiry, G.; Sadoff, J.; Dobbelaer, R.; Grode, L.; Liu, M.; Fruth, U. The second Geneva Consensus: Recommendations for novel live TB vaccines. Vaccine, 2010, 28, 2259-2270.
[120]
Nambiar, J.K.; Pinto, R.; Aguilo, J.I.; Takatsu, K.; Martin, C.; Britton, W.J.; Triccas, J.A. Protective immunity afforded by attenuated, PhoP‐deficient Mycobacterium tuberculosis is associated with sustained generation of CD4+ T‐cell memory. Eur. J. Immunol., 2012, 42, 385-392.
[121]
Spertini, F.; Audran, R.; Chakour, R.; Karoui, O.; Steiner-Monard, V.; Thierry, A-C.; Mayor, C.E.; Rettby, N.; Jaton, K.; Vallotton, L. Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: A randomised, double-blind, controlled phase I trial. Lancet Respir. Med., 2015, 3, 953-962.
[122]
Aguilo, N.; Uranga, S.; Marinova, D.; Monzon, M.; Badiola, J.; Martin, C. MTBVAC vaccine is safe, immunogenic and confers protective efficacy against Mycobacterium tuberculosis in newborn mice. Tuberculosis, 2016, 96, 71-74.
[123]
Vilaplana, C.; Ruiz‐Manzano, J.; Gil, O.; Cuchillo, F.; Montane, E.; Singh, M.; Spallek, R.; Ausina, V.; Cardona, P. The Tuberculin Skin Test Increases the Responses Measured by T Cell Interferon‐Gamma Release Assays. Scand. J. Immunol., 2008, 67, 610-617.
[124]
Zumla, A.; George, A.; Sharma, V.; Herbert, R.H.N.; Oxley, A.; Oliver, M. The WHO 2014 global tuberculosis report—further to go. Lancet Glob. Health, 2015, 3, e10-e12.
[125]
Gil, O.; Guirado, E.; Gordillo, S.; Díaz, J.; Tapia, G.; Vilaplana, C.; Ariza, A.; Ausina, V.; Cardona, P.J. Intragranulomatous necrosis in lungs of mice infected by aerosol with Mycobacterium tuberculosis is related to bacterial load rather than to any one cytokine or T cell type. Microbes Infect., 2006, 8, 628-636.
[126]
Vilaplana, C.; Montané, E.; Pinto, S.; Barriocanal, A.; Domenech, G.; Torres, F.; Cardona, P.; Costa, J. Double-blind, randomized, placebo-controlled Phase I Clinical Trial of the therapeutical antituberculous vaccine RUTI®. Vaccine, 2010, 28, 1106-1116.
[127]
Vilaplana, C.; Gil, O.; Cáceres, N.; Pinto, S.; Díaz, J.; Cardona, P.J. Prophylactic effect of a therapeutic vaccine against TB based on fragments of Mycobacterium tuberculosis. PLoS One, 2011, 6, e20404.
[128]
Nell, A.S.; D’lom, E.; Bouic, P.; Sabaté, M.; Bosser, R.; Picas, J.; Amat, M.; Churchyard, G.; Cardona, P.J. Safety, tolerability, and immunogenicity of the novel antituberculous vaccine RUTI: randomized, placebo-controlled phase II clinical trial in patients with latent tuberculosis infection. PLoS One, 2014, 9, e89612.
[129]
Cardona, P.J. RUTI: A new chance to shorten the treatment of latent tuberculosis infection. Tuberculosis, 2006, 86, 273-289.
[130]
Vilaplana, C.; Cardona, P.J. Tuberculin immunotherapy: İts history and lessons to be learned. Microbes Infect., 2010, 12, 99-105.
[131]
Kaufmann, S.H.; Bloom, B.; Brosch, R.; Cardona, P-J.; Dockrell, H.; Fritzell, B.; Grode, L.; Hanekom, W.; Hokey, D.; Levin, M. Developing whole mycobacteria cell vaccines for tuberculosis: workshop proceedings, Max Planck Institute for Infection Biology, Berlin, Germany, July 9, 2014. Vaccine, 2015, 33, 3047-3055.
[132]
Yadava, A.; Suresh, N.; Zaheer, S.; Talwar, G.; Mukherjee, R. T‐Cell Responses to Fractionated Antigens of Mycobacterium w, a Candidate Anti‐Leprosy Vaccine, in Leprosy Patients. Scand. J. Immunol., 1991, 34, 23-31.
[133]
Gupta, A.; Geetha, N.; Mani, J.; Upadhyay, P.; Katoch, V.; Natrajan, M.; Gupta, U.; Bhaskar, S. Immunogenicity and protective efficacy of “Mycobacterium w” against Mycobacterium tuberculosis in mice immunized with live versus heat-killed M. w by the aerosol or parenteral route. Infect. Immun., 2009, 77, 223-231.
[134]
Faujdar, J.; Gupta, P.; Natrajan, M.; Das, R.; Chauhan, D.; Katoch, V.; Gupta, U. Mycobacterium indicus pranii as stand-alone or adjunct immunotherapeutic in treatment of experimental animal tuberculosis. Indian J. Med. Res., 2011, 134, 696.
[135]
Das, S.; Halder, K.; Goswami, A.; Chowdhury, B.P.; Pal, N.K.; Majumdar, S. Immunomodulation in host‐protective immune response against murine tuberculosis through regulation of the T regulatory cell function. J. Leukoc. Biol., 2015, 98, 827-836.
[136]
Rawat, K.D.; Chahar, M.; Reddy, P.; Gupta, P.; Shrivastava, N.; Gupta, U.; Natrajan, M.; Katoch, V.; Katoch, K.; Chauhan, D. Expression of CXCL10 (IP-10) and CXCL11 (I-TAC) chemokines during Mycobacterium tuberculosis infection and immunoprophylaxis with Mycobacterium indicus pranii (Mw) in guinea pig. Infect. Genet. Evol., 2013, 13, 11-17.
