iTRAQ-Based Quantitative Proteomic Analysis of Pseudostellaria heterophylla from Geo-Authentic Habitat and Cultivated Bases

Author(s): Yujiao Hua, Chengcheng Wang, Shengnan Wang, Zixiu Liu, Xunhong Liu*, Lisi Zou, Wei Gu, Yiyuan Luo, Juanxiu Liu.

Journal Name: Current Proteomics

Volume 16 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Pseudostellaria heterophylla is an important tonic traditional Chinese medicine. However, the molecular changes in the herb from geo-authentic habitat and cultivated bases remain to be explored.

Objective: The purpose of this research was to study differences in P. heterophylla from geo-authentic habitat and cultivated bases.

Methods: High-throughput technologies of transcriptomic and proteomic were used to identify proteins. Isobaric Tags for Relative and Absolute Quantification (iTRAQ) MS/MS has been utilized to evaluate changes in P. heterophylla from geo-authentic habitat and cultivated bases.

Results: In this study, a total of 3775 proteins were detected, and 140 differentially expressed proteins were found in P. heterophylla from geo-authentic habitat and cultivated bases. 44 significantly differential expressed proteins were identified based on functional analysis classified into nine categories. Five differentially expressed proteins were confirmed at the gene expression level by Quantitative realtime PCR. Catabolic metabolism, carbohydrate metabolism, and response to stress of oxidoreductases and transferases in P. heterophylla from geo-authentic habitat were stronger than in those from cultivated bases, but protein folding and response to stress of heat shock proteins, isomerases, rubisco large subunit-binding proteins, chaperone proteins, and luminal-binding proteins in herbs from cultivated bases were more active. ADG1 and TKTA could be the critical proteins to regulate sucrose; MFP2 and CYS may be the crucial proteins that control the metabolism of fatty acids and amino acids.

Conclusion: These results will provide the basic information for exploring the differences in secondary metabolites in P. heterophylla from geo-authentic habitat and cultivated bases and the protein mechanism of its quality formation.

Keywords: Pseudostellaria heterophylla, geo-authentic habitat, cultivated bases, proteomics, transcriptomics, iTRAQ.

