Synthesis and In Vitro Evaluation of Tetrahydroquinoline Derivatives as Antiproliferative Compounds of Breast Cancer via Targeting the GPER

Author(s): Oscar J. Zacarías-Lara , David Méndez-Luna , Gustavo Martínez-Ruíz , José R. García-Sanchéz , Manuel J. Fragoso-Vázquez* , Martiniano Bello , Elvia Becerra-Martínez , Juan B. García-Vázquez , José Correa-Basurto* .

Journal Name: Anti-Cancer Agents in Medicinal Chemistry

Volume 19 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Some reports have demonstrated the role of the G Protein-coupled Estrogen Receptor (GPER) in growth and proliferation of breast cancer cells.

Objective: In an effort to develop new therapeutic strategies against breast cancer, we employed an in silico study to explore the binding modes of tetrahydroquinoline 2 and 4 to be compared with the reported ligands G1 and G1PABA.

Methods: This study aimed to design and filter ligands by in silico studies determining their Lipinski's rule, toxicity and binding properties with GPER to achieve experimental assays as anti-proliferative compounds of breast cancer cell lines.

Results: In silico studies suggest as promissory two tetrahydroquinoline 2 and 4 which contain a carboxyl group instead of the acetyl group (as is needed for G1 synthesis), which add low (2) and high hindrance (4) chemical moieties to explore the polar, hydrophobic and hindrance effects. Docking and molecular dynamics simulations of the target compounds were performed with GPER to explore their binding mode and free energy values. In addition, the target small molecules were synthesized and assayed in vitro using breast cancer cells (MCF-7 and MDA-MB-231). Experimental assays showed that compound 2 decreased cell proliferation, showing IC50 values of 50µM and 25µM after 72h of treatment of MCF-7 and MDA-MB-231 cell lines, respectively. Importantly, compound 2 showed a similar inhibitory effect on proliferation as G1 compound in MDA-MB-231 cells, suggesting that both ligands reach the GPER-binding site in a similar way, as was demonstrated through in silico studies.

Conclusion: A concentration-dependent inhibition of cell proliferation occurred with compound 2 in the two cell lines regardless of GPER.

Keywords: Tetrahydroquinoline derivatives, GPER, breast cancer, virtual screening, molecular docking, cell growth inhibitor, antiproliferation, MCF-7, MDA-MB-231.

