Magnetic Nanoparticles: Current Trends and Future Aspects in Diagnostics and Nanomedicine

Author(s): Naga Veera Srikanth Vallabani, Sanjay Singh*, Ajay Singh Karakoti*.

Journal Name: Current Drug Metabolism

Volume 20 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Biomedical applications of Magnetic Nanoparticles (MNPs) are creating a major impact on disease diagnosis and nanomedicine or a combined platform called theranostics. A significant progress has been made to engineer novel and hybrid MNPs for their multifunctional modalities such as imaging, biosensors, chemotherapeutic or photothermal and antimicrobial agents. MNPs are successfully applied in biomedical applications due to their unique and tunable properties such as superparamagnetism, stability, and biocompatibility. Approval of ferumoxytol (feraheme) for MRI and the fact that several Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are currently undergoing clinical trials have paved a path for future MNPs formulations. Intensive research is being carried out in designing and developing novel nanohybrids for multiple applications in nanomedicine.

Objectives: The objective of the present review is to summarize recent developments of MNPs in imaging modalities like MRI, CT, PET and PA, biosensors and nanomedicine including their role in targeting and drug delivery. Relevant theory and examples of the use of MNPs in these applications have been cited and discussed to create a thorough understanding of the developments in this field.

Conclusion: MNPs have found widespread use as contrast agents in imaging modalities, as tools for bio-sensing, and as therapeutic and theranostics agents. Multiple formulations of MNPs are in clinical testing and may be accepted in clinical settings in near future.

Keywords: Magnetic resonance imaging, computer tomography, positron emission tomography, photoacoustic tomography, nanozymes, biosensors, SPIONs, iron oxide nanoparticles.

[1]
Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett., 2012, 7, 144.
[2]
Li, X.; Wei, J.; Aifantis, K.E.; Fan, Y.; Feng, Q.; Cui, F.Z.; Watari, F. Current investigations into magnetic nanoparticles for biomedical applications. J. Biomed. Mater. Res. A, 2016, 104, 1285-1296.
[3]
Reddy, L.H.; Arias, J.L.; Nicolas, J.; Couvreur, P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev., 2012, 112, 5818-5878.
[4]
Gao, L.; Fan, K.; Yan, X. Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications. Theranostics, 2017, 7, 3207-3227.
[5]
Kodama, R.H. Magnetic nanoparticles. J. Magn. Magn. Mater., 1999, 200, 359-372.
[6]
Mohammed, L.; Gomaa, H.G.; Ragab, D.; Zhu, J. Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology, 2017, 30, 1-14.
[7]
Yadollahpour, A.; Rashidi, S. Magnetic nanoparticles: A review of chemical and physical characteristics important in medical applications. Orient. J. Chem., 2015, 31, 25-30.
[8]
Vallabani, N.V.S.; Singh, S. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech., 2018, 8, 8-279.
[9]
Tran, D.L.; Le, V.H.; Pham, H.L.; Hoang, T.M.N.; Nguyen, T.Q.; Luong, T.T.; Ha, P.T.; Nguyen, X.P. Biomedical and environmental applications of magnetic nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol., 2010, 1, 1-5.
[10]
Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater., 2015, 16023501
[11]
Issa, B.; Obaidat, I.M.; Albiss, B.A.; Haik, Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci., 2013, 14, 21266-21305.
[12]
Kasture, M.; Singh, S.; Patel, P.; Joy, P.A.; Prabhune, A.A.; Ramana, C.V.; Prasad, B.L. Multiutility sophorolipids as nanoparticle capping agents: Synthesis of stable and water dispersible Co nanoparticles. Langmuir, 2007, 23, 11409-11412.
[13]
Neuberger, T.; Schopf, B.; Hofmann, H.; Hofmann, M.; Rechenberg, B.V. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater., 2005, 293, 483-496.
[14]
Briley-Saebo, K.; Bjornerud, A.; Grant, D.; Ahlstrom, H.; Berg, T.; Kindberg, G.M. Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: Implications for magnetic resonance imaging. Cell Tissue Res., 2004, 316, 315-323.
[15]
Dutz, S.; Hergt, R. Magnetic particle hyperthermia-a promising tumour therapy? Nanotechnology, 2014, 25452001
[16]
Owens, D.E. 3rd; Peppas, N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm., 2006, 307, 93-102.
[17]
Shubayev, V.I.; Pisanic II, T.R.; Jin, S. Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev., 2009, 61, 467-477.