[1]
Liu, X.H.; Han, L.; Wang, L.J.; Fu, X.S. Study on quality standards of Pseudostellaria heterophylla. Chin. Pharm., 2010, 21(19), 1769-1771.
[2]
Tan, N.H.; Zhou, J.; Chen, C.X.; Zhao, S.X. Cyclopeptides from the roots of Pseudostellaria heterophylla. Phytochemistry, 1993, 32(5), 1327-1330.
[3]
Morita, H.; Kayashita, T.; Kobata, H.; Gon, A.; Takeya, K.; Itokaw, H. Pseudostellarins A-C, new tyrosinase inhibitory cyclic peptides from Pseudostellaria heterophylla. Tetrahedron, 1994, 50(23), 6797-6804.
[4]
Morita, H.; Kayashita, T.; Kobata, H.; Gonda, A.; Takeya, K.; Itokawa, H. Pseudostellarins D-F, new tyrosinase inhibitory cyclic peptides from Pseudostellaria heterophylla. Tetrahedron, 1994, 50(33), 9975-9982.
[5]
Morita, H.; Kobata, H.; Kayashita, T.; Itokawa, H. Pseudostellarin G, a new tyrosinase inhibitory cyclic octapeptide from Pseudostellaria heterophylla. Tetrahedron, 1994, 35(21), 3563-3564.
[6]
Morita, H.; Kayashita, T.; Takeya, K.; Itokawa, H. Cyclic peptides from higher plants, Part 15. Pseudostellarin H, a new cyclic octapeptide from Pseudostellaria heterophylla. J. Nat. Prod., 1995, 58(6), 743-947.
[7]
Liu, X.H.; Min, Y.M.; Wang, Y.X. Study on the polysaccharide of Pseudostellaria heterophylla. Chin. Tradit. Herbal Drugs, 1993, 24(3), 119-121.
[8]
Zhang, J.; Li, Y.B.; Wang, D.W.; Yin, Z.Q.; Duan, J.A. Study on the chemical constituents of Pseudostellaria heterophylla. China J. Chin. Materia Medica, 2007, 32(11), 1051-1053.
[9]
Wang, Z.X.; Xu, R.X.; Zhang, G.G.; Qiu, F.; Su, X.F.; Zhang, X.Q.; Chen, Y.J.; Yao, X.S. Study on the chemical constituents of Pseudostellaria heterophylla (IV). Chin. J. Med. Chem., 1992, 2(3), 65-67.
[10]
Shen, X.C.; Tao, L.; Bo, S.; Gan, H.R.; Duan, J.A. Ameliorated effects of radix Pseudostellariaeon oxidative stress in rat chronic heart failure induced by acute cardiac infarction. West China J. Pharm. Sci., 2008, 23(4), 413-416.
[11]
Sheng, R.; Xu, X.X.; Tang, Q.; Bian, D.F.; Li, Y.; Qian, C.; He, X.; Gao, X.H.; Pan, R.; Wang, C.; Luo, Y.B.; Xia, Y.F.; Dai, Y. Polysaccharide of Radix pseudostellariae improves chronic fatigue syndrome induced by poly I:C in mice. Evid. Based Complement. Alternat. Med., 2011, 8(4), 1-10.
[12]
Pang, W.; Lin, S.; Dai, Q.; Zhang, H.; Hu, J. Antitussive activity of Pseudostellaria heterophylla (Miq.) Pax extracts and improvement in lung function via adjustment of multi-cytokine levels. Molecules, 2011, 16(4), 3360-3370.
[13]
Zhang, C.L.; Zheng, X.X. Effects of polysaccharides from Pseudostellaria heterophylla on exercise endurance capacity and oxidative stress in forced swimming rats. Sci. Res. Essays, 2011, 6(11), 2360-2365.
[14]
Shen, X.C.; Tao, L.; Bo, S.; Gan, H.R.; Duan, J.A. A meliorated effects of radix Pseudostellariaeon oxidative stress in rat chronic heart failure induced by acute cardiac infarction. West Chin. J. Pharm. Sci., 2008, 23(4), 413-416.
[15]
Fu, X.S.; Liu, X.H.; Xu, H.; Zhou, Y.Z.; Chen, F. Research status and trends of Pseudostellariae radix. Chin. J. New Drugs, 2012, 21(7), 757-760.
[16]
Sheng, R.; Xu, X.; Tang, Q.; Bian, D.; Li, Y.; Qian, C.; He, X.; Gao, X.; Pan, R.; Wang, C.; Luo, Y.; Xia, Y.; Dai, Y. Polysaccharide of radix pseudostellariae improves chronic fatigue syndrome induced by poly I:C in mice. Evid. Based Complement. Alternat. Med., 2011, 2011, 840516.
[17]
Fu, X.S.; Liu, X.H.; Xu, H.; Zhou, Y.Z.; Chen, F. Effect of Pseudostellaria polysaccharides in diabetic mice by alloxan. Med. Pharm. J., 2010, 14(5), 521-522.
[18]
Pang, W.; Lin, S.; Dai, Q.; Zhang, H.; Hu, J. Antitussive activity of Pseudostellaria heterophylla (Miq.) Pax extracts and improvement in lung function via adjustment of multi-cytokine levels. Molecules, 2011, 16(4), 3360-3370.
[19]
Qin, M.J.; Yu, Y.B.; Huang, W.Z.; Zhu, Y.; Yan, L.; Pu, S.B. Quality assay of Radix pseudostellariae collected from different regions. Chin. Med. J. Res. Prac., 2005, 19(5), 29-32.
[20]