[137]
Sharma, S.K.; Katoch, K.; Sarin, R.; Balambal, R.; Jain, N.K.; Patel, N.; Murthy, K.J.; Singla, N.; Saha, P.; Khanna, A. Efficacy and Safety of Mycobacterium indicus pranii as an adjunct therapy in Category II pulmonary tuberculosis in a randomized trial. Sci. Rep., 2017, 7, 3354.
[138]
Gupta, A.; Ahmad, F.; Ahmad, F.; Gupta, U.; Natarajan, M.; Katoch, V.; Bhaskar, S. Protective efficacy of Mycobacterium indicus pranii against tuberculosis and underlying local lung immune responses in guinea pig model. Vaccine, 2012, 30, 6198-6209.
[139]
Gupta, A.; Ahmad, F.J.; Ahmad, F.; Gupta, U.D.; Natarajan, M.; Katoch, V.; Bhaskar, S. Efficacy of Mycobacterium indicus pranii immunotherapy as an adjunct to chemotherapy for tuberculosis and underlying immune responses in the lung. PLoS One, 2012, 7, e39215.
[140]
Brown, C.A.; Brown, I.; Swinburne, S. The effect of oral Mycobacterium vaccae on subsequent responses of mice to BCG sensitization. Tubercle, 1985, 66, 251-260.
[141]
von Reyn, C.F.; Mtei, L.; Arbeit, R.D.; Waddell, R.; Cole, B.; Mackenzie, T.; Matee, M.; Bakari, M.; Tvaroha, S.; Adams, L.V. Prevention of tuberculosis in Bacille Calmette–Guérin-primed, HIV-infected adults boosted with an inactivated whole-cell mycobacterial vaccine. AIDS, 2010, 24, 675-685.
[142]
Lalvani, A.; Sridhar, S.; von Reyn, C.F. Tuberculosis vaccines: Time to reset the paradigm?; BMJ Publishing Group Ltd., 2013.
[143]
Lahey, T.; Laddy, D.; Hill, K.; Schaeffer, J.; Hogg, A.; Keeble, J.; Dagg, B.; Ho, M.M.; Arbeit, R.D.; von Reyn, C.F. Immunogenicity and protective efficacy of the DAR-901 booster vaccine in a murine model of tuberculosis. PLoS One, 2016, 11, e0168521.
[144]
Semple, P.L.; Binder, A.B.; Davids, M.; Maredza, A.; van Zyl-Smit, R.N.; Dheda, K. Regulatory T cells attenuate mycobacterial stasis in alveolar and blood-derived macrophages from patients with tuberculosis. Am. J. Respir. Crit. Care Med., 2013, 187, 1249-1258.
[145]
Green, A.M.; Mattila, J.T.; Bigbee, C.L.; Bongers, K.S. Ling Lin, P.; Flynn, J.L. CD4+ regulatory T cells in a cynomolgus macaque model of Mycobacterium tuberculosis infection. J. Infect. Dis., 2010, 202, 533-541.
[146]
Leepiyasakulchai, C.; Ignatowicz, L.; Pawlowski, A.; Källenius, G.; Sköld, M. Failure to recruit anti-inflammatory CD103+ dendritic cells and a diminished CD4+ Foxp3+ regulatory T cell pool in mice that display excessive lung inflammation and increased susceptibility to Mycobacterium tuberculosis. Infect. Immun., 2012, 80, 1128-1139.
[147]
Cardona, P-J.; Prats, C. The small breathing amplitude at the upper lobes favors the attraction of polymorphonuclear neutrophils to Mycobacterium tuberculosis lesions and helps to understand the evolution toward active disease in an individual-based model. Front. Microbiol., 2016, 7, 354.
[148]
Montane, E.; Barriocanal, A.; Arellano, A.; Valderrama, A.; Sanz, Y.; Cardona, P. PD-1027-01 Clinical trial with the food supplement Nyaditum resae: a new tool to reduce the risk of developing active tuberculosis. Int. J. Tuberc. Lung Dis., 2014, 11, S427.
[149]
Goonetilleke, N.P.; McShane, H.; Hannan, C.M.; Anderson, R.J.; Brookes, R.H.; Hill, A.V. Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille Calmette-Guerin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara. J. Immunol., 2003, 171, 1602-1609.
[150]
Wang, J.; Thorson, L.; Stokes, R.W.; Santosuosso, M.; Huygen, K.; Zganiacz, A.; Hitt, M.; Xing, Z. Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J. Immunol., 2004, 173, 6357-6365.
[151]
Rose, N.F.; Marx, P.A.; Luckay, A.; Nixon, D.F.; Moretto, W.J.; Donahoe, S.M.; Montefiori, D.; Roberts, A.; Buonocore, L.; Rose, J.K. An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants. Cell, 2001, 106, 539-549.
[152]
Haglund, K.; Leiner, I.; Kerksiek, K.; Buonocore, L.; Pamer, E.; Rose, J.K. High-level primary CD8+ T-cell response to human immunodeficiency virus type 1 Gag and Env generated by vaccination with recombinant vesicular stomatitis viruses. J. Virol., 2002, 76, 2730-2738.
[153]
Clarke, D.K.; Nasar, F.; Lee, M.; Johnson, J.E.; Wright, K.; Calderon, P.; Guo, M.; Natuk, R.; Cooper, D.; Hendry, R.M. Synergistic attenuation of vesicular stomatitis virus by combination of specific G gene truncations and N gene translocations. J. Virol., 2007, 81, 2056-2064.