[18]
Savaliya, R.; Shah, D.; Singh, R.; Kumar, A.; Shanker, R.; Dhawan, A.; Singh, S. Nanotechnology in disease diagnostic techniques. Curr. Drug Metab., 2015, 16, 645-661.
[19]
Singh, S.; Sharma, A.; Robertson, G.P. Realizing the clinical potential of cancer nanotechnology by minimizing toxicologic and targeted delivery concerns. Cancer Res., 2012, 72, 5663-5668.
[20]
Caster, J.M.; Patel, A.N.; Zhang, T.; Wang, A. Investigational nanomedicines in 2016: A review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9e1416
[21]
Ventola, C.L. Progress in nanomedicine: Approved and investigational nanodrugs. P.T, 2017, 42, 742-755.
[22]
Weissig, V.; Pettinger, T.K.; Murdock, N. Nanopharmaceuticals (part 1): Products on the market. Int. J. Nanomedicine, 2014, 9, 4357-4373.
[23]
El-Boubbou, K. Magnetic iron oxide nanoparticles as drug carriers: Clinical relevance. Nanomedicine (Lond.), 2018, 13, 953-971.
[24]
Noorlander, C.W.; Kooi, M.W.; Oomen, A.G.; Park, M.V.; Vandebriel, R.J.; Geertsma, R.E. Horizon scan of nanomedicinal products. Nanomedicine (Lond.), 2015, 10, 1599-1608.
[25]
Hope, M.D.; Hope, T.A.; Zhu, C.; Faraji, F.; Haraldsson, H.; Ordovas, K.G.; Saloner, D. Vascular imaging with ferumoxytol as a contrast agent. Am. J. Roentgenol., 2015, 205, W366-W373.
[26]
Moise, S.; Cespedes, E.; Soukup, D.; Byrne, J.M.; El Haj, A.J.; Telling, N.D. The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles. Sci. Rep., 2017, 7, 39922.
[27]
Ehlerding, E.B.; Grodzinski, P.; Cai, W.; Liu, C.H. Big potential from small agents: nanoparticles for imaging-based companion diagnostics. ACS Nano, 2018, 12, 2106-2121.
[28]
Lee, N.; Yoo, D.; Ling, D.; Cho, M.H.; Hyeon, T.; Cheon, J. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev., 2015, 115, 10637-10689.
[29]
Thomas, R.; Park, I.K.; Jeong, Y.Y. Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int. J. Mol. Sci., 2013, 14, 15910-15930.
[30]
Widmark, J.M. Imaging-related medications: A class overview. Proc. Bayl. Univ. Med. Cent., 2007, 20, 408-417.
[31]
Kim, J.; Lee, N.; Hyeon, T. Recent development of nanoparticles for molecular imaging. Philos. Trans. A Math. Phys. Eng. Sci., 2017, 37520170022
[32]
Revia, R.A.; Zhang, M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: Recent advances. Mater. Today (Kidlington), 2016, 19, 157-168.
[33]
Shin, T.H.; Choi, Y.; Kim, S.; Cheon, J. Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem. Soc. Rev., 2015, 44, 4501-4516.
[34]
Zhou, Z.; Tian, R.; Wang, Z.; Yang, Z.; Liu, Y.; Liu, G.; Wang, R.; Gao, J.; Song, J.; Nie, L.; Chen, X. Artificial local magnetic field inhomogeneity enhances T2 relaxivity. Nat. Commun., 2017, 8, 15468.
[35]
Rogosnitzky, M.; Branch, S. Gadolinium-based contrast agent toxicity: A review of known and proposed mechanisms. Biometals, 2016, 29, 365-376.
[36]
Kim, D.; Kim, J.; Park, Y.I.; Lee, N.; Hyeon, T. Recent development of inorganic nanoparticles for biomedical imaging. ACS Cent. Sci., 2018, 4, 324-336.
[37]
Wei, H.; Bruns, O.T.; Kaul, M.G.; Hansen, E.C.; Barch, M.; Wisniowska, A.; Chen, O.; Chen, Y.; Li, N.; Okada, S.; Cordero, J.M.; Heine, M.; Farrar, C.T.; Montana, D.M.; Adam, G.; Ittrich, H.; Jasanoff, A.; Nielsen, P.; Bawendi, M.G. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc. Natl. Acad. Sci. USA, 2017, 114, 2325-2330.
[38]
Ghasemian, Z.; Shahbazi-Gahrouei, D.; Manouchehri, S. Cobalt zinc ferrite nanoparticles as a potential magnetic resonance imaging agent: An in vitro study. Avicenna J. Med. Biotechnol., 2015, 7, 64-68.
