Virtual Screening of Natural Products to Select Compounds with Potential Anticancer Activity

Author(s): Élida B.V.S. Cavalcanti, Mayara B. Félix, Luciana Scotti, Marcus T. Scotti*.

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 19 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Cancer is the main cause of death, so the search for active agents to be used in the therapy of this disease, is necessary. According to studies conducted, substances derived from natural products have shown to be promising in this endeavor. To these researches, one can associate with the aid of computational chemistry, which is increasingly gaining popularity, due to the possibility of developing alternative strategies that could help in choosing an appropriate set of compounds, avoiding unnecessary expenses with resources that would generate unwanted substance. Thus, the objective of this study was to carry out an approach to several studies that apply different methods of virtual screening to select natural products with potential anticancer activity. This review presents reports of studies conducted with some natural products, such as coumarin, quinone, tannins, alkaloids, flavonoids and terpenes.

Keywords: Cancer, natural products, virtual screening, secondary metabolites, potential anticancer activity, computational chemistry.

[1]
WORLD HEALTH ORGANIZATION (WHO) 2017. Cancer http://www.who.int/mediacentre/factsheets/fs297/en/ (Accessed May 4, 2017).
[2]
Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4, 206-220.
[3]
Kashman, Y.; Groweiss, A.; Shmueli, J. Latrunculin, a new 2-thiazolidinone macrolide from the marine sponge latrunculiamagnifica. Tetrahedron Lett., 1980, 21, 3629-3632.
[4]
Spector, I.; Shochet, N.R.; Blasberger, D.; Kashman, Y. Latrunculins novel marine macrolides that disrupt microfilament organization and affect cell-growth 1. comparison with cytochalasin-D. Cell Motil. Cytoskeleton, 1989, 13, 127-144.
[5]
Yamazaki, D.; Kurisu, S.; Takenawa, T. Regulation of cancer cell motility through actin reorganization. Cancer Sci., 2005, 96, 379-386.
[6]
El Sayed, K.A.; Youssef, D.T.A.; Marchetti, D. Bioactive natural and semisynthetic latrunculins. J. Nat. Prod., 2006, 69, 219-223.
[7]
Longley, R.E.; McConnell, O.J.; Essich, E.; Harmody, D. Evaluation of marine sponge metabolites for cytotoxicity and signal transduction activity. J. Nat. Prod., 1993, 56, 915-920.
[8]
Konishi, H.; Kikuchi, S.; Ochiai, T.; Ikoma, H.; Kubota, T.; Ichikawa, D.; Fujiwara, H.; Okamoto, K.; Sakakura, C.; Sonoyama, T.; Kokuba, Y.; Sasaki, H.; Matsui, T.; Otsuji, E. Latrunculin a has a strong anticancer effect in a peritoneal dissemination model of human gastric cancer in mice. Anticancer Res., 2009, 29, 2091-2097.
[9]
Kobayashi, S.; Hidaka, S.; Kawamura, H.; Ozaki, M.; Hayase, Y.; Micacocidin, A. B and C, novel antimycoplasma agents from pseudomonassp. -I. taxonomy, fermentation, isolation, physicochemical properties and biological activities. J. Antibiot., 1998, 51, 323-327.
[10]
Carvalho, A.A.; Andrade, L.N.; de Sousa, E.B.V.; de Sousa, D.P. Antitumor phenylpropanoids found in essential oils. BioMed Res. Int., 2015, 2015, 21.
[11]
Lavecchia, A.; Giovanni, C. Virtual screening strategies in drug discovery: A critical review. Curr. Med. Chem., 2013, 20, 2839-2860.
[12]
Kumar, V.; Krishna, S.; Siddiqi, M.I. Virtual screening strategies: Recent advances in the identification and design of anti-cancer agents. Methods, 2015, 71, 64-70.
[13]
Schuster, D.; Wolber, G. Identification of bioactive natural products by pharmacophore-based virtual screening. Curr. Pharm. Des., 2010, 16, 1666-1681.
[14]
Costa, F.G.; Neto, B.R.S.; Gonçalves, R.L.; da Silva, R.A.; de-Oliveira, C.M.A.; Katoc, L.; Freitas, C.S.; Gianninid, M.J.S.M.; da-Silva, J.F.; Soares, C.M.A.; Pereira, M. Alkaloids as inhibitors of malate synthase from Paracoccidioides spp.: Receptor-ligand interaction-based virtual screening and molecular docking studies, antifungal activity, and the adhesion process. Antimicrob. Agents Ch, 2015, 59, 5581-5594.
[15]
de Araújo, R.; Guerra, F.; Lima, E.O.; de Simone, C.; Tavares, J.; Scotti, L.; Scotti, M.T.; de Aquino, T.; de Moura, R.O.; Mendonça, Junior, F.J.B.; Barbosa-Filho, J. Synthesis, Structure-Activity Relationships (SAR) and in silico studies of coumarin derivatives with antifungal activity. Int. J. Mol. Sci., 2013, 14, 1293-1309.