[154]
Braxton, C.L.; Puckett, S.H.; Mizel, S.B.; Lyles, D.S. Protection against lethal vaccinia virus challenge by using an attenuated matrix protein mutant vesicular stomatitis virus vaccine vector expressing poxvirus antigens. J. Virol., 2010, 84, 3552-3561.
[155]
Elamin, A.A.; Stehr, M.; Spallek, R.; Rohde, M.; Singh, M. The Mycobacterium tuberculosis Ag85A is a novel diacylglycerol acyltransferase involved in lipid body formation. Mol. Microbiol., 2011, 81, 1577-1592.
[156]
Publicover, J.; Ramsburg, E.; Rose, J.K. A single-cycle vaccine vector based on vesicular stomatitis virus can induce immune responses comparable to those generated by a replication-competent vector. J. Virol., 2005, 79, 13231-13238.
[157]
Roediger, E.K.; Kugathasan, K.; Zhang, X.; Lichty, B.D.; Xing, Z. Heterologous Boosting of Recombinant Adenoviral Prime Immunization With a Novel Vesicular Stomatitis Virus–vectored Tuberculosis Vaccine. Mol. Ther., 2008, 16, 1161-1169.
[158]
Harty, J.T.; Tvinnereim, A.R.; White, D.W. CD8+ T cell effector mechanisms in resistance to infection. Annu. Rev. Immunol., 2000, 18, 275-308.
[159]
Andersen, P.; Woodworth, J.S. Tuberculosis vaccines–rethinking the current paradigm. Trends Immunol., 2014, 35, 387-395.
[160]
Nunes-Alves, C.; Booty, M.G.; Carpenter, S.M.; Jayaraman, P.; Rothchild, A.C.; Behar, S.M. In search of a new paradigm for protective immunity to TB. Nat. Rev. Microbiol., 2014, 12, 289.
[161]
Ottenhoff, T.H.; Kaufmann, S.H. Vaccines against tuberculosis: where are we and where do we need to go? PLoS Pathog., 2012, 8, e1002607.
[162]
Wu, F.; Fan, X.; Yue, Y.; Xiong, S.; Dong, C. A vesicular stomatitis virus-based mucosal vaccine promotes dendritic cell maturation and elicits preferable immune response against coxsackievirus B3 induced viral myocarditis. Vaccine, 2014, 32, 3917-3926.
[163]
McShane, H.; Pathan, A.A.; Sander, C.R.; Keating, S.M.; Gilbert, S.C.; Huygen, K.; Fletcher, H.A.; Hill, A.V. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat. Med., 2004, 10, 1240.
[164]
Williams, A.; Goonetilleke, N.; McShane, H.; Clark, S.O.; Hatch, G.; Gilbert, S.; Hill, A. Boosting with poxviruses enhances Mycobacterium bovis BCG efficacy against tuberculosis in guinea pigs. Infect. Immun., 2005, 73, 3814-3816.
[165]
Vordermeier, H.M.; Villarreal-Ramos, B.; Cockle, P.J.; McAulay, M.; Rhodes, S.G.; Thacker, T.; Gilbert, S.C.; McShane, H.; Hill, A.V.; Xing, Z. Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis. Infect. Immun., 2009, 77, 3364-3373.
[166]
Sander, C.R.; Pathan, A.A.; Beveridge, N.E.; Poulton, I.; Minassian, A.; Alder, N.; Van Wijgerden, J.; Hill, A.V.; Gleeson, F.V.; Davies, R.J. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in mycobacterium tuberculosis–infected individuals. Am. J. Respir. Crit. Care Med., 2009, 179, 724-733.
[167]
Scriba, T.J.; Tameris, M.; Mansoor, N.; Smit, E.; van der Merwe, L.; Isaacs, F.; Keyser, A.; Moyo, S.; Brittain, N.; Lawrie, A. Modified vaccinia Ankara‐expressing Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces polyfunctional CD4+ T cells. Eur. J. Immunol., 2010, 40, 279-290.
[168]
Minassian, A.M.; Rowland, R.; Beveridge, N.E.; Poulton, I.D.; Satti, I.; Harris, S.; Poyntz, H.; Hamill, M.; Griffiths, K.; Sander, C.R. A Phase I study evaluating the safety and immunogenicity of MVA85A, a candidate TB vaccine, in HIV-infected adults. BMJ Open, 2011, 1, e000223.
[169]
Dintwe, O.B.; Day, C.L.; Smit, E.; Nemes, E.; Gray, C.; Tameris, M.; McShane, H.; Mahomed, H.; Hanekom, W.A.; Scriba, T.J. Heterologous vaccination against human tuberculosis modulates antigen‐specific CD4+ T‐cell function. Eur. J. Immunol., 2013, 43, 2409-2420.
[170]
Satti, I.; Meyer, J.; Harris, S.A.; Thomas, Z-R.M.; Griffiths, K.; Antrobus, R.D.; Rowland, R.; Ramon, R.L.; Smith, M.; Sheehan, S. Safety and immunogenicity of a candidate tuberculosis vaccine MVA85A delivered by aerosol in BCG-vaccinated healthy adults: a phase 1, double-blind, randomised controlled trial. Lancet Infect. Dis., 2014, 14, 939-946.
[171]
Kashangura, R.; Sena, E.S.; Young, T.; Garner, P. Effects of MVA85A vaccine on tuberculosis challenge in animals: systematic review. Int. J. Epidemiol., 2015, 44, 1970-1981.
[172]
O’Shea, M.K.; McShane, H. A review of clinical models for the evaluation of human TB vaccines. Hum. Vaccin. Immunother., 2016, 12, 1177-1187.