[39]
Wang, J.; Zhao, K.; Shen, X.; Zhang, W.; Ji, S.; Song, Y.; Zhang, X.; Rong, R.; Wang, X. Microfluidic synthesis of ultra-small magnetic nanohybrids for enhanced magnetic resonance imaging. J. Mater. Chem. C, 2015, 3, 12418-12429.
[40]
Sattarahmady, N.; Zare, T.; Mehdizadeh, A.R.; Azarpira, N.; Heidari, M.; Lotfi, M.; Heli, H. Dextrin-coated zinc substituted cobalt-ferrite nanoparticles as an MRI contrast agent: In vitro and in vivo imaging studies. Colloids Surf. B Biointerfaces, 2015, 129, 15-20.
[41]
Ahmad, T.; Bae, H.; Iqbal, Y.; Rhee, I.; Hong, S.; Chang, Y.; Lee, J.; Sohne, D. Chitosan-coated nickel-ferrite nanoparticles as contrast agents in magnetic resonance imaging. J. Magn. Magn. Mater., 2015, 381, 151-157.
[42]
Ahmad, T.; Rhee, I.; Hong, S.; Chang, Y.; Lee, J. Ni-Fe2O4 nanoparticles as contrast agents for magnetic resonance imaging. J. Nanosci. Nanotechnol., 2011, 11, 5645-5650.
[43]
Sattarahmady, N.; Heidari, M.; Zare, T.; Lotfi, M.; Heli, H. Zinc-nickel ferrite nanoparticles as a contrast agent in magnetic resonance imaging. Appl. Magn. Reson., 2016, 47, 925-935.
[44]
Cowger, T.A.; Tang, W.; Zhen, Z.; Hu, K.; Rink, D.E.; Todd, T.J.; Wang, G.D.; Zhang, W.; Chen, H.; Xie, J. Casein-coated Fe5C2 nanoparticles with superior r2 relaxivity for liver-specific magnetic resonance imaging. Theranostics, 2015, 5, 1225-1232.
[45]
Kevadiya, B.D.; Bade, A.N.; Woldstad, C.; Edagwa, B.J.; McMillan, J.M.; Sajja, B.R.; Boska, M.D.; Gendelman, H.E. Development of europium doped core-shell silica cobalt ferrite functionalized nanoparticles for magnetic resonance imaging. Acta Biomater., 2017, 49, 507-520.
[46]
Mohapatra, J.; Mitra, A.; Tyagi, H.; Bahadur, D.; Aslam, M. Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents. Nanoscale, 2015, 7, 9174-9184.
[47]
Nidhin, M.; Nazeer, S.S.; Jayasree, R.S.; Kiran, M.S.; Naira, B.U.; Sreeram, K.J. Flower shaped assembly of cobalt ferrite nanoparticles: Application as T2 contrast agent in MRI. RSC Advances, 2013, 3, 6906-6912.
[48]
Montazerabadi, A.R.; Oghabian, M.A.; Irajirad, R.; Muhammadnejad, S.; Ahmadvand, D.; Delavari, H. Development of gold-coated magnetic nanoparticles as a potential mri contrast agent. Nano, 2015, 101550048
[49]
Lu, A.H.; Salabas, E.E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl., 2007, 46, 1222-1244.
[50]
Chang, S.S. Overview of prostate-specific membrane antigen. Rev. Urol., 2004, 6, S13-S18.
[51]
Finley, R.S. Overview of targeted therapies for cancer. Am. J. Health Syst. Pharm., 2003, 60, S4-S10.
[52]
Sanjai, C.; Kothan, S.; Gonil, P.; Saesoo, S.; Sajomsang, W. Super-paramagnetic loaded nanoparticles based on biological macromolecules for in vivo targeted MR imaging. Int. J. Biol. Macromol., 2016, 86, 233-241.
[53]
Ozdemir, A.; Ekiz, M.S.; Dilli, A.; Guler, M.O.; Tekinay, A.B. Amphiphilic peptide coated superparamagnetic iron oxide nanoparticles for in vivo MR tumor imaging. RSC Advances, 2016, 6, 45135-45146.
[54]
Gogoi, M.; Varadarajan, K.S.; Patel, A.B.; Deb, P. Facile development of iron-platinum nanoparticles to harness multifunctionality in single entity. Acta Metall. Sin., 2016, 29, 1098-1106.
[55]
Maenosono, S.; Suzuki, T.; Saita, S. Superparamagnetic FePt nanoparticles as excellent MRI contrast agents. J. Magn. Magn. Mater., 2008, 320, L79-L83.