[16]
Félix, M.B.; de-Souza, E.R.; de-Lima, M.C.A.; Frade, D.A.G.; Serafim, V.L.; Rodrigues, K.A.F.; Néris, P.L.N.; Ribeiro, F.F.; Scotti, L.; Scotti, M.T.; de-Aquino, T.M.; Mendonça, Junior, F.J.B.; de Oliveira, M.R. Antileishmanial activity of new thiophene-indole hybrids: Design, synthesis, biological and cytotoxic evaluation, and chemometric studies. Bioorg. Med. Chem., 2016, 24, 3972-3977.
[17]
Ribeiro, F.F.; Mendonça, Junior, F.J.B.; da Silva, M.S.; Scotti, M.T.; Scotti, L. Computational and investigative study of flavonoids active against Typanosoma cruzi and Leishmania spp. Nat. Prod. Commun., 2015, 10, 917-920.
[18]
Chuang, C.; Cheng, T.; Leu, Y.; Chuang, K.; Tzou, S.; Chen, C. Discovery of akt kinase inhibitors through structure-based virtual screening and their evaluation as potential anticancer agents. Int. J. Mol. Sci., 2015, 16, 3202-3212.
[19]
Cebrian-Torrejón, G.; Domenech-Carbó, A.; Scotti, M.T.; Fournet, A.; Figadere, B.; Poupon, E. Experimental and theoretical study of possible correlation between the electrochemistry of canthin-6-one and the anti-proliferative activity against human cancer stem cells. J. Mol. Struct., 2015, 1102, 242-246.
[20]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gililand, G.; Bhat, T.N.; Weissig, H. The protein data bank. Nucleic Acids Res., 2000, 28, 235-242.
[21]
Toropova, A.P.; Toropov, A.A. CORAL software: Prediction of carcinogenicity of drugs by means of the monte carlo method. Eur. J. Pharm. Sci., 2014, 52, 21-25.
[22]
Kar, S.K.; Roy, K. Development and validation of a robust QSAR model for prediction of carcinogenicity of drugs. Indian J. Biochem. Biophys., 2011, 48, 111-122.
[23]
Perumal, P.C.; Sowmya, S.; Pratibha, P.; Vidya, B.; Anusooriya, P.; Starlin, S.; Vasanth, R.; Sharmila, D.J.S.; Gopalakrishnan, V.K. Identification of novel PPARγ agonist from GC-MS analysis of ethanolic extract of Cayratia trifolia (L.): A computational molecular simulation studies. J. Appl. Pharm. Sci., 2014, 4, 6-11.
[24]
Schuster, D.; Wolber, G. Identification of bioactive natural products by pharmacophore-based virtual screening. Curr. Pharm. Des., 2010, 16, 1666-1681.
[25]
Souza, M.V.N.; Pinheiro, A.C.; Ferreira, M.L.; Gonçalves, R.S.B.; Lima, C.H.C. Produtos naturais em fase avançada de testes clínicos no tratamento contra o câncer. Fitos, 2007, 3(2), 25-42.
[26]
Bayala, B.; Bassole, I.H.N.; Scifo, R.; Gnoula, C.; Morel, L.; Lobaccaro, J.A.; Simpor, J. Anticancer activity of essential oils and their chemical components - A review. Am. J. Cancer Res., 2014, 4, 591-607.
[27]
Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA). Estimativa | 2016 Incidência de câncer no Brasil; Ministério da Saúde, 2015, p. 122.
[28]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70, 461-477.
[29]
Singh, A.; Mhlongo, N.; Es Soliman, M. Anti-cancer glycosidase inhibitors from natural products: A computational and molecular modelling perspective. Anti-Cancer Agent. Med. Chem., 2015, 15(8), 933-946.
[30]
Lake, B. Synthesis & pharmacological investigation of 4-hydroxy coumarin derivatives & shown as anti-coagulant. Food Chem. Toxicol., 1999, 3, 412-423.
[31]
Lacy, A.; O’Kennedy, R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des., 2004, 10(30), 3797-3811.
[32]
Rohini, K.; Srikumar, P.S. In silico approach of anticancer activity of phytochemical coumarins against cancer target JNKS. Int. J. Pharm. Pharm. Sci., 2013, 5, 741-742.
[33]
Chilin, A.; Battistutta, R.; Bortolato, A.; Cozza, G.; Zanatta, S.; Poletto, G.; Mazzorana, M.; Zagotto, G.; Uriarte, E.; Guiotto, A.; Pinna, L.A.; Meggio, F.; Moro, S. Coumarin as attractive Casein Kinase 2 (CK2) inhibitor scaffold: An integrate approach to elucidate the putative binding motif and explain structure-activity relationships. J. Med. Chem., 2008, 51, 752-759.
[34]
Nolan, K.A.; Doncaster, J.R.; Dunstan, M.S.; Scott, K.A.; Frenkel, A.D.; Siegel, S.; Ross, D.; Barnes, J.; Levy, C.; Leys, C.; Whitehead, R.C.; Stratford, I.J.; Bryce, R.A. Synthesis and Biological evaluation of coumarin-based inhibitors of NAD(P)H: Quinone oxidoreductase-1 (NQO1). J. Med. Chem., 2009, 52, 7142-7156.
[35]
Zwergela, C.; Czepukojce, B.; Evain-Banad, E.; Xuf, Z.; Stazia, G.; Morig, M.; Patsilinakosa, A.; Maia, A.; Bottaa, B.; Ragnoa, R. Novel coumarin- and quinolinone-based polycycles as cell division cycle 25-A and -C phosphatases inhibitors induce proliferation arrest and apoptosis in cancer cells. Eur. J. Med. Chem., 2017, 134, 316-333.