[173]
Ndiaye, B.P.; Thienemann, F.; Ota, M.; Landry, B.S.; Camara, M.; Dièye, S.; Dieye, T.N.; Esmail, H.; Goliath, R.; Huygen, K. Safety, immunogenicity, and efficacy of the candidate tuberculosis vaccine MVA85A in healthy adults infected with HIV-1: a randomised, placebo-controlled, phase 2 trial. Lancet Respir. Med., 2015, 3, 190-200.
[174]
Afkhami, S.; Yao, Y.; Xing, Z. Methods and clinical development of adenovirus-vectored vaccines against mucosal pathogens. Mol. Ther. Methods Clin. Dev., 2016, 3, 16030.
[175]
Kamen, A.; Henry, O. Development and optimization of an adenovirus production process. J. Gene Med., 2004, 6, 184-192.
[176]
Havenga, M.; Vogels, R.; Zuijdgeest, D.; Radosevic, K.; Mueller, S.; Sieuwerts, M.; Weichold, F.; Damen, I.; Kaspers, J.; Lemckert, A. Novel replication-incompetent adenoviral B-group vectors: high vector stability and yield in PER. C6 cells. J. Gen. Virol., 2006, 87, 2135-2143.
[177]
Radošević, K.; Wieland, C.W.; Rodriguez, A.; Weverling, G.J.; Mintardjo, R.; Gillissen, G.; Vogels, R.; Skeiky, Y.A.; Hone, D.M.; Sadoff, J.C. Protective immune responses to a recombinant adenovirus type 35 tuberculosis vaccine in two mouse strains: CD4 and CD8 T-cell epitope mapping and role of gamma interferon. Infect. Immun., 2007, 75, 4105-4115.
[178]
Abel, B.; Tameris, M.; Mansoor, N.; Gelderbloem, S.; Hughes, J.; Abrahams, D.; Makhethe, L.; Erasmus, M.; Kock, M.d.; van der Merwe, L. The novel tuberculosis vaccine, AERAS-402, induces robust and polyfunctional CD4+ and CD8+ T cells in adults. Am. J. Respir. Crit. Care Med., 2010, 181, 1407-1417.
[179]
Triccas, J.A.; Counoupas, C. Novel vaccination approaches to prevent tuberculosis in children. Pneumonia, 2016, 8, 18.
[180]
Xing, Z.; McFarland, C.T.; Sallenave, J-M.; Izzo, A.; Wang, J.; McMurray, D.N. Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis. PLoS One, 2009, 4, e5856.
[181]
de Val, B.P.; Villarreal-Ramos, B.; Nofrarías, M.; López-Soria, S.; Romera, N.; Singh, M.; Abad, F.X.; Xing, Z.; Vordermeier, H.M.; Domingo, M. Goats primed with Mycobacterium bovis BCG and boosted with a recombinant adenovirus expressing Ag85A show enhanced protection against tuberculosis. Clin. Vaccine Immunol., 2012, 19, 1339-1347.
[182]
de Val, B.P.; Vidal, E.; Villarreal-Ramos, B.; Gilbert, S.C.; Andaluz, A.; Moll, X.; Martín, M.; Nofrarías, M.; McShane, H.; Vordermeier, H.M. A multi-antigenic adenoviral-vectored vaccine improves BCG-induced protection of goats against pulmonary tuberculosis infection and prevents disease progression. PLoS One, 2013, 8, e81317.
[183]
Buchbinder, S.P.; Mehrotra, D.V.; Duerr, A.; Fitzgerald, D.W.; Mogg, R.; Li, D.; Gilbert, P.B.; Lama, J.R.; Marmor, M.; del Rio, C. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): A double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet, 2008, 372, 1881-1893.
[184]
Appaiahgari, M.B.; Pandey, R.M.; Vrati, S. Seroprevalence of neutralizing antibodies to adenovirus type 5 among children in India: implications for recombinant adenovirus-based vaccines. Clin. Vaccine Immunol., 2007, 14, 1053-1055.
[185]
Zhou, D.; Zhou, X.; Bian, A.; Li, H.; Chen, H.; Small, J.C.; Li, Y.; Giles-Davis, W.; Xiang, Z.; Ertl, H.C. An efficient method of directly cloning chimpanzee adenovirus as a vaccine vector. Nat. Protoc., 2010, 5, 1775.
[186]
Roy, S.; Gao, G.; Lu, Y.; Zhou, X.; Lock, M.; Calcedo, R.; Wilson, J.M. Characterization of a family of chimpanzee adenoviruses and development of molecular clones for gene transfer vectors. Hum. Gene Ther., 2004, 15, 519-530.
[187]
Colloca, S.; Barnes, E.; Folgori, A.; Ammendola, V.; Capone, S.; Cirillo, A.; Siani, L.; Naddeo, M.; Grazioli, F.; Esposito, M.L. Vaccine vectors derived from a large collection of simian adenoviruses induce potent cellular immunity across multiple species. Sci. Transl. Med., 2012. 4, 115ra2-115ra2.
[188]
Tatsis, N.; Tesema, L.; Robinson, E.; Giles-Davis, W.; McCoy, K.; Gao, G.; Wilson, J.; Ertl, H. Chimpanzee-origin adenovirus vectors as vaccine carriers. Gene Ther., 2006, 13, 421.
[189]
Sheridan, C. Erratum: Gene therapy finds its niche. Nat. Biotechnol., 2011, 29, 459.
[190]
Stylianou, E.; Griffiths, K.; Poyntz, H.; Harrington-Kandt, R.; Dicks, M.; Stockdale, L.; Betts, G.; McShane, H. Improvement of BCG protective efficacy with a novel chimpanzee adenovirus and a modified vaccinia Ankara virus both expressing Ag85A. Vaccine, 2015, 33, 6800-6808.