[56]
Taylor, R.M.; Huber, D.L.; Monson, T.C.; Esch, V.; Sillerud, L.O. Structural and magnetic characterization of superparamagnetic iron platinum nanoparticle contrast agents for magnetic resonance imaging. J. Vac. Sci. Technol. B Nanotechnol. Microelectron., 2012, 30, 02C101-02C101-6.
[57]
Ma, J.; Chen, K. Synthetic Ni3S2/Ni hybrid architectures as potential contrast agents in MRI. Mater. Res. Express, 2016, 3, 1-7.
[58]
Carril, M.; Fernández, I.; Rodríguez, J.; García, I.; Penadés, S. Gold‐coated iron oxide glyconanoparticles for MRI, CT, and US multimodal imaging. Part. Part. Syst. Charact., 2014, 31, 81-87.
[59]
Kim, D.; Park, S.; Lee, J.H.; Jeong, Y.Y.; Jon, S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging. J. Am. Chem. Soc., 2007, 129, 7661-7665.
[60]
Rabin, O.; Manuel Perez, J.; Grimm, J.; Wojtkiewicz, G.; Weissleder, R. An x-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater., 2006, 5, 118-122.
[61]
Chou, S.W.; Shau, Y.H.; Wu, P.C.; Yang, Y.S.; Shieh, D.B.; Chen, C.C. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J. Am. Chem. Soc., 2010, 132, 13270-13278.
[62]
Ahn, S.; Jung, S.Y.; Lee, S.J. Gold nanoparticle contrast agents in advanced x-ray imaging technologies. Molecules, 2013, 18, 5858-5890.
[63]
Zou, Q.; Tang, R.; Zhao, H.X.; Jiang, J.; Li, J.; Fu, Y.Y. Hyaluronic-acid-assisted facile synthesis of MnWO4 single-nanoparticle for efficient trimodal imaging and liver-renal structure display. ACS Appl. Nano Mater., 2018, 1, 101-110.
[64]
Perlman, O.; Azhari, H. Ultrasonic computed tomography imaging of iron oxide nanoparticles. Phys. Med. Biol., 2017, 62, 825-842.
[65]
Hwang, D.W.; Youn, H.; Lee, D.S. Molecular imaging using PET/MRI particle. Open Nucl. Med. J., 2010, 2, 186-191.
[66]
Lamb, J.; Holland, J.P. Advanced Methods for Radiolabeling Multimodality Nanomedicines for SPECT/MRI and PET/MRI. J. Nucl. Med., 2018, 59, 382-389.
[67]
Cui, X.; Belo, S.; Kruger, D.; Yan, Y.; de Rosales, R.T.; Jauregui-Osoro, M.; Ye, H.; Su, S.; Mathe, D.; Kovacs, N.; Horvath, I.; Semjeni, M.; Sunassee, K.; Szigeti, K.; Green, M.A.; Blower, P.J. Aluminium hydroxide stabilised MnFe2O4 and Fe3O4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging. Biomaterials, 2014, 35, 5840-5846.
[68]
Moon, S.H.; Yang, B.Y.; Kim, Y.J.; Hong, M.K.; Lee, Y.S.; Lee, D.S.; Chung, J.K.; Jeong, J.M. Development of a complementary PET/MR dual-modal imaging probe for targeting prostate-specific membrane antigen (PSMA). Nanomedicine, 2016, 12, 871-879.
[69]
Evertsson, M.; Kjellman, P.; Cinthio, M.; Andersson, R.; Tran, T.A.; In’t Zandt, R.; Grafstrom, G.; Toftevall, H.; Fredriksson, S.; Ingvar, C.; Strand, S.E.; Jansson, T. Combined Magnetomotive ultrasound, PET/CT, and MR imaging of 68Ga-labelled superparamagnetic iron oxide nanoparticles in rat sentinel lymph nodes in vivo. Sci. Rep., 2017, 7, 4824.
[70]
Pham, T.N.; Lengkeek, N.A.; Greguric, I.; Kim, B.J.; Pellegrini, P.A.; Bickley, S.A.; Tanudji, M.R.; Jones, S.K.; Hawkett, B.S.; Pham, B.T. Tunable and noncytotoxic PET/SPECT-MRI multimodality imaging probes using colloidally stable ligand-free superparamagnetic iron oxide nanoparticles. Int. J. Nanomedicine, 2017, 12, 899-909.
[71]
Kimura, Y.; Kurimoto, T.; Imai, Y.; Sugii, H.A.; Toshimitsu, A.; Matsuda, T.; Imai, H.; Yamada, H.; Kondo, T. Novel biocompatible cobalt oxide nanoparticles for use in dual photoacoustic and magnetic resonance imaging. JSM Biotechnol. Bioeng., 2014, 2, 1043.