[36]
Wagner, E.F.; Nebreda, A.R. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer, 2009, 9(8), 537-549.
[37]
Rotig, A.; Mollet, J.; Rio, M.; Munnuch, A. Infantile and pediatric quinone deficiency diseases. Mitochondrion, 2007, 7, S112-S121.
[38]
Babiaka, B.B.; Ntie-Kang, F.; Ndingkokhar, B.; Mbah, J.A.; Sipplc, W.; Yong, J.N. The chemistry and bioactivity of Southern African flora II: Flavonoids, quinones and minor compound classes. RSC Adv., 2015, 5, 57704-57720.
[39]
Siegel, D.; Gustafson, D.L.; Dehn, D.L.; Han, J.Y.; Boonchoong, P.; Berliner, L.J.; Ross, D. Mol. Pharmacol., 2004, 65, 1238-1247.
[40]
Colucci, M.A.; Reigan, P.; Siegel, D.; Chilloux, A.; Ross, D.; Moody, C. Synthesis and evaluation of 3-aryloxymethyl-1,2- dimethylindole-4,7-diones as mechanism-based inhibitors of NAD(P)H:quinone oxidoreductase 1 (NQO1) activity. J. Med. Chem., 2007, 50, 5780-5789.
[41]
Nolan, K.A.; Humphries, M.P.; Barnes, J.; Doncaster, J.R.; Caraher, M.C.; Tirelli, N.; Bryce, R.A.; Whitehead, R.C.; Stratford, I.J. Triazoloacridin-6-ones as novel inhibitors of the quinone oxidoreductases NQO1 and NQO2. Bioorg. Med. Chem., 2010, 18, 696-706.
[42]
Bian, J.; Qian, X.; Deng, B.; Xu, X.; Guo, X.; Wang, Y.; Li, X.; Sun, H.; You, Q.; Zhang, X. Discovery of NAD(P)H: Quinone oxidoreductase 1 (NQO1) inhibitors with novel chemical scaffolds by shape-based virtual screening combined with cascade dockin7. RSC Advances, 2015, 5(61), 49471-49474.
[43]
Morrison, H.; Jernstrom, B.; Nordenskjold, M.; Thor, H.; Orrenius, S. Induction of DNA damage by menadione (2-methyl-1,4-naphthoquinone) in primary cultures of rat hepatocytes. Biochem. Pharmacol., 1984, 33, 1763-1769.
[44]
Han, Y.; Shen, H.; Carr, B.I.; Wipf, P.; Lazo, J.S.; Pan, S.S. NAD(P)H: Quinone oxidoreductase-1-dependent and -independent cytotoxicity of potent quinone Cdc25 phosphatase inhibitors. J. Pharmacol. Exp. Ther., 2004, 309, 64-70.
[45]
Velišek, J.; Davidek, J.; Cejpek, K. Biosynthesis of food constituents: Natural pigments. Part 1-A review. Czech J. Food Sci., 2007, 25, 291-315.
[46]
Hasinoff, B.B.; Liang, H.; Wu, X.; Guziec, L.J.; Guziec, F.S., Jr; Marshall, K.; Yalowich, J.C. The structure-based design, synthesis and biological evaluation of DNA-binding bisintercalating bisanthrapyrazole anticancer compounds. Bioorg. Med. Chem., 2008, 16, 3959-3968.
[47]
Tamaian, R.; Niculescu, V.; Anghel, M. In silico predictions for improving permeability properties of principal anticancer anthracyclines through structural modification. Bulletin UASVM. Vet. Med., 2010, 67(1), 329-336.
[48]
Rudolph, J. Targeting Cdc25 Phosphatases in Cancer Therapy.In: Checkpoint Controls and Targets in Cancer Therapy; Siddik, Z.H., Ed.; Springer Science, LLC, 2009, pp. 261-269.
[49]
Lavecchia, A.; Giovanni, C.D.; Novellino, E. Expert Opin. Ther. Pat., 2010, 20, 405-425.
[50]
Cao, S.; Forster, C.; Brisson, M.; Lazo, J.S.; Kingston, D.G.I. Halenaquinone and xestoquinone derivatives, inhibitors of Cdc25B phosphatase from a Xestospongia sp. Bioorg. Med. Chem., 2005, 13, 999-1003.
[51]
Park, J.I.; Kwak, J.Y. The role of peroxisome proliferatoractivated receptors in colorectal cancer. PPAR Res., 2012, 1-2.
[52]
Lavecchia, A.; Di Giovanni, C.; Pesapane, A.; Montuori, N.; Ragno, P.; Martucci, N.M.; Masullo, M.; De Vendittis, E.; Novellino, E. Discovery of new inhibitors of Cdc25B dual specificity phosphatases by structure-based virtual screening. J. Med. Chem., 2012, 55, 4142-4158.
[53]
Ge, Y.S.; Han, Q.Q.; Duan, W.; Zhang, J.Q.; Chen, K.; Wan, J.J.; Liu, Y.; Liu, D. Discovery of Cdc25A lead inhibitors with novel chemotype by virtual screening: Application of pharmacophore modeling based on training set with unique limited components. ChemMedChem, 2017, 438-447.