[191]
Jeyanathan, M.; Thanthrige-Don, N.; Afkhami, S.; Lai, R.; Damjanovic, D.; Zganiacz, A.; Feng, X.; Yao, X.; Rosenthal, K.; Medina, M.F. Novel chimpanzee adenovirus-vectored respiratory mucosal tuberculosis vaccine: overcoming local anti-human adenovirus immunity for potent TB protection. Mucosal Immunol., 2015, 8, 1373-1387.
[192]
Fahmy, T.M.; Demento, S.L.; Caplan, M.J.; Mellman, I.; Saltzman, W.M. Design opportunities for actively targeted nanoparticle vaccines. Nanomedicine, 2008, 3, 343-355.
[193]
Irvine, D.J.; Hanson, M.C.; Rakhra, K.; Tokatlian, T. Synthetic nanoparticles for vaccines and immunotherapy. Chem. Rev., 2015, 115, 11109-11146.
[194]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Nanomedicine: current status and future prospects. FASEB J., 2005, 19, 311-330.
[195]
Pirson, C.; Jones, G.J.; Steinbach, S.; Besra, G.S.; Vordermeier, H.M. Differential effects of Mycobacterium bovis-derived polar and apolar lipid fractions on bovine innate immune cells. Vet. Res., 2012, 43, 54.
[196]
Verschoor, J.A.; Baird, M.S.; Grooten, J. Towards understanding the functional diversity of cell wall mycolic acids of Mycobacterium tuberculosis. Prog. Lipid Res., 2012, 51, 325-339.
[197]
Driessen, N.N.; Ummels, R.; Maaskant, J.J.; Gurcha, S.S.; Besra, G.S.; Ainge, G.D.; Larsen, D.S.; Painter, G.F.; Vandenbroucke-Grauls, C.M.; Geurtsen, J. Role of phosphatidylinositol mannosides in the interaction between mycobacteria and DC-SIGN. Infect. Immun., 2009, 77, 4538-4547.
[198]
Julián, E.; Matas, L.; Alcaide, J.; Luquin, M. Comparison of antibody responses to a potential combination of specific glycolipids and proteins for test sensitivity improvement in tuberculosis serodiagnosis. Clin. Diagn. Lab. Immunol., 2004, 11, 70-76.
[199]
Feng, X.; Yang, X.; Xiu, B.; Qie, S.; Dai, Z.; Chen, K.; Zhao, P.; Zhang, L.; Nicholson, R.A.; Wang, G. IgG, IgM and IgA antibodies against the novel polyprotein in active tuberculosis. BMC Infect. Dis., 2014, 14, 336.
[200]
Das, I.; Padhi, A.; Mukherjee, S.; Dash, D.P.; Kar, S.; Sonawane, A. Biocompatible chitosan nanoparticles as an efficient delivery vehicle for Mycobacterium tuberculosis lipids to induce potent cytokines and antibody response through activation of γδ T cells in mice. Nanotechnology, 2017, 28, 165101.
[201]
Singhal, A.; Mori, L.; De Libero, G. T cell recognition of non-peptidic antigens in infectious diseases. Indian J. Med. Res., 2013, 138, 620-631.
[202]
Wu, Y-L.; Ding, Y-P.; Tanaka, Y.; Shen, L-W.; Wei, C-H.; Minato, N.; Zhang, W. γδ T cells and their potential for immunotherapy. Int. J. Biol. Sci., 2014, 10, 119-135.
[203]
Van Crevel, R.; Ottenhoff, T.H.; van der Meer, J.W. Innate immunity to Mycobacterium tuberculosis. Clin. Microbiol. Rev., 2002, 15, 294-309.
[204]
Cowley, S.C.; Hamilton, E.; Frelinger, J.A.; Su, J.; Forman, J.; Elkins, K.L. CD4− CD8− T cells control intracellular bacterial infections both in vitro and in vivo. J. Exp. Med., 2005, 202, 309-319.
[205]
Lawlor, C.; O’Connor, G.; O’Leary, S.; Gallagher, P.J.; Cryan, S-A.; Keane, J.; O’Sullivan, M.P. Treatment of Mycobacterium tuberculosis-Infected Macrophages with poly (Lactic-Co-Glycolic Acid) microparticles drives NFκB and autophagy dependent bacillary killing. PLoS One, 2016, 11, e0149167.
[206]
Sharma, R.; Muttil, P.; Yadav, A.B.; Rath, S.K.; Bajpai, V.K.; Mani, U.; Misra, A. Uptake of inhalable microparticles affects defence responses of macrophages infected with Mycobacterium tuberculosis H37Ra. J. Antimicrob. Chemother., 2007, 59, 499-506.
[207]
Yadav, A.B.; Muttil, P.; Singh, A.K.; Verma, R.K.; Mohan, M.; Agrawal, A.K.; Verma, A.S.; Sinha, S.K.; Misra, A. Microparticles induce variable levels of activation in macrophages infected with Mycobacterium tuberculosis. Tuberculosis, 2010, 90, 188-196.
[208]
Hirota, K.; Hasegawa, T.; Nakajima, T.; Inagawa, H.; Kohchi, C.; Soma, G-I.; Makino, K.; Terada, H. Delivery of rifampicin–PLGA microspheres into alveolar macrophages is promising for treatment of tuberculosis. J. of Control. Release, 2010, 142, 339-346.
[209]
Roberts, R.A.; Shen, T.; Allen, I.C.; Hasan, W.; DeSimone, J.M.; Ting, J.P. Analysis of the murine immune response to pulmonary delivery of precisely fabricated nano-and microscale particles. PLoS One, 2013, 8, e62115.