[72]
Bouchard, L.S.; Anwar, M.S.; Liu, G.L.; Hann, B.; Xie, Z.H.; Gray, J.W.; Wang, X.; Pines, A.; Chen, F.F. Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles. Proc. Natl. Acad. Sci. USA, 2009, 106, 4085-4089.
[73]
Chen, Z.; Yin, J.J.; Zhou, Y.T.; Zhang, Y.; Song, L.; Song, M.; Hu, S.; Gu, N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano, 2012, 6, 4001-4012.
[74]
Jin, L.; Meng, Z.; Zhang, Y.; Cai, S.; Zhang, Z.; Li, C.; Shang, L.; Shen, Y. Ultrasmall Pt nanoclusters as robust peroxidase mimics for colorimetric detection of glucose in human serum. ACS Appl. Mater. Interfaces, 2017, 9, 10027-10033.
[75]
Mu, J.; Wang, Y.; Zhao, M.; Zhang, L. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. (Camb.), 2012, 48, 2540-2542.
[76]
Ragg, R.; Schilmann, A.M.; Korschelt, K.; Wieseotte, C.; Kluenker, M.; Viel, M.; Völker, L.; Preiß, S.; Herzberger, J.; Frey, H.; Heinze, K.; Blümler, P.; Tahir, M.N.; Natalio, F.; Tremel, W. Intrinsic superoxide dismutase activity of MnO nanoparticles enhances the magnetic resonance imaging contrast. J. Mater. Chem. B, 2016, 4, 7423-7428.
[77]
Vallabani, N.V.S.; Karakoti, A.S.; Singh, S. ATP-mediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme: One step detection of blood glucose at physiological pH. Colloids Surf. B Biointerfaces, 2017, 153, 52-60.
[78]
Shah, K.; Bhagat, S.; Varade, D.; Singh, S. Novel synthesis of polyoxyethylene cholesteryl ether coated Fe-Pt nanoalloys: A multifunctional and cytocompatible bimetallic alloy exhibiting intrinsic chemical catalysis and biological enzyme-like activities. Colloids Surf. A Physicochem. Eng. Asp., 2018, 553, 50-57.
[79]
Urbanova, V.; Magro, M.; Gedanken, A.; Baratella, D.; Vianello, F.; Zboril, R. Nanocrystalline iron oxides, composites, and related materials as a platform for electrochemical, magnetic, and chemical biosensors. Chem. Mater., 2014, 26, 6653-6673.
[80]
Ali, A.; AlSalhi, M.S.; Atif, M.; Ansari, A.A.; Israr, M.Q.; Sadaf, J.R.; Ahmed, E.; Nur, O.; Willander, M. In: , Potentiometric Urea Biosensor Utilizing Nanobiocomposite of Chitosan-Iron Oxide Magnetic Nanoparticles, Vol. 414, Journal of Physics: Conference Series, Calgary, Canada, July 23-27 2012
[81]
Bhagat, S.; Srikanth Vallabani, N.V.; Shutthanandan, V.; Bowden, M.; Karakoti, A.S.; Singh, S. Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon. J. Colloid Interface Sci., 2018, 513, 831-842.
[82]
Fayemi, O.E.; Adekunle, A.S.; Ebenso, E.E. Electrochemical determination of serotonin in urine samples based on metal oxide nanoparticles/MWCNT on modified glassy carbon electrode. Sens. Biosensing Res., 2017, 13, 17-27.
[83]
Kacar, C.; Erden, P.E.; Pekyardimci, S.; Kilic, E. An Fe3O4-nanoparticles-based amperometric biosensor for creatine determination. Artif. Cells Nanomed. Biotechnol., 2013, 41, 2-7.
[84]
Maroneze, C.M.; Dos Santos, G.P.; De Moraes, V.B.; Da Costa, L.P.; Kubota, L.T. Multifunctional catalytic platform for peroxidase mimicking, enzyme immobilization and biosensing. Biosens. Bioelectron., 2016, 77, 746-751.
[85]
Bhatnagar, I.; Mahato, K.; Ealla, K.K.R.; Asthana, A.; Chandra, P. Chitosan stabilized gold nanoparticle mediated self-assembled glip nanobiosensor for diagnosis of invasive aspergillosis. Int. J. Biol. Macromol., 2018, 110, 449-456.