[54]
Ham, S.W.; Carr, B.I. Cell division cycle 25 (Cdc25) phosphatase inhibitors as antitumor agents. Drug Des. Rev, 2004, 1, 123-132.
[55]
Contour-Galcera, M.; Sidhu, A.; G. Prévost, D. Bigg, B. Ducommun. Pharmacol. Ther, 2007, 115, 1-12.
[56]
Kumar, R.; Singh, M. Tannins: Their adverse role in ruminant nutrition. J. Agric. Food Chem., 1984, 32(3), 447-453.
[57]
Masoumi-Ardakani, Y.; Mandegary, A.; Esmaeilpour, K.; Najafipour, H.; Sharififar, F.; Pakravanan, M.; Ghazvini, H. Chemical composition, anticonvulsant activity, and toxicity of essential oil and methanolic extract of. Elettaria cardamomum. Plant. Med, 2016, 1482-1486.
[58]
Bhattacharjee, B.; Chatterje, J. Identification of proapoptopic, anti-inflammatory, antiproliferative, anti-invasive and anti-angiogenic targets of essential oils in cardamom by dual reverse virtual screening and binding pose analysis. J. Cancer Prev., 2013, 14(6), 3735-3742.
[59]
Pulliah, T. Encyclopaedia of World Medicinal Plants; New Delhi Regency Publication, 2006, p. 492.
[60]
Kumar, D.; Kumar, S.; Grupta, J.; Arva, R.; Grupta, A. A review on chemical and biological properties of Cayratia trifolia Linn. (Vitaceae). Pharmacogn. Rev., 2011, 5, 184-188.
[61]
Gour, K.; Patni, V. Gas chromatography-massa spectrometry (gcms-qt 2010) analysis of methanolic extracts of Cayratia trifolia (L.) Domin (family: vitaceae): A plant from semi-arid regions of rajasthan, India. J. Liq. Chromatogr. Relat. Technol., 2012, 35, 1616-1626.
[62]
Gupta, A.; Bhardwaj, A.; Gupta, J.; Bagchi, A. Anti-implantation activity of petroleum ether extract of leaves of Cayratia trifolia Linn. On female albino rat. Asian Pac. J. Trop. Biomed., 2012, 2, S197-S199.
[63]
Perumal, P.C.; Sowmya, S.; Pratibha, P.; Vidya, B.; Anusooriya, P.; Starlin, S.; Vasanth, R.; Sharmila, D.J.S.; Gopalakrishnan, V.K. Identification of novel PPARγ agonist from GC-MS analysis of ethanolic extract of Cayratia trifolia (L.): A computational molecular simulation studies. J. Appl. Pharm. Sci., 2014, 4, 006-011.
[64]
Park, J.I.; Kwak, J.Y. The role of peroxisome proliferator-activated receptors in colorectal cancer. PPAR Res., 2012, 1-12.
[65]
Sikka, S.; Chen, L.; Sethi, G. PremKumar, A. Targeting PPARγ signaling cascade for the prevention and treatment of prostate cancer. PPAR Res., 2012, 1-14.
[66]
Akbarpour, V.; Hemmati, K.; Sharifani, M. Physical and chemical properties of pomegranate (Punica granatum L) fruit in maturation stage. Am.-Eurasian J. Agric. Environ. Sci., 2009, 6, 411-416.
[67]
Middha, S.K.; Usha, T.; Pande, V. Pomegranate peel attenuates hyperglycemic effects of alloxan-induced diabetic rats. EXCLI J., 2014, 13, 223-224.
[68]
Putnik, P.; Kresoja, Ž.; Bosiljkov, T.; Režek Jambrak, A.; Barba, F.J.; Lorenzo, J.M.; Roohinejad, S.; Granato, D.; Žuntar, I.; Bursać Kovačević, D. Comparing the effects of thermal and non-thermal technologies on pomegranate juice quality: A review. Food Chem., 2019, 279, 150-161.
[69]
Usha, T.; Goyal, A.K.; Lubna, S.; Prashanth, H.P.; Mohan, T.M.; Pande, V.; Middha, S.K. Identification of anti-cancer targets of eco-friendly waste Punica granatum peel by dual reverse virtual screening and binding analysis. Asian Pac. J. Cancer Prev., 2014, 15.
[70]
Brandão, H.N.; David, J.P.; Couto, R.D.; Nascimento, J.A.P.; David, J.M. Química e farmacologia de quimioterápicos antineoplásicos derivados de plantas. Quim. Nova, 2010, 33, 1359-1369.
[71]
Verpoorte, R. Methods for the structure elucidation of alkaloids. J. Nat. Prod., 1986, 49, 1-25.
[72]
Cordell, G.A.; Quinn-Beattie, M.L.; Farnsworth, N.R. The potential of alkaloids in drug discovery. Phytother. Res., 2001, 15, 183-205.
[73]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70, 461-477.
[74]
Duflos, A.; Kruczynski, A.; Barret, J.M. Novel aspects of natural and modified vinca alkaloids. Curr. Med. Chem. Anticancer Agents, 2002, 2, 55-70.
[75]
Sarno, S.; Moro, S.; Meggio, F.; Zagotto, G.; Dal Ben, D.; Ghisellini, P.; Battistutta, R.; Zanotti, G.; Pinna, L.A. Toward the rational design of protein kinase casein kinase-2 inhibitors. Pharmacol. Ther., 2002, 93, 159-168.