[210]
Waeckerle-Men, Y.; Scandella, E.; Uetz-von Allmen, E.; Ludewig, B.; Gillessen, S.; Merkle, H.P.; Gander, B.; Groettrup, M. Phenotype and functional analysis of human monocyte-derived dendritic cells loaded with biodegradable poly (lactide-co-glycolide) microspheres for immunotherapy. J. Immunol. Methods, 2004, 287, 109-124.
[211]
Getts, D.R.; Terry, R.L.; Getts, M.T.; Deffrasnes, C.; Müller, M.; van Vreden, C.; Ashhurst, T.M.; Chami, B.; McCarthy, D.; Wu, H. Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci. Transl. Med., 2014. 6, 219ra7- 219ra7.
[212]
Lewis, J.S.; Zaveri, T.D.; Crooks, C.P., II; Keselowsky, B.G. Microparticle surface modifications targeting dendritic cells for non-activating applications. Biomaterials, 2012, 33, 7221-7232.
[213]
Marques, A.P.; Reis, R.L.; Hunt, J.A. Cytokine secretion from mononuclear cells cultured in vitro with starch‐based polymers and poly‐L‐lactide. J. Biomed. Mater. Res. Part A, 2004, 71, 419-429.
[214]
Sharma, R.; Yadav, A.B.; Muttil, P.; Kajal, H.; Misra, A. Inhalable microparticles modify cytokine secretion by lung macrophages of infected mice. Tuberculosis, 2011, 91, 107-110.
[215]
Wang, C.; Muttil, P.; Lu, D.; Beltran-Torres, A.A.; Garcia-Contreras, L.; Hickey, A.J. Screening for potential adjuvants administered by the pulmonary route for tuberculosis vaccines. AAPS J., 2009, 11, 139-147.
[216]
Nicolete, R.; dos Santos, D.F.; Faccioli, L.H. The uptake of PLGA micro or nanoparticles by macrophages provokes distinct in vitro inflammatory response. Int. Immunopharmacol., 2011, 11, 1557-1563.
[217]
Sharp, F.A.; Ruane, D.; Claass, B.; Creagh, E.; Harris, J.; Malyala, P.; Singh, M.; O’Hagan, D.T.; Pétrilli, V.; Tschopp, J. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl. Acad. Sci., 2009, 106, 870-875.
[218]
Salminen, A.; Hyttinen, J.M.; Kauppinen, A.; Kaarniranta, K. Context-dependent regulation of autophagy by IKK-NF-κB signaling: Impact on the aging process. Int. J. Cell Biol., 2012, 2012, 1-15.
[219]
van der Vaart, M.; Korbee, C.J.; Lamers, G.E.; Tengeler, A.C.; Hosseini, R.; Haks, M.C.; Ottenhoff, T.H.; Spaink, H.P.; Meijer, A.H. The DNA damage-regulated autophagy modulator DRAM1 links mycobacterial recognition via TLR-MYD88 to autophagic defense. Cell Host Microbe, 2014, 15, 753-767.
[220]
Gutierrez, M.G.; Master, S.S.; Singh, S.B.; Taylor, G.A.; Colombo, M.I.; Deretic, V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell, 2004, 119, 753-766.
[221]
Stern, S.T.; Adiseshaiah, P.P.; Crist, R.M. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part. Fibre Toxicol., 2012, 9, 20.
[222]
Sanjuan, M.A.; Dillon, C.P.; Tait, S.W.; Moshiach, S.; Dorsey, F.; Connell, S.; Komatsu, M.; Tanaka, K.; Cleveland, J.L.; Withoff, S. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature, 2007, 450, 1253-1257.
[223]
Shui, W.; Sheu, L.; Liu, J.; Smart, B.; Petzold, C.J.; Hsieh, T-y.; Pitcher, A.; Keasling, J.D.; Bertozzi, C.R. Membrane proteomics of phagosomes suggests a connection to autophagy. Proc. Natl. Acad. Sci., 2008, 105, 16952-16957.
[224]
Mueller, M.; Reichardt, W.; Koerner, J.; Groettrup, M. Coencapsulation of tumor lysate and CpG-ODN in PLGA-microspheres enables successful immunotherapy of prostate carcinoma in TRAMP mice. J. Control. Release, 2012, 162, 159-166.
[225]
Schlosser, E.; Mueller, M.; Fischer, S.; Basta, S.; Busch, D.H.; Gander, B.; Groettrup, M. TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine, 2008, 26, 1626-1637.
[226]
Malyala, P.; Chesko, J.; Ugozzoli, M.; Goodsell, A.; Zhou, F.; Vajdy, M.; O’Hagan, D.T.; Singh, M. The potency of the adjuvant, CpG oligos, is enhanced by encapsulation in PLG microparticles. J. Pharm. Sci., 2008, 97, 1155-1164.
[227]
Pham, N-L.L.; Pewe, L.L.; Fleenor, C.J.; Langlois, R.A.; Legge, K.L.; Badovinac, V.P.; Harty, J.T. Exploiting cross-priming to generate protective CD8 T-cell immunity rapidly. Proc. Natl. Acad. Sci., 2010, 107, 12198-12203.
[228]
Briken, V.; Miller, J.L. Living on the edge: inhibition of host cell apoptosis by Mycobacterium tuberculosis. Future Microbiol., 2008, 3, 415-422.
[229]
Yadav, A.B.; Sharma, R.; Muttil, P.; Singh, A.K.; Verma, R.K.; Mohan, M.; Patel, S.K.; Misra, A. Inhalable microparticles containing isoniazid and rifabutin target macrophages and ‘stimulate the phagocyte’to achieve high efficacy. Indian J. Exp. Biol., 2009, 47, 469-474.
[230]
Khulape, S.; Maity, H.; Pathak, D.; Mohan, C.M.; Dey, S. Antigenic validation of recombinant hemagglutinin-neuraminidase protein of Newcastle disease virus expressed in Saccharomyces cerevisiae. Acta Virol., 2015, 59, 240-246.