[86]
Chandra, P.; Segal, E. In: Nanobiosensors for Personalized and Onsite Biomedical Diagnosis., The Institution of Engineering and Technology, Lucknow, Uttar Pradesh, India,2016
[87]
Nora, N.M.; Razak, K.A.; Lockman, Z. Physical and electrochemical properties of iron oxide nanoparticles-modified electrode for amperometric glucose detection. Electrochim. Acta, 2017, 248, 160-168.
[88]
Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem., 2015, 87, 230-249.
[89]
Mandal, R.; Baranwal, A.; Srivastava, A.; Chandra, P. Evolving trends in bio/chemical sensors fabrication incorporating bimetallic nanoparticles. Biosens. Bioelectron., 2018, 117, 546-561.
[90]
Mahato, K.; Maurya, P.K.; Chandra, P. Fundamentals and commercial aspects of nanobiosensors in point-of-care clinical diagnostics. 3 Biotech, 2018, 8, 149.
[91]
Baghayeri, M.; Veisi, H.; Ghanei-Motlagh, M. Amperometric glucose biosensor based on immobilization of glucose oxidase on a magnetic glassy carbon electrode modified with a novel magnetic nanocomposite. Sens. Actuators B Chem., 2017, 249, 321-330.
[92]
Zhou, H.; Gan, N.; Li, T.; Cao, Y.; Zeng, S.; Zheng, L.; Guo, Z. The sandwich-type electrochemiluminescence immunosensor for α-fetoprotein based on enrichment by Fe3O4-Au magnetic nano probes and signal amplification by CdS-Au composite nanoparticles labeled anti-AFP. Anal. Chim. Acta, 2012, 746, 107-113.
[93]
Jia, H.; Yang, D.; Han, X.; Cai, J.; Liu, H.; He, W. Peroxidase-like activity of the Co3O4 nanoparticles used for biodetection and evaluation of antioxidant behavior. Nanoscale, 2016, 8, 5938-5945.
[94]
Wang, Q.; Zhang, L.; Shang, C.; Zhang, Z.; Dong, S. Triple-enzyme mimetic activity of nickel-palladium hollow nanoparticles and their application in colorimetric biosensing of glucose. Chem. Commun. (Camb.), 2016, 52, 5410-5413.
[95]
Su, L.; Yu, X.; Qin, W.; Dong, W.; Wu, C.; Zhang, Y.; Mao, G.; Feng, S. One-step analysis of glucose and acetylcholine in water based on the intrinsic peroxidase-like activity of Ni/Co LDHs microspheres. J. Mater. Chem. B, 2017, 5, 116-122.
[96]
Su, L.; Dong, W.; Wu, C.; Gong, Y.; Zhang, Y.; Li, L.; Mao, G.; Feng, S. The peroxidase and oxidase-like activity of NiCo2O4 mesoporous spheres: Mechanistic understanding and colorimetric biosensing. Anal. Chim. Acta, 2017, 951, 124-132.
[97]
Wang, T.; Su, P.; Li, H.; Yang, Y.; Yang, Y. Triple-enzyme mimetic activity of Co3O4 nanotubes and their applications in colorimetric sensing of glutathione. New J. Chem., 2016, 40, 10056-10063.
[98]
Chen, W.; Fang, X.; Li, H.; Cao, H.; Kong, J. DNA-mediated inhibition of peroxidase-like activities on platinum nanoparticles for simple and rapid colorimetric detection of nucleic acids. Biosens. Bioelectron., 2017, 94, 169-175.
[99]
Kamali, K.Z.; Alagarsamy, P.; Huang, N.M.; Ong, B.H.; Lim, H.N. Hematite nanoparticles-modified electrode based electrochemical sensing platform for dopamine. ScientificWorldJournal, 2014, 2014396135
[100]
Fernandez, R.E.; Umasankar, Y.; Manickam, P.; Nickel, J.C.; Iwasaki, L.R.; Kawamoto, B.K.; Todoki, K.C.; Scott, J.M.; Bhansali, S. Disposable aptamer-sensor aided by magnetic nanoparticle enrichment for detection of salivary cortisol variations in obstructive sleep apnea patients. Sci. Rep., 2017, 7, 17992.
[101]
Alegret, N.; Criado, A.; Prato, M. Recent advances of graphene-based hybrids with magnetic nanoparticles for biomedical applications. Curr. Med. Chem., 2017, 24, 529-536.
[102]
Iv, M.; Telischak, N.; Feng, D.; Holdsworth, S.J.; Yeom, K.W.; Daldrup-Link, H.E. Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine (Lond.), 2015, 10, 993-1018.