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin., 2015, 65, 5-29.
[2]
Alteri, R.; Barnes, C. Burke. Breast Cancer Facts & Figures. Am. Canc. Society, 2013, 1, 1-37.
[3]
Pruthi, S.; Brandt, K.R.; Degnim, A.C.; Goetz, M.P.; Perez, E.A.; Reynolds, C.A.; Schomberg, P.J.; Dy, G.K.; Ingle, J.N. A multidisciplinary approach to the management of breast cancer, Part1: Prevention and diagnosis. Mayo Clin. Proc., 2007, 82, 999-1012.
[4]
Tao, Z.; Shi, A.; Lu, C.; Song, T.; Zhang, Z. Zhao, J. Breast Cancer: Epidemiology and Etiology. Cell Biochem. Biophys., 2015, 72, 333.
[5]
Fuqua, S.A.W.; Gu, G.; Rechoum, Y. Estrogen receptor (ER) α mutations in breast cancer: hidden in plain sight. Breast Cancer Res. Treat., 2014, 144, 11.
[6]
Jindal, D.P.; Chattopadhaya, R.; Guleria, S.; Gupta, R. Synthesis and antineoplastic activity of 2-alkylaminoethyl derivatives of various steroidal oximes. Eur. J. Med. Chem., 2003, 38, 1025-1034.
[7]
Hall, J.M.; Couse, J.F.; Korach, K.S. The multifaceted mechanisms of estradiol and estrogen receptor signalling. J. Biol. Chem., 2001, 276, 36869-36872.
[8]
Ribi, K.; Luo, W.; Bernhard, J.; Francis, P.A.; Burstein, H.J.; Ciruelos, E.; Fleming, G.F. Adjuvant Tamoxifen Plus Ovarian Function Suppression Versus Tamoxifen Alone in Premenopausal Women with Early Breast Cancer: Patient-Reported Outcomes in the Suppression of Ovarian Function Trial. J. Clin. Oncol., 2016, 34, 1601-1610.
[9]
Ignatov, A.; Ignatov, T.; Roessner, A. Role of GPR30 in the mechanisms of tamoxifen resistance in breast cancer MCF-7 cells. Breast Cancer Res. Treat., 2010, 123, 87-96.
[10]
Fisher, B.; Costantino, J.P.; Wickerham, D.L.; Redmond, C.K.; Kavanah, M.; Cronin, W.M.; Vogel, V.; Robidoux, A.; Dimitrov, N.; Atkins, J. Tamoxifen for prevention of breast cancer: Report of the national surgical adjuvant breast and bowel project P-1 study. J. Natl. Cancer Inst., 1998, 90, 1371-1388.
[11]
Henderson, I.C.; Canellos, G.P. Cancer of the breast, the past decade. N. Engl. J. Med., 1980, 302, 78-90.
[12]
Prossnitz, E.; Barton, M. The G protein-coupled estrogen receptor GPER in health and disease. Nat. Rev. Endocrinol., 2011, 7, 715-726.
[13]
Pandey, D.P.; Lappano, R.; Albanito, L.; Madeo, A.; Maggiolini, M.; Picard, D. Estrogenic GPR30 signalling induces proliferation and migration of breast cancer cells through CTGF. EMBO J., 2009, 28, 523-532.
[14]
Thomas, P.; Pan, Y.; Filardo, E.J. Identity of an estrogen membrane receptor coupled to a G-protein in human breast cancer cells. Endocrinology, 2005, 146, 624-632.
[15]
Catalano, S.; Giordano, C.; Panza, S.; Chemi, F.; Bonofiglio, D.; Lanzino, M.; Rizza, P.; Romeo, F.; Fuqua, S.A.; Maggiolini, M.; Andò, S.; Barone, I. Tamoxifen through GPER upregulates aromatase expression: a novel mechanism sustaining tamoxifen-resistant breast cancer cell growth. Breast Cancer Res. Treat., 2014, 146, 273-285.
[16]
Kim, M.; Ma, E. Synthesis of 2- and 7- Substituted C19 Steroids Having a 1,4,6Triene or 1,4-Diene Structure and Their Cytotoxic Effects on T47D and MDA-MB231 Breast Cancer Cells. Molecules, 2010, 15, 4408-4422.
[17]
Woods, K.E.; Randolph, J.K.; Gewirtz, D.A. Antagonism between tamoxifen and doxorubicin in the MCF-7 human breast tumor cell line. Biochem. Pharmacol., 1994, 47, 1449-1452.
[18]
Giessrigl, B.; Schmidt, W.M.; Kalipciyan, M. Fulvestrant induces resistance by modulating GPER and CDK6 expression: implication of methyltransferases, deacetylases and the hSWI/SNF chromatin remodelling complex. Br. J. Cancer, 2013, 109, 2751-2762.
[19]