[231]
Assis-Marques, M.A.; Oliveira, A.F.; Ruas, L.P.; dos Reis, T.F.; Roque-Barreira, M.C.; Coelho, P.S.R. Saccharomyces cerevisiae expressing Gp43 protects mice against Paracoccidioides brasiliensis infection. PLoS One, 2015, 10, e0120201.
[232]
King, T.H.; Shanley, C.A.; Guo, Z.; Bellgrau, D.; Rodell, T.; Furney, S.; Henao-Tamayo, M.; Orme, I.M. GI-19007, a novel Saccharomyces cerevisiae-based therapeutic vaccine against tuberculosis. Clin. Vaccine Immunol., 2017, 24, e00245-e17.
[233]
Grover, A.; McLean, J.L.; Troudt, J.M.; Foster, C.; Izzo, L.; Creissen, E.; MacDonald, E.; Troy, A.; Izzo, A.A. Heat killed Saccharomyces cerevisiae as an adjuvant for the induction of vaccine-mediated immunity against infection with Mycobacterium tuberculosis. Vaccine, 2016, 34, 2798-2805.
[234]
Yu, Q.; Wang, X.; Fan, X. A new adjuvant MTOM mediates Mycobacterium tuberculosis subunit vaccine to enhance Th1-type T cell immune responses and IL-2+ T cells. Front. Immunol., 2017, 8, 585.
[235]
Teng, X.; Tian, M.; Li, J.; Tan, S.; Yuan, X.; Yu, Q.; Jing, Y.; Zhang, Z.; Yue, T.; Zhou, L. Immunogenicity and protective efficacy of DMT liposome-adjuvanted tuberculosis subunit CTT3H vaccine. Hum. Vaccin. Immunother., 2015, 11, 1456-1464.
[236]
Behar, S.M.; Woodworth, J.S.M.; Wu, Y. The next generation: tuberculosis vaccines that elicit protective CD8+ T cells. Expert Rev. Vaccines, 2007, 6, 441-456.
[237]
Lönnroth, K.; Migliori, G.B.; Abubakar, I.; D’Ambrosio, L.; De Vries, G.; Diel, R.; Douglas, P.; Falzon, D.; Gaudreau, M-A.; Goletti, D. Towards tuberculosis elimination: an action framework for low-incidence countries. Eur. Respir. J., 2015, 45, 928-952.
[238]
Fletcher, H.A.; Schrager, L. TB vaccine development and the End TB Strategy: importance and current status. Trans. R. Soc. Trop. Med. Hyg., 2016, 110, 212-218.
[239]
Organization, W.H. Stop TB policy paper: contributing to health system strengthening: Guiding principles for national tuberculosis programmes. 2008.
[240]
Organization, W.H. Public-private mix for TB care and control: A toolkit., 2010.
[241]
Organization, W.H. Towards tuberculosis elimination: an action framework for low-incidence countries: WHO; 2014. Report No, WHO/HTM/TB, 2014.
[242]
Bhargava, A.; Pai, M.; Bhargava, M.; Marais, B.J.; Menzies, D. Can social interventions prevent tuberculosis? The Papworth experiment (1918–1943) revisited. Am. J. Respir. Crit. Care Med., 2012, 186, 442-449.
[243]
Organization, W.H. Systematic screening for active tuberculosis: principles and recommendations; World Health Organization, 2013.
[244]
Dara, M.; De Colombani, P.; Petrova-Benedict, R.; Centis, R.; Zellweger, J-P.; Sandgren, A.; Heldal, E.; Sotgiu, G.; Jansen, N.; Bahtijarevic, R. Minimum package for cross-border TB control and care in the WHO European region: A Wolfheze consensus statement. Eur. Respir. J., 2012, 40, 1081-1090.
[245]
de Vries, G.; Baars, H.; Šebek, M.; van Hest, N.; Richardus, J.H. Transmission classification model to determine place and time of infection of tuberculosis cases in an urban area. J. Clin. Microbiol., 2008, 46, 3924-3930.
[246]
Kamper-Jørgensen, Z.; Andersen, A.B.; Kok-Jensen, A.; Bygbjerg, I.C.; Thomsen, V.O.; Lillebaek, T. Characteristics of non-clustered tuberculosis in a low burden country. Tuberculosis, 2012, 92, 226-231.
[247]
Heldal, E.; Döcker, H.; Caugant, D.; Tverdal, A. Pulmonary tuberculosis in Norwegian patients. The role of reactivation, re-infection and primary infection assessed by previous mass screening data and restriction fragment length polymorphism analysis. Int. J. Tuberc. Lung Dis., 2000, 4, 300-307.
[248]
De Vries, G.; Van Hest, N.; Baars, H.; Šebek, M.; Richardus, J.H. Factors associated with the high tuberculosis case rate in an urban area. Int. J. Tuberc. Lung Dis., 2010, 14, 859-865.
[249]
Migliori, G.B.; Centis, R.; D’Ambrosio, L.; Sotgiu, G.; Trunz, B.B.; Godfrey, R.; Tadolini, M.; Besozzi, G.; Sandgren, A.; van der Werf, M.J. Impact and management of TB childhood outbreaks in EU/EEA. Eur. Respir. Soc., 2013, 42, 3532.
[250]
Sotgiu, G.; Trunz, B.B.; Migliori, G.B.; D’Ambrosio, L.; Centis, R.; Godfrey, R.; Tadolini, M.; Besozzi, G.; Sandgren, A.; van der Werf, M.J. Childhood tuberculosis outbreaks in EU/EEA: a systematic review. Eur Respir. Soc., 2013, 42, 1610.