[76]
Qiu, S.; Sun, H.; Zhang, A.H.; Xu, H.Y.; Yan, G.L.; Han, Y.; Wang, X.J. Natural alkaloids: Basic aspects, biological roles, and future perspectives. Chin. J. Nat. Med., 2014, 12, 401-406.
[77]
Konkimalla, V.B.; Suhas, V.L.; Chandra, N.R.; Gebhart, E.; Efferth, T. Diagnosis and therapy of oral squamous cell carcinoma. Expert Rev. Anticancer Ther., 2007, 7, 317-329.
[78]
El-Sayed, K.A.; McChesney, J.D.; Halim, A.F.; Zaghloul, A.M.; Lee, I.S. A study of alkaloids in Veratrum viride Aiton. Int. J. Pharmacogn, 1996, 34, 161-173.
[79]
Kupchan, S.M.; Zimmerman, J.H.; Afonso, A. The alkaloids and taxonomy of Veratrum and related genera. Lloydia, 1961, 24, 1-26.
[80]
Agrawal, P.K.; Srivastava, S.K.; Gaffield, W. Alkaloids. In: Pelletier SW (ed) Chemical and biological perspectives, Springer, New York. 1991, 43-296.
[81]
Honerjager, P. Cardioactive substances that prolong the open state of sodium channels. Rev. Physiol. Biochem. Pharmacol., 1982, 92, 1-74.
[82]
Gaffield, W.; Keeler, R.F. Implication of C-5, C-6 unsaturation asa key structural factor in steroidal alkaloid-induced mammalianteratogenesis. Experientia, 1993, 9, 922-924.
[83]
Gaffield, W.; Keeler, R.F. Steroidal alkaloid teratogens: Molecular probes for investigation of craniofacial malformations. J. Toxicol. Toxin Rev., 1996, 15, 303-326.
[84]
Zhang, F.; McLellan, J.S.; Ayala, A.M.; Leahy, D.J.; Linhardt, R.J. Kinetic and structural studies on interactions between heparin or heparan sulfate and proteins of the Hedgehog signaling pathway. Biochemistry, 2007, 46, 3933-3941.
[85]
Heller, E.; Hurchla, M.A.; Xiang, J.; Su, X.; Chen, S.; Schneider, J.; Joeng, K.; Vidal, M.; Goldberg, L.; Deng, H.; Hornick, M.C.; Prior, J.L.; Piwnica-Worms, D.; Long, F.; Cagan, R.; Weilbaecher, K.N. Hedgehog signaling inhibition blocks growth of resistant tumors through effects on tumor microenvironment. Cancer Res., 2012, 72, 897-907.
[86]
Bar, E.E.; Chaudhry, A.; Farah, M.H.; Eberhart, C.G. Hedgehog signaling promotes medulloblastoma survival via Bc/II. Am. J. Pathol., 2006, 170, 347-355.
[87]
Kiselyov, A.S. Small molecule drug discovery. Targeting the hedgehog signaling pathway with small molecules. Anticancer. Agents Med. Chem., 2006, 6, 445-449.
[88]
Sanchez, P.; Ruizi, A.A. In vivo inhibition of endogenous brain tumors through systemic interference of Hedgehog signaling in mice. Mech. Dev., 2005, 122, 223-230.
[89]
Lauth, M.; Bergstroem, A.; Shimokawa, T.; Toftgard, R. Inhibition of GLI-mediated transcription and tumor cell growth by smallmolecule antagonists. Proc. Natl. Acad. Sci. USA, 2007, 104(20), 8455-8460.
[90]
Khanfar, M.A.; El Sayed, K.A. The Veratrum alkaloids jervine, veratramine, and their analogues as prostate cancer migration and proliferation inhibitors: biological evaluation and pharmacophore modeling. Med. Chem., 2013, 22(10), 4775-4786.
[91]
Kozielewicz, P.; Paradowska, K. ErićIwona, S.; Zloh, W. Insights into mechanism of anticancer activity of pentacyclic oxindole alkaloids of Uncaria tomentosa by means of a computational reverse virtual screening and molecular docking approach. Monatsh. Chem., 2014, 145(7), 1201-1211.
[92]
Saraswati, S.; Kanuajia, P.K.; Kumar, S.; Kumar, R.; Alhaider, A.A. Tylophorine, a phenanthraindolizidine alkaloid isolated from Tylophora indica exerts antiangiogenic and antitumor activity by targeting vascular endothelial growth factor receptor 2-mediated angiogenesis. Mol. Cancer, 2013, 12, 82.
[93]
Zhang, F.; McLellan, J.S.; Ayala, A.M.; Leahy, D.J.; Linhardt, R.J. Kinetic and structural studies on interactions between heparin or heparan sulfate and proteins of the Hedgehog signaling pathway. Biochemistry, 2007, 46, 3933-3941.
[94]
Lee, M.D.; Antczak, C.; Li, Y.; Sirotnak, F.M.; Bornmann, W.G.; Scheinberg, D.A. A new human peptide deformylase inhibitable by actinonin. Biochem. Biophys. Res. Commun., 2003, 312, 309-315.