[103]
Leng, F.; Liu, F.; Yang, Y.; Wu, Y.; Tian, W. Strategies on nanodiagnostics and nanotherapies of the three common cancers. Nanomaterials (Basel), 2018, 8pii:E202
[104]
Sinharay, S.; Pagel, M.D. Advances in magnetic resonance imaging contrast agents for biomarker detection. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2016, 9, 95-115.
[105]
Sun, C.; Lee, J.S.; Zhang, M. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev., 2008, 60, 1252-1265.
[106]
Bakhtiary, Z.; Saei, A.A.; Hajipour, M.J.; Raoufi, M.; Vermesh, O.; Mahmoudi, M. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges. Nanomedicine, 2016, 12, 287-307.
[107]
Williams, H.M. The application of magnetic nanoparticles in the treatment and monitoring of cancer and infectious diseases. BioscienceHorizons, 2017, 10, 1-10.
[108]
Wu, Y.; Yang, X.; Yi, X.; Liu, Y.; Chen, Y.; Liu, G.; Li, R.W. Magnetic nanoparticle for biomedicine applications. J. Nanotechnol. Nanomed. Nanobiotechnol., 2015, 2, 1-7.
[109]
Zhu, L.; Zhou, Z.; Mao, H.; Yang, L. Magnetic nanoparticles for precision oncology: Theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine (Lond.), 2017, 12, 73-87.
[110]
Savaliya, R.; Singh, P.; Singh, S. Pharmacological drug delivery strategies for improved therapeutic effects: Recent advances. Curr. Pharm. Des., 2016, 22, 1506-1520.
[111]
Shah, D.; Savaliya, R.; Patel, P.; Kansara, K.; Pandya, A.; Dhawan, A.; Singh, S. Curcumin Ag nanoconjugates for improved therapeutic effects in cancer. Int. J. Nanomedicine, 2018, 13, 75-77.
[112]
Yallapu, M.M.; Othman, S.F.; Curtis, E.T.; Bauer, N.A.; Chauhan, N.; Kumar, D.; Jaggi, M.; Chauhan, S.C. Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int. J. Nanomedicine, 2012, 7, 1761-1779.
[113]
Singh, S. Nanomaterials as non-viral siRNA delivery agents for cancer therapy. Bioimpacts, 2013, 3, 53-65.
[114]
Sharma, A.; Cornejo, C.; Mihalic, J.; Geyh, A.; Bordelon, D.E.; Korangath, P.; Westphal, F.; Gruettner, C.; Ivkov, R. Physical characterization and in vivo organ distribution of coated iron oxide nanoparticles. Sci. Rep., 2018, 8, 4916.
[115]
Aires, A.; Ocampo, S.M.; Simoes, B.M.; Josefa Rodriguez, M.; Cadenas, J.F.; Couleaud, P.; Spence, K.; Latorre, A.; Miranda, R.; Somoza, A.; Clarke, R.B.; Carrascosa, J.L.; Cortajarena, A.L. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells. Nanotechnology, 2016, 27065103
[116]
Shevtsov, M.A.; Nikolaev, B.P.; Yakovleva, L.Y.; Dobrodumov, A.V.; Zhakhov, A.V.; Mikhrina, A.L.; Pitkin, E.; Parr, M.A.; Rolich, V.I.; Simbircev, A.S.; Ischenko, A.M. Recombinant interleukin-1 receptor antagonist conjugated to superparamagnetic iron oxide nanoparticles for theranostic targeting of experimental glioblastoma. Neoplasia, 2015, 17, 32-42.
[117]
Rejinold, N.S.; Han, Y.; Yoo, J.; Seok, H.Y.; Park, J.H.; Kim, Y.C. Evaluation of cell penetrating peptide coated Mn:ZnS nanoparticles for paclitaxel delivery to cancer cells. Sci. Rep., 2018, 8, 1899.
[118]
Gowda, R.; Kardos, G.; Sharma, A.; Singh, S.; Robertson, G.P. Nanoparticle-based celecoxib and plumbagin for the synergistic treatment of melanoma. Mol. Cancer Ther., 2017, 16, 440-452.
[119]
Singh, S. Liposome encapsulation of doxorubicin and celecoxib in combination inhibits progression of human skin cancer cells. Int. J. Nanomedicine, 2018, 13, 11-13.
[120]
Babincova, N.; Sourivong, P.; Babinec, P.; Bergemann, C.; Babincova, M.; Durdik, S. Applications of magnetoliposomes with encapsulated doxorubicin for integrated chemotherapy and hyperthermia of rat C6 glioma. Z. Naturforsch. C, 2018, 73, 265-271.