[251]
WHO. Organization, W.H.: Guidelines on the management of latent tuberculosis infection; World Health Organization, 2015.
[252]
Walter, N.D.; Jasmer, R.M.; Grinsdale, J.; Kawamura, L.M.; Hopewell, P.C.; Nahid, P. Reaching the limits of tuberculosis prevention among foreign-born individuals: a tuberculosis-control program perspective. Clin. Infect. Dis., 2008, 46, 103-106.
[253]
Migliori, G.B.; Sotgiu, G.; Gandhi, N.R.; Falzon, D.; DeRiemer, K.; Centis, R.; Hollm-Delgado, M-G.; Palmero, D.; Pérez-Guzmán, C.; Vargas, M.H.; D’Ambrosio, L.; Spanevello, A.; Bauer, M.; Chan, E.D.; Schaaf, H.S.; Keshavjee, S.; Holtz, T.H.; Menzies, D. Drug resistance beyond extensively drug-resistant tuberculosis: individual patient data meta-analysis. Eur. Respir. J., 2013, 42, 169-179.
[254]
Fears, R.; Kaufmann, S.; Ter Meulen, V.; Zumla, A. Drug-resistant tuberculosis in the European Union: opportunities and challenges for control. Tuberculosis, 2010, 90, 182-187.
[255]
Bibi, H.; Weiler-Ravell, D.; Shoseyov, D.; Feigin, I.; Arbelli, Y.; Chemtob, D. Compliance to treatment of latent tuberculosis infection in a region of Israel. Isr. Med. Assoc. J., 2002, 4, 13-16.
[256]
Nathanson, E.; Nunn, P.; Uplekar, M.; Floyd, K.; Jaramillo, E.; Lönnroth, K.; Weil, D.; Raviglione, M. MDR tuberculosis-critical steps for prevention and control. N. Engl. J. Med., 2010, 363, 1050-1058.
[257]
De Vries, G.; Aldridge, R.; Cayla, J.; Haas, W.; Sandgren, A.; van Hest, N.; Abubakar, I. Epidemiology of tuberculosis in big cities of the European Union and European Economic Area countries. 2014. Euro Surveill, 6, 19(9). pii: 20726.
[258]
Ahuja, S.D.; Ashkin, D.; Avendano, M.; Banerjee, R.; Bauer, M.; Bayona, J.N.; Becerra, M.C.; Benedetti, A.; Burgos, M.; Centis, R. Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9,153 patients. PLoS Med., 2012, 9, e1001300.
[259]
Falzon, D.; Gandhi, N.; Migliori, G.; Sotgiu, G.; Cox, H.; Holtz, T.; Hollm-Delgado, M.; Keshavjee, S.; DeRiemer, K.; Centis, R. Collaborative Group for Meta-Analysis of Individual Patient Data in MT. Resistance to fluoroquinolones and second-line injectable drugs: impact on multidrug-resistant TB outcomes. Eur. Respir. J., 2013, 42, 156-168.
[260]
Skripconoka, V.; Danilovits, M.; Pehme, L.; Tomson, T.; Skenders, G.; Kummik, T.; Cirule, A.; Leimane, V.; Kurve, A.; Levina, K. Delamanid improves outcomes and reduces mortality in multidrug-resistant tuberculosis. Eur. Respir. J., 2013, 41, 1393-1400.
[261]
Gler, M.T.; Skripconoka, V.; Sanchez-Garavito, E.; Xiao, H.; Cabrera-Rivero, J.L.; Vargas-Vasquez, D.E.; Gao, M.; Awad, M.; Park, S-K.; Shim, T.S. Delamanid for multidrug-resistant pulmonary tuberculosis. N. Engl. J. Med., 2012, 366, 2151-2160.
[262]
Diacon, A.H.; Dawson, R.; von Groote-Bidlingmaier, F.; Symons, G.; Venter, A.; Donald, P.R.; van Niekerk, C.; Everitt, D.; Winter, H.; Becker, P. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: A randomised trial. Lancet, 2012, 380, 986-993.
[263]
Tiberi, S.; De Lorenzo, S.; Centis, R.; Viggiani, P.; D’Ambrosio, L.; Migliori, G.B. Bedaquiline in MDR/XDR-TB cases: first experience on compassionate use. Eur. Respir. J., 2014, 43, 289-292.
[264]
Zumla, A.; Nahid, P.; Cole, S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov., 2013, 12, 388.
[265]
Organization, W.H. Standards and benchmarks for tuberculosis surveillance and vital registration systems: Checklist and user guide. 2014.
[266]
Lönnroth, K.; Roglic, G.; Harries, A.D. Improving tuberculosis prevention and care through addressing the global diabetes epidemic: from evidence to policy and practice. Lancet Diabetes Endocrinol., 2014, 2, 730-739.
[267]
Frick, M. 2015 report on tuberculosis research funding trends, 2005–2014: A decade of data; Treatment Action Group: New York, 2015.
[268]
Evans, T.G.; Brennan, M.J.; Barker, L.; Thole, J. Preventive vaccines for tuberculosis. Vaccine, 2013, 31, B223-B226.
[269]
Dara, M.; Acosta, C.D.; Rusovich, V.; Zellweger, J.P.; Centis, R.; Migliori, G.B. Bacille Calmette-Guerin vaccination: The current situation in Europe. Eur Respir. Soc., 2014, 43, 24-35.
[270]
Migliori, G.B.; Sotgiu, G. Treatment of tuberculosis: have we turned the corner? Lancet, 2012, 380, 955-957.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 12
ISSUE: 2
Year: 2019
Page: [83 - 104]
Pages: 22
DOI: 10.2174/1874467212666181126151948
Price: $58

Article Metrics

PDF: 29
HTML: 3
EPUB: 1
PRC: 1