Shi, X.M.; Jian, W.W.; Wang, Z.Z.; Li, H. Overview of cultivation technology of Pseudostellaria heterophylla. Strait. Pharm. J., 2013, 25(11), 15-18.
[21]
Hua, Y.J.; Wang, S.N.; Liu, Z.X.; Liu, X.H.; Zou, L.S.; Gu, W.; Hou, Y.; Ma, Y.; Luo, Y.Y.; Liu, J.X. iTRAQ-based quantitative proteomic analysis of cultivated Pseudostellaria heterophylla and its wild-type. J. Proteomics, 2016, 29(139), 13-25.
[22]
Wang, L.; Liang, W.; Xing, J.; Tan, F.; Chen, Y.; Huang, L.; Cheng, C.L.; Chen, W. Dynamics of chloroplast proteome in salt-stressed mangrove Kandelia candel (L.) Druce. J. Proteome Res., 2013, 12(11), 5124-5136.
[23]
Ge, X.; Zhang, C.; Wang, Q.; Yang, Z.; Wang, Y.; Zhang, X.; Wu, Z.; Hou, Y.; Wu, J.; Li, F. iTRAQ protein profile differential analysis between somatic globular and cotyledonary embryos reveals stress, hormone, and respiration involved in increasing plantlet regeneration of Gossypium hirsutum L. J. Proteome Res., 2015, 14(1), 268-278.
[24]
Chu, P.; Yan, G.X.; Yang, Q.; Zhai, L.N.; Zhang, C.; Zhang, F.Q.; Guan, R.Z. iTRAQ-based quantitative proteomics analysis of Brassica Napus leaves reveals pathways associated with chlorophyll deficiency. J. Proteomics, 2015, 113, 244-259.
[25]
Zeng, J.; Liu, Y.; Liu, W.; Liu, X.; Liu, F.; Huang, P.; Zhu, P.; Chen, J.; Shi, M.; Guo, F.; Cheng, P.; Liao, Y.; Gong, J.; Zhang, H.M.; Wang, D.; Guo, A.Y. Integration of transcriptome, proteome and metabolism data reveals the alkaloids biosynthesis in Macleaya cordata and Macleaya microcarpa. PLoS One, 2013, 8(1), e53409.
[26]
Sundaramurthi, H.; Manavalan, A.; Ramachandran, U.; Hu, J.M.; Sze, S.K.; Heese, K. Phenotyping of tianma-stimulated differentiated rat neuronal b104 cells by quantitative proteomics. Neurosignals, 2012, 20(1), 48-60.
[27]
Velasco, R.; Zharkikh, A.; Troggio, M.; Cartwright, D.A.; Cestaro, A.; Pruss, D.; Pindo, M.; Fitzgerald, L.M.; Vezzulli, S.; Reid, J.; Malacarne, G.; Iliev, D.; Coppola, G.; Wardell, B.; Micheletti, D.; Macalma, T. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One, 2007, 2(12), e1326.
[28]
Martinez-Esteso, M.J.; Vilella-Anton, M.T.; Pedreno, M.A.; Valero, M.L.; Bru-Martinez, R. iTRAQ-based protein profiling provides insights into the central metabolism changes driving grape berry development and ripening. BMC Plant Biol., 2013, 13, 167.
[29]
Gambino, G.; Perrone, I.; Gribaudo, I. A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem. Anal., 2008, 19(6), 520-525.
[30]
Hua, Y.J.; Wang, S.N.; Liu, Z.X.; Liu, X.H.; Zou, L.S.; Gu, W.; Luo, Y.Y.; Liu, J.X. Transcriptomic analysis of Pseudostellariae radix from different fields using RNA-seq. Gene, 2016, 588(1), 7-18.
[31]
Wang, X.; Li, X.; Deng, X.; Han, H.; Shi, W.; Li, Y. A protein extraction method compatible with proteomic analysis for the euhalophyte Salicornia europaea. Electrophoresis, 2007, 28(21), 3976-3987.
[32]
Xiao, O.G.; Jing, J.X.; Xiao, H.C.; Hao, C.; Hong, Q. iTRAQ-based protein profiling and fruit quality changes at different development stages of oriental melon. BMC Plant Biol., 2017, 17(1), 28.
[33]
Lv, L.; Wang, Y.; Feng, W.; Hernandez, J.A.; Huang, W.; Zheng, Y.; Zhou, X.; Lv, S.; Chen, Y.; Yuan, Z.G. iTRAQ-based differential proteomic analysis in Mongolian gerbil brains chronically infected with Toxoplasma gondii. J. Proteomics, 2017, 8(160), 74-83.
[34]
Wisniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods, 2009, 6(5), 359-362.
[35]
Kambiranda, D.; Katam, R.; Basha, S.M.; Siebert, S. iTRAQ-based quantitative proteomics of developing and ripening muscadine grape berry. J. Proteome Res., 2014, 13(2), 555-569.
[36]
Zhu, M.; Dai, S.; McClung, S.; Yan, X.; Chen, S. Functional differentiation of Brassica Napus guard cells and mesophyll cells revealed by comparative proteomics. Mol. Cell. Proteomics, 2009, 8(4), 752-766.
[37]
Kambiranda, D.; Katam, R.; Basha, S.M.; Siebert, S. iTRAQ-based quantitative proteomics of developing and ripening muscadine grape berry. J. Proteome Res., 2014, 13(2), 555-569.