[95]
Potter, S.M.; Baum, J.A.; Teng, H.; Stillman, R.J.; Shay, N.F.; Erdman, Jr, J.W. Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. Am. J. Clin. Nutr., 1998, 68, 1375-1379.
[96]
Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther., 2002, 96, 67-202.
[97]
Kinoshita, T.; Lepp, Z.; Kawai, Y.; Terao, J.; Chuman, H. An integrated database of flavonoids. Biofactors, 2006, 26, 179-188.
[98]
Scotti, L.; Mendonca, Junior, F.J.B.; Diogo, R.M.M.; da-Silva, M.S. PITTA, I.R.; Scotti, M.T. SAR, QSAR and docking of anticrrecancer flavonoids and variants: A review. Curr. Top. Med. Chem., 2013, 12, 2785-2809.
[99]
Liu, P.; Duan, J.A.; Hua, Y.Q.; Tang, Y.P.; Yao, X.; Su, S.L. J. Ethnopharmacol., 2011, 133(2), 591-597.
[100]
Su, S.L.; Yu, L.; Hua, Y.Q.; Duan, J.A.; Deng, H.S.; Tang, Y.P.; Lu, Y.; Ding, A.W. Screening and analyzing the potential bioactive components from Shaofu Zhuyu decoction, using human umbilical vein endothelial cell extraction and high-performance liquid chromatography coupled with mass spectrometry. Biomed. Chromatogr., 2008, 22(12), 1385-1392.
[101]
Liu, L.; Ma, H.; Tang, Y.; Chen, W.; Lu, Y.; Guo, J.; Duan, J.A. Discovery of estrogen receptor α modulators from natural compounds in Si-Wu-Tang series decoctions using estrogen-responsive MCF-7 breast cancer cells. Bioorg. Med. Chem. Lett., 2012, 22, 154-163.
[102]
Li, F.J.; Ye, L.; Lin, S.M.; Leung, L.K. Dietary flavones and flavonones display differential effects on aromatase (CYP19) transcription in the breast cancer cells MCF-7. Mol. Cell. Endocrinol., 2011, 344, 51-58.
[103]
Awasthi, M.; Singh, S.; Pandey, P.V.; Dwivedi, U.N. Molecular docking and 3DQSAR-based virtual screening of flavonoids as potential aromatase inhibitors against estrogen-dependent breast cancer. J. Biomol. Struct. Dyn., 2015, 33, 804-819.
[104]
Paoletta, S.; Steventon, G.B.; Wildeboer, D.; Ehrman, T.M.; Hylands, P.J.; Barlow, D.J. Screening of herbal constituents for aromatase inhibitory activity. Bioorg. Med. Chem., 2008, 16, 8466-8470.
[105]
Brueggemeier, R.W.; Hackett, J.C.; Diaz-Cruz, E.S. Aromatase inhibitors in the treatment of breast cancer. Endocr. Rev., 2005, 26, 331-345.
[106]
Xie, F.; Lang, Q.Y.; Zhou, M.; Zhang, H.X.; Zhang, Z.S.; Zhang, Y.F.; Wan, B.; Huang, Q.; Yu, L. The dietary flavonoid luteolin inhibits Aurora B kinase activity and blocks proliferation of cancer cells. Eur. J. Pharm. Sci., 2012, 46(5), 388-396.
[107]
Dar, A.A.; Goff, L.W.; Majid, S.; Berlin, J.; El-Rifai, W. Aurora kinase inhibitors–rising stars in cancer therapeutics? Mol. Cancer Ther., 2010, 9, 268-278.
[108]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31, 455-461.
[109]
Shinde, V.; Dhalwal, K.; Paradkar, A.R.; Mahadik, K.R.; Kadam, S.S. Evaluation of in vitro antioxidant activity of human placental extract. Pharmacologyonline, 2006, 3, 172-179.
[110]
Schinella, G.R.; Tournier, H.A.; Prieto, J.M.; Mordujovich de Buschiazzo, P.; Rios, J.L. Antioxidant activity of anti-inflammatory plant extracts. Life Sci., 2002, 70, 1023-1033.
[111]
Deryugina, E.I.; James, P.Q. Chapter 2. Chick embryo chorioallantoic membrane models to quantify angiogenesis induced by inflammatory and tumor cells or purified effector molecules. Methods Enzymol., 2008, 444, 21-41.
[112]
Somani, Z.; Bhattacharjee, R.; Chodankar, M.; Abhilash, N. In vitro antioxidant, anti-inflammatory, inovo anti-angiogenic activities and virtual screening of phyto constituents of Chromolena odorata. Int. J. Curr. Res., 2014, 6, 7766-7771.
[113]
Rungsardthong, K.; Mares-Samano, S.; Penny, J. Virtual screening of ABCC1 transporter nucleotidebinding domains as a therapeutic target in multidrug resistant cancer. Bioinformation, 2012, 8, 907-911.
[114]
Dong, X.; Zhou, X.; Jing, H.; Chen, J.; Liu, T.; Yang, B.; He, Q.; Hu, Y. Pharmacophore identification, virtual screening and biological evaluation of prenylated flavonoids derivatives as PKB/Akt1 inhibitors. Eur. J. Med. Chem., 2011, 46, 5949-5958.
[115]
Chappell, J. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu. Rev. Plant Biol., 1995, 46, 521-547.