Lappano, R.; Santolla, M.F.; Pupo, M.; Sinicropi, M.S.; Caruso, A.; Rosano, C. MIBE acts as antagonist ligand of both estrogen receptor α and GPER in breast cancer cells. Breast Cancer Res., 2012, 14, R12.
[20]
Zimmerman, M.A.; Budish, R.A.; Kashyap, S.; Lindsey, S.H. GPER-novel membrane oestrogen receptor. Clin. Sci. (Lond.), 2016, 130(12), 1005-1016.
[21]
Ribeiro, M.P.C.; Santos, A.E.; Custódio, J.B.A. The activation of the G protein-coupled estrogen receptor (GPER) inhibits the proliferation of mouse melanoma K1735-M2 cells. Chem. Biol. Interact., 2017, 277, 176-184.
[22]
Rosano, C.; Lappano, R.; Santolla, M.F.; Ponassi, M.; Donadini, A.; Maggiolini, M. Recent advances in the rationale design of GPER ligands. Curr. Med. Chem., 2012, 19, 6199-6206.
[23]
Rosano, C.; Ponassi, M.; Santolla, M.F.; Pisano, A.; Felli, L.; Vivacqua, A.; Maggiolini, M.; Lappano, R. Macromolecular Modelling and Docking Simulations for the Discovery of Selective GPER Ligands. AAPS J., 2016, 18, 41-46.
[24]
Dennis, M.K.; Field, A.S.; Burai, R.; Ramesh, C.; Petrie, W.K.; Bologa, C.G. Identification of a GPER/GPR30 antagonist with improved estrogen receptor counterselectivity. J. Steroid Biochem. Mol. Biol., 2011, 127, 358-366.
[25]
Burai, R.; Ramesh, C.; Shorty, M.; Curpan, R.; Bologa, C.; Sklar, L.A.; Oprea, T.; Prossnitz, E.R.; Arterburn, J.B. Highly efficient synthesis and characterization of the GPR30-selective agonist G-1 and relatedtetrahydroquinoline analogs. Org. Biomol. Chem., 2010, 8(9), 2252-2259.
[26]
Bologa, C.G.; Revankar, C.M.; Young, S.M. Virtual and biomolecular screening converge on a selective agonist for GPR30. Nat. Chem. Biol., 2006, 2, 207-212.
[27]
Megan, K.D.; Ritwik, B.; Chinnasamy, R. In vivo Effects of a GPR30 Antagonist. Nat. Chem. Biol., 2009, 5, 421-427.
[28]
Ramesh, C.; Nayak, T.K.; Burai, R.; Dennis, M.K.; Hathaway, H.J.; Sklar, L.A. Synthesis and characterization of iodinated tetrahydroquinolines targeting the G protein-coupled estrogen receptor GPR30. J. Med. Chem., 2010, 53, 1004-1014.
[29]
Vidad, A.R.; Macaspac, S.; Ng, H.L. Locating the ligand binding sites for the G-protein coupled estrogen receptor (GPER) using combined information from docking and sequence conservation. bioRxiv, 2016, 061051.
[30]
Méndez-Luna, D.; Martínez-Archundia, M.; Maroun, R.C. Deciphering the GPER/GPR30-agonist and antagonist’s interactions using molecular modeling studies, molecular dynamics, and docking simulations. J. Biomol. Struct. Dyn., 2015, 14, 1-12.
[31]
Méndez-Luna, D.; Bello, M.; Correa-Basurto, J. Understanding the molecular basis of agonist/antagonist mechanism of GPER/GPR30 through structural and energetic analyses. J. Steroid Biochem. Mol. Biol., 2016, 158, 104-116.
[32]
Bruno, A.; Aiello, F.; Costantino, G.; Radi, M. Homology Modeling, Validation and Dynamics of the G Protein-coupled Estrogen Receptor 1 (GPER-1). Mol. Inform., 2016, 35, 333-339.
[33]
Martínez-Muñoz, A.; Prestegui-Martel, B.; Méndez-Luna, D.; Fragoso-Vázquez, M.J.; García-Sánchez, J.R.; Bello, M.; Bashir, M.; Martínez-Archundia, M.; Chávez-Blanco, A.; Dueñas-González, A.; Mendoza-Lujambio, I.; Trujillo-Ferrara, J.G.; Correa-Basurto, J. Selection of G1PABA as a GPER1 ligand compared to phenol red via a ligand-based virtual screening coupled to molecular dynamics simulations and its anti-proliferative effects on breast cancer cells. Anti-Canc. Agents Med. Chem.,2018.
[34]
ACD/ChemSketch, version 14.01; Advanced Chemistry Development, Inc.: Toronto, ON, Canada, 2012.
[35]
GaussView. Version 5, Dennington R, Keith T, Millam J; Semichem Inc.: Shawnee Mission, KS, 2009.
[36]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 16, 2785-2791.
[37]