[38]
Zhao, Y.L.; Zhou, Y.H.; Chen, J.Q.; Huang, Q.Y.; Han, Q.; Liu, B.; Cheng, G.D.; Li, Y.H. Quantitative proteomic analysis of sub-MIC erythromycin inhibiting biofilm formation of S. suis in vitro. J. Proteomics, 2015, 26(116), 1-14.
[39]
Tian, Q.; Stepaniants, S.B.; Mao, M.; Weng, L.; Feetham, M.C.; Doyle, M.J.; Yi, E.C.; Dai, H.; Thorsson, V.; Eng, J.; Goodlett, D.; Berger, J.P.; Gunter, B.; Linseley, P.S.; Stoughton, R.B.; Aebersold, R. Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol. Cell. Proteomics, 2004, 3(10), 960-969.
[40]
Zeng, G.Q.; Zhang, P.F.; Deng, X.; Yu, F.L.; Li, C.; Xu, Y.; Yi, H.; Li, M.Y.; Hu, R.; Zuo, J.H.; Li, X.H.; Wan, X.X.; Qu, J.Q.; He, Q.Y.; Li, J.H.; Ye, X. Identification of candidate biomarkers for early detection of human lung squamous cell cancer by quantitative proteomics. Mol. Cell. Proteomics, 2012, 11(6), M111 013946.
[41]
Beyer, A.; Hollunder, J.; Nasheuer, H.P.; Wilhelm, T. Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale. Mol. Cell. Proteomics, 2004, 3(11), 1083-1092.
[42]
Tse, W.K.; Sun, J.; Zhang, H.; Lai, K.P.; Gu, J.; Qiu, J.W.; Wong, C.K. iTRAQ-based quantitative proteomic analysis reveals acute hypo-osmotic responsive proteins in the gills of the Japanese eel (Anguilla japonica). J. Proteomics, 2014, 105, 133-1343.
[43]
Li, Q.; Zhang, S.; Wang, J. Transcriptomic and proteomic analyses of embryogenic tissues in Picea balfouriana treated with 6-benzylaminopurine. Physiol. Plant., 2015, 154(1), 95-113.
[44]
Wei, Q.Y.; Meng, X.; Wang, Y.Y. The application of proteomics in genuine traditional Chinese medicine. Lisheizhen Med. Mater. Med. Res., 2012, 23(2), 457-459.
[45]
Parsell, D.A.; Lindquist, S. The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annu. Rev. Genet., 1993, 27, 437-496.
[46]
Feder, M.E.; Hofmann, G.E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol., 1999, 61, 243-282.
[47]
Goes, F.S.; Martin, J. Hsp90 chaperone complexes are required for the activity and stability of yeast protein kinases Mik1, Wee1 and Swe1. Eur. J. Biochem., 2001, 268(8), 2281-2289.
[48]
Song, X.H.; Zhao, F.Y. Research progress on catalase in plants. J. Anhui Agri. Sci., 2007, 35(31), 9824-9827.
[49]
Bailly, C.; Leymarie, J.; Lehner, A.; Rousseau, S.; Come, D.; Corbineau, F. Catalase activity and expression in developing sunflower seeds as related to drying. J. Exp. Bot., 2004, 55(396), 475-483.
[50]
Garratt, L.C.; Janagoudar, B.S.; Lowe, K.C.; Anthony, P.; Power, J.B.; Davey, M.R. Salinity tolerance and antioxidant status in cotton cultures. Free Radic. Biol. Med., 2002, 33(4), 502-511.
[51]
Dixit, V.; Pandey, V.; Shyam, R. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J. Exp. Bot., 2001, 52(358), 1101-1109.
[52]
Rylott, E.L.; Eastmond, P.J.; Gilday, A.D.; Slocombe, S.P.; Larson, T.R.; Baker, A.; Graham, I.A. The Arabidopsis thaliana multifunctional protein gene (MFP2) of peroxisomal beta-oxidation is essential for seedling establishment. Plant J., 2006, 45(6), 930-941.
[53]
Bahaji, A.; Li, J.; Ovecka, M.; Ezquer, I.; Munoz, F.J.; Baroja-Fernandez, E.; Romero, J.M.; Almagro, G.; Montero, M.; Hidalgo, M.; Sesma, M.T.; Pozueta-Romero, J. Arabidopsis thaliana mutants lacking ADP-glucose pyrophosphorylase accumulate starch and wild-type ADP-glucose content: Further evidence for the occurrence of important sources, other than ADP-glucose pyrophosphorylase, of ADP-glucose linked to leaf starch biosynthesis. Plant Cell Physiol., 2011, 52(7), 1162-1176.
[54]
Wang, X.F.; Yang, L.J.; Dong, X.Y.; Li, Z.X.; Jiao, C.J. Advancement in research on synthesis and rrgulation of cysteine in plants. Plant Physiol. J, 2011, 47(1), 37-48.
[55]
Noji, M.; Saito, K. Molecular and biochemical analysis of serine acetyltransferase and cysteine synthase towards sulfur metabolic engineering in plants. Amino Acids, 2002, 22(3), 231-243.
[56]
Wikner, C.; Nilsson, U.; Meshalkina, L.; Udekwu