[116]
Mcmorris, T.C. Discovery and development of sesquiterpenoid derived hydroxymethylacylfulvene: A new anticancer drug. Bioorg. Med. Chem., 1999, 7, 881-886.
[117]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[118]
Konstantinopoulou, M.; Karioti, A.; Skaltsas, S.; Skaltsa, H. Sesquiterpene lactones from anthemisa ltissima and their anti Helicobacter pylori activity. J. Nat. Prod., 2003, 66, 699-702.
[119]
Hamzaa, R.; Osman, N. Using of coffee and cardamom mixture to ameliorate oxidative stress induced in γ-irradiated rats. Biochem. Anal. Biochem., 2012, 1, 113-119.
[120]
Moteki, H.; Hibasami, H.; Yamada, Y.; Katsuzaki, H.; Imai, K.; Komiya, T. Specific induction of apoptosis by 1,8-cineole in two human leukemia cell lines, but not a in human stomach cancer cell line. Oncol. Rep., 2002, 9, 757-760.
[121]
Ernst, P.B.; Gold, B.D. The disease spectrum of Helicobacter pylori: The immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu. Rev. Microbiol., 2000, 54, 615-640.
[122]
Isik, A.; Okan, I.; Firat, D.; Yilmaz, B.; Akcakaya, A.; Sahin, M. A new prognostic strategy for gastric carcinoma: Albumin level and metastatic lymph node ratio. Minerva Chir., 2014, 69, 147-153.
[123]
Ahmad, A.; Govil, Y.; Frank, B.B. Gastric mucosa-associated lymphoid tissuelymphoma. Am. J. Gastroenterol., 2003, 98, 975-986.
[124]
Isik, A.; Alimoglu, O.; Okan, I.; Bas, G.; Turgut, H.; Sahin, M. Dieulafoy lesion in the stomach. Case Rep. Gastroenterol., 2008, 2(3), 469-473.
[125]
Legrain, P.; Strosberg, D. Protein interaction domain mapping for the selection of validated targets and lead compounds in the anti-infectious area. Curr. Pharm. Des., 2002, 8, 1189-1198.
[126]
Cremades, N.; Bueno, M.; Toja, M.; Sancho, J. Towards a new therapeutic target: Helicobacter pylori flavodoxin. Biophys. Chem., 2005, 115, 267-276.
[127]
Dawood, M.; Fatima, N.; Mumtaz, A.; Rehman, S.; Shazadi, I.; Mahmood, Q.; Muhammad, S.A. Molecular docking studies of sesquiterpenoids against Helicobacter pylori peptide deformylase. Br. J. Pharm. Res., 2016, 10(3), 1-7.
[128]
Mazel, D.; Pochet, S.; Marliere, P. Genetic characterization of polypeptide deformylase, a distinctive enzyme of eubacterial translation. EMBO J., 1994, 13(4), 914-923.
[129]
Lee, M.D.; Antczak, C.; Li, Y.; Sirotnak, F.M.; Bornmann, W.G.; Scheinberg, D.A. A new human peptide deformylase inhibitable by actinonin. Biochem. Biophys. Res. Commun., 2003, 312, 309-315.
[130]
Serero, A.; Giglione, C.; Sardini, A.; Martinez-Sanz, J.; Meinnel, T. An unusual peptide deformylase features in the human mitochondrial N-terminal methionine excision pathway. J. Biol. Chem., 2003, 278, 52953-52963.
[131]
Zhang, Y.S.; Talalay, P.; Cho, C.G.; Posner, G.H. A major inducer of anticarcinogenic protective enzymes from broccoli - isolation and elucidation of structure. Proc. Natl. Acad. Sci. USA, 1992, 89, 2399-2403.
[132]
Scotti, L.; Scotti, M.T.; Ishiki, H.M.; Ferreira, M.J.P.; Emerenciano, V.P.; Menezes, C.M.D.; Ferreira, E.I. Quantitative elucidation of the structure-bitterness relationship of cynaropicrin and grosheimin derivatives. Food Chem., 2007, 105, 77-83.
[133]
Schmidt, T.J. Structure-activity relationships of sesquiterpene lactones. Stud. Nat. Prod. Chem, 2006, 33, 309-392.
[134]
Schmidt, T.J.; Heilmann, J. Quantitative structure-cytotoxicity relationships of sesquiterpene lactones derived from partial charge (Q)-based fractional accessible surface area descriptors (Q_frASAs) quant. Struct.-. Act. Relationships, 2002, 21, 276-287.
[135]
Molecular Operating Environment (MOE), 2013.08; Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7. 2017.
[136]
Scotti, M.T.; Fernandes, M.B.; Ferreira, M.J.P.; Emerenciano, V.P. Quantitative structure-activity relationship of sesquiterpene lactones with cytotoxic activity. Bioorg. Med. Chem., 2007, 15, 2927-2934.
[137]
Fernandes, M.B.; Scotti, M.T.; Ferreira, M.J.P.; Emerenciano, V.P. Use of self-organizing maps and molecular descriptors to predict the cytotoxic activity of sesquiterpene lactones. Eur. J. Med. Chem., 2008, 43, 2197-2205.