Lomize, M.A.; Lomize, A.L.; Pogozheva, I.D.; Mosberg, H.I. OPM: Orientations of Proteins in Membranes database. Bioinformatics, 2006, 22(5), 623-625.
[38]
Jo, S.; Kim, T.; Im, W. Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS One, 2007, 2, e880.
[39]
Case, D.A.; Cheatham, T.E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26, 1668-1688.
[40]
Dickson, C.J.; Madej, B.D.; Skjevik, Å.A.; Betz, R.M.; Teigen, K.; Gould, I.R.; Walker, R.C. Lipid14: The amber lipid force field. J. Chem. Theory Comput., 2014, 10, 865-879.
[41]
Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput., 2015, 11, 3696-3713.
[42]
Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25, 1157-1174.
[43]
Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N-log(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98, 10089-10092.
[44]
Van-Gunsteren, W.F.; Berendsen, H.J.C. Algorithms for macromolecular dynamics and constraint dynamics. Mol. Phys., 1977, 34, 1311-1327.
[45]
Miller, B.R.; McGee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput., 2012, 8, 3314-3321.
[46]
Gohlke, H.D.A. Case, Converging free energy estimates: MMPB(GB)SA studieson the protein-protein complex Ras-Raf. J. Comput. Chem., 2004, 25, 238-250.
[47]
Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res., 2000, 33(12), 889-897.
[48]
Onufriev, D.; Bashford, D.A. Case, Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins, 2004, 55, 383-394.
[49]
Megan, K.D.; Angela, S.F.; Burai, R. Identification of a GPER/GPR30 antagonist with improved estrogen receptor counter selectivity. J. Steroid Biochem. Mol. Biol., 2011, 127, 358-366.
[50]
Santolla, M.F.; De-Francesco, E.M.; Lappano, R.; Rosano, C.; Abonante, S.; Maggiolini, M. Niacin activates the G protein estrogen receptor (GPER)-mediated signaling. Cell. Signal., 2014, 26(7), 1466-1475.
[51]
Aiello, F.; Carullo, G.; Giordano, F.; Spina, E.; Nigro, A.; Garofalo, A.; Tassini, S.; Costantino, G.; Vincetti, P.; Bruno, A.; Radi, M. Identification of Breast Cancer Inhibitors Specific for G Protein-Coupled Estrogen Receptor (GPER)-Expressing Cells. ChemMedChem, 2017, 12, 1279-1285.
[52]
Sinicropi, M.F.; Lappano, R.; Caruso, A.; Santolla, M.F.; Pisano, A.; Rosano, C.; Capasso, A.; Panno, A.; Lancelot, J.C.; Rault, S.; Saturnino, C.; Maggiolini, M. (6-Bromo-1,4-dimethyl-9H-carbazol-3-yl-methylene)-hydrazine (Carbhydraz) Acts as a GPER Agonist in Breast Cancer Cells. Curr. Top. Med. Chem., 2015, 1035-1042.
[53]
Arnatt, C.K.; Zhang, Y. G protein‐Coupled Estrogen Receptor (GPER) Agonist Dual Binding Mode Analyses Toward Understanding of Its Activation Mechanism: A Comparative Homology Modeling Approach. Mol. Inform., 2013, 32, 647-658.
[54]
Sela, I.; Golan, G.; Strajbl, M.; Rivenzon-Segal, D.; Bar-Haim, S.; Bloch, I.; Inbal, B.; Shitrit, A.; Ben-Zeev, E.; Fichman, M.; Markus, Y.; Marantz, Y.; Senderowitz, H.; Kalid, O. G Protein Coupled Receptors - in silico Drug Discovery and Design. Curr. Top. Med. Chem., 2010, 10, 638-656.
[55]
Kufareva, I.; Rueda, M.; Katritch, V. Status of GPCR Modeling and Docking as Reflected by Community-wide GPCR Dock. Assess. Struc., 2010, 19, 1108-1126.
[56]
Michino, M.; Abola, E. GPCR Assessment Participants, Community-wide assessment of GPCR structure modeling and docking understanding. R.C. Stevens. Nat. Rev. Drug Discov., 2009, 8, 455-463.
[57]
Holliday, D.L.; Speirs, V. Choosing the right cell line for breast cancer research. Breast Cancer Res., 2011, 13(4), 215.
[58]
Yersal, O.; Barutca, S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J. Clin. Oncol., 2014, 5(3), 412-424.
[59]
Du, G.Q.; Zhou, L.; Chen, X.Y.; Wan, X.P.; He, Y.Y. The G protein-coupled receptor GPR30 mediates the proliferative and invasive effects induced by hydroxytamoxifen in endometrial cancer cells. Biochem. Biophys. Res. Commun., 2012, 420(2), 343-349.
[60]
Skrzypczak, M.; Schüler, S.; Lattrich, C.; Ignatov, A.; Ortmann, O.; Treeck, O. G protein-coupled estrogen receptor (GPER) expression in endometrial adenocarcinoma and effect of agonist G-1 on growth of endometrial adenocarcinoma cell lines. Steroids, 2013, 78, 1087-1091.
[61]
Wang, C.; Lv, X.; He, C.; Hua, G.; Tsai, M.Y.; Davis, J.S. The G-protein-coupled estrogen receptor agonist G-1 suppresses proliferation of ovarian cancer cells by blocking tubulin polymerization. Cell Death Dis., 2013, 4, e869.
[62]
Wang, C.; Lv, X.; Jiang, C.; Davis, J.S. The putative G-protein coupled estrogen receptor agonist G-1 suppresses proliferation of ovarian and breast cancer cells in a GPER-independent manner. Am. J. Transl. Res., 2012, 390-402.
[63]
Holm, A.; Grände, P.O.; Ludueña, R.F.; Olde, B.; Prasad, V.; Leeb-Lundberg, L.M. The G protein-coupled oestrogen receptor 1 agonist G-1 disrupts endothelial cell microtubule structure in a receptor-independent manner. Mol. Cell. Biochem., 2012, 366, 239-249.
[64]
Speth, Z.; Islam, T.; Banerjee, K.; Resat, H. EGFR signaling pathways are wired differently in normal 184A1L5 human mammary epithelial and MDA-MB-231 breast cancer cells. J. Cell Commun. Signal., 2017, 11, 341-356.
[65]
Ariazi, E.A.; Brailoiu, E.; Yerrum, S.; Shupp, H.A.; Slifker, M.J.; Cunliffe, H.E.; Black, M.A.; Donato, A.L.; Arterburn, J.B.; Oprea, T.I.; Prossnitz, E.R. The G Protein-Coupled Receptor GPR30 Inhibits Proliferation of Estrogen Receptor-Positive Breast Cancer Cells. Cancer Res., 2010, 70, 1184-1194.
[66]
Reynolds, D.S.; Tevis, K.M.; Blessing, W.A.; Colson, Y.L.; Zaman, M.H.; Grinstaf, M.W. Breast Cancer Spheroids Reveal a Diferential Cancer Stem Cell Response to Chemotherapeutic Treatment. Sci. Rep., 2017, 7, 10382.
[67]
Dydensborg, A.B.; Rose, A.A.; Wilson, B.J.; Grote, D.; Paquet, M. GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis. Oncogene, 2009, 28, 2634-2642.
[68]
Harrison, H.; Simoes, B.M.; Rogerson, L.; Howell, S.J.; Landberg, G.; Clarke, R.B. Oestrogen increases the activity of oestrogen receptor negative breast cancer stem cells through paracrine EGFR and Notch signalling. Breast Cancer Res., 2013, 15, R21.
[69]
Simoes, B.M.; Piva, M.; Iriondo, O.; Comaills, V.; Lopez-Ruiz, J.A.; Zabalza, I.; Mieza, J.A.; Acinas, O.; Vivanco, M.D. Effects of estrogen on the proportion of stem cells in the breast. Breast Cancer Res. Treat., 2011, 129, 23-25.
[70]
Nicolini, A.; Ferrari, P.; Fini, M.; Borsari, V.; Fallahi, P.; Antonelli, A.; Berti, P.; Carpi, A.; Miccoli, P. Stem cells: Their role in breast cancer development and resistance to treatment. Curr. Pharm. Biotechnol., 2011, 12, 196-205.
[71]
Fillmore, C.M.; Kuperwasser, C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res., 2008, 10, R25.
[72]
Bao, B.; Ahmad, A.; Azmi, A.S.; Ali, S.; Sarkar, F.H. Cancer Stem Cells (CSCs) and Mechanisms of Their Regulation: Implications for Cancer Therapy. Curr. Prot. Pharmacol.,2013, 14, Unit-14.25.
[73]
Pozo-Guisado, E.; Álvarez-Barrientos, A.; Mulero-Navarro, S.; Santiago-Josefat, B.; Fernández-Salguero, P.M. The antiproliferative activity of resveratrol results in apoptosis in MCF-7 but not in MDA-MB-231 human breast cancer cells: cell-specific alteration of the cell cycle. Biochem. Pharmacol., 2002, 64, 1375-1386.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 6
Year: 2019
Page: [760 - 771]
Pages: 12
DOI: 10.2174/1871520618666181119094144
Price: $58

Article Metrics

PDF: 23
HTML: 2