[121]
Deka, S.; Saxena, V.; Hasan, A.; Chandra, P.; Pandey, L.M. Synthesis, characterization and in vitro analysis of α-Fe2O3-GdFeO3 biphasic materials as therapeutic agent for magnetic hyperthermia applications. Mater. Sci. Eng. C Mater. Biol. Appl., 2018, 92, 932-941.
[122]
Mondal, S.; Manivasagan, P.; Bharathiraja, S.; Santha Moorthy, M.; Nguyen, V.T.; Kim, H.H.; Nam, S.Y.; Lee, K.D.; Oh, J. Hydroxyapatite coated iron oxide nanoparticles: a promising nanomaterial for magnetic hyperthermia cancer treatment. Nanomaterials (Basel), 2017, 7E426
[123]
Mrowczynski, R.; Jedrzak, A.; Szutkowski, K.; Grzeskowiak, B.F.; Coy, E.; Markiewicz, R.; Jesionowski, T.; Jurga, S. Cyclodextrin-based magnetic nanoparticles for cancer therapy. Nanomaterials (Basel), 2018, 8E170
[124]
Ravichandran, M.; Oza, G.; Velumani, S.; Ramirez, J.T.; Garcia-Sierra, F.; Andrade, N.B.; Vera, A.; Leija, L.; Garza-Navarro, M.A. Plasmonic/magnetic multifunctional nanoplatform for cancer theranostics. Sci. Rep., 2016, 6, 34874.
[125]
Zhu, X.M.; Wan, H.Y.; Jia, H.; Liu, L.; Wang, J. Porous Pt nanoparticles with high near-infrared photothermal conversion efficiencies for photothermal therapy. Adv. Healthc. Mater., 2016, 5, 3165-3172.
[126]
Peixoto, A.; Fernandes, E.; Gaiteiro, C.; Lima, L.; Azevedo, R.; Soares, J.; Cotton, S.; Parreira, B.; Neves, M.; Amaro, T.; Tavares, A.; Teixeira, F.; Palmeira, C.; Rangel, M.; Silva, A.M.; Reis, C.A.; Santos, L.L.; Oliveira, M.J.; Ferreira, J.A. Hypoxia enhances the malignant nature of bladder cancer cells and concomitantly antagonizes protein O-glycosylation extension. Oncotarget, 2016, 7, 63138-63157.
[127]
Lin, T.; Zhao, X.; Zhao, S.; Yu, H.; Cao, W.; Chen, W.; Wei, H.; Guo, H. O2-generating MnO2 nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia. Theranostics, 2018, 8, 990-1004.
[128]
Niemirowicz, K.; Piktel, E.; Wilczewska, A.Z.; Markiewicz, K.H.; Durnas, B.; Watek, M.; Puszkarz, I.; Wroblewska, M.; Niklinska, W.; Savage, P.B.; Bucki, R. Core-shell magnetic nanoparticles display synergistic antibacterial effects against Pseudomonas aeruginosa and Staphylococcus aureus when combined with cathelicidin LL-37 or selected ceragenins. Int. J. Nanomedicine, 2016, 11, 5443-5455.
[129]
Chaurasia, A.K.; Thorat, N.D.; Tandon, A.; Kim, J.H.; Park, S.H.; Kim, K.K. Coupling of radiofrequency with magnetic nanoparticles treatment as an alternative physical antibacterial strategy against multiple drug resistant bacteria. Sci. Rep., 2016, 6, 33662.
[130]
Geilich, B.M.; Gelfat, I.; Sridhar, S.; van de Ven, A.L.; Webster, T.J. Superparamagnetic iron oxide-encapsulating polymersome nanocarriers for biofilm eradication. Biomaterials, 2017, 119, 78-85.
[131]
Hashimoto, M.; Yanagiuchi, H.; Kitagawa, H.; Honda, Y. Inhibitory effect of platinum nanoparticles on biofilm formation of oral bacteria. Nano Biomed., 2017, 9, 77-82.
[132]
Akbari, K.R.A.; Ali, A.A. Study of antimicrobial effects of several antibiotics and iron oxide nanoparticles on biofilm producing pseudomonas aeruginosa. Nanomed. J., 2017, 4, 37-43.
[133]
zadeh, N.F.; Sharifi, Y.; Gahremani, M.; Jazani, N.H. Anti bacterial effects of nickel nano-particles on biofilm production amounts by B. capacia ATCC 25416. J. Urmia. Univ. Med. Sci., 2017, 28, 25-32.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 20
ISSUE: 6
Year: 2019
Page: [457 - 472]
Pages: 16
DOI: 10.2174/1389200220666181122124458
Price: $58

Article Metrics

PDF: 19
HTML: 2