[138]
Kode, S.R.L. Dragon (Software for Molecular Descriptor Calculation) version 7.0, 2016. Available at. http://chm.kode-solutions.net
[139]
Schomburg, C.; Schuehly, W.; Da-Costa, F.B.; Klempnauer, K.H.; Schmidt, T.J. Natural sesquiterpene lactones as inhibitors of Myb-dependent gene expression: Structure-activity relationships. Eur. J. Med. Chem., 2013, 63, 313-320.
[140]
Horiuchi, D.; Huskey, N.E.; Kusdra, L.; Wohlbold, L.; Merrick, K.A. Chemical-genetic analysis of cyclin dependent kinase 2 function reveals an important role in cellular transformation by multiple oncogenic pathways. Proc. Natl. Acad. Sci. USA, 2012, 109, E1091-E1027.
[141]
Ganatra, S.H.; Suchak, A.S. Inhibition studies of naturally occurring terpene based compounds with cyclin-dependent kinase 2 enzyme. J. Comput. Sci. Syst. Biol., 2012, 5, 68-73.
[142]
Harrigan, G.G.; Bolzani, V.S.; Gunatilaka, L.; Kingston, D.G.I. Kaurane and trachylobane diterpenes from Xylopia aethiopica. Phytochemistry, 1994, 36, 109-113.
[143]
Wang, L.; Li, D.; Wang, C.; Zhang, Y.; Xu, J. Recent progress in the development of natural ent-kaurane diterpenoids with anti-tumor activity. Mini Rev. Med. Chem., 2011, 11, 910-919.
[144]
Sul, Y.H.; Lee, M.S.; Cha, E.Y.; Thuong, P.T.; Khoi, N.M.; Song, I.S. An ent-kaurane diterpenoid from croton tonkinensis induces apoptosis by regulating AMP-activated protein kinase in SK-HEP1 human hepatocellular carcinoma cells. Biol. Pharm. Bull., 2013, 36, 158-164.
[145]
Hueso-Falcón, I.; Girón, N.; Velasco, P.; Amaro-Luis, J.M.; Ravelo, A.G.; De las Heras, B.; Hortelano, S.; Esteves-Braun, A. Synthesis and induction of apoptosis signaling pathway of ent-kaurane derivatives. Bioorg. Med. Chem., 2010, 18, 1724-1735.
[146]
Kar, S.; Palit, S.; Ball, W.B.; Das, P.K. Carnosic acid modulates Akt/IKK/NF-KB signaling by PP2A and induces intrinsic and extrinsic pathway mediated apoptosis in human prostate carcinoma PC-3 cells. Apoptosis, 2012, 17, 735-747.
[147]
Wu, D.G.; Yu, P.; Li, J.W.; Jiang, P.; Sun, J.; Wang, H.Z.; Zhang, L.D.; Wen, M.B.; Bie, P. Apigenin potentiates the growth inhibitory effects by IKK-β-mediated NF-kB activation in pancreatic cancer cells. Toxicol. Lett., 2014, 224, 157-164.
[148]
Yingkun, N.; Zhenyu, W.; Jing, L.; Xiuyun, L.; Huimin, Y. Stevioside protects LPS-induced acute lung injury in mice. Inflammation, 2012, 36, 242-250.
[149]
Xiang, Q.; Liu, Q.; Xu, L.; Qiao, Y.; Wang, Y.; Liu, X. Carnosic acid protects biomolecules from free radical-mediated oxidative damage in vitro. Food Sci. Biotechnol., 2013, 22, 1381-1388.
[150]
Scotti, L.; Ishiki, H.; Mendonça, Junior, F.J.B.; Santos, P.F.; Tavares, J.F. SILVA, M.S.; Scotti, M.T. Theoretical research into anticancer activity of diterpenes isolated from the paraiban flora. Nat. Prod. Commun., 2014, 9, 911-914.
[151]
Scotti, L.; Scotti, M.T.; Pasqualotto, K.F.M.; Bolzani, V.S.; Ferreira, E.I. Molecular physicochemical parameters predicting antioxidant activity of Brazilian natural products. Braz. J. Pharmacog, 2009, 19, 908-913.
[152]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexiblity. J. Comput. Chem., 2009, 16, 2785-2791.
[153]
Scotti, L.; Ferreira, E.I.; Silva, M.S.; Scotti, M.T. Chemometric studies on natural products as potential inhibitors of the NADH oxidase from Trypanosoma cruzi using the VolSurf approach. Molecules, 2010, 15, 7363-7377.
[154]
Sharaf, M.A.; Illman, D.L.; Kowalski, B.R. Chemometrics; John Wiley & Sons: New York, 1986, pp. 1-336.
[155]
Ooms, F. Molecular modeling and computer aided drug design. Examples of their applications in medicinal chemistry. Curr. Med. Chem., 2000, 7, 141-158.
[156]
Scotti, L.; Scotti, M.T.; Ishiki, H.; Mendonça, Junior, F.J.B.; Santos, P.F.; Tavares, J.F.; Silva, M.S. Prediction of anticancer activity of diterpenes isolated from the Paraiban flora through a PLS model and molecular surfaces. Nat. Prod. Commun., 2014, 9, 609-612.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 2
Year: 2019
Page: [154 - 171]
Pages: 18
DOI: 10.2174/1871520618666181119110934
Price: $58

Article Metrics

PDF: 43
HTML: 7

Special-new-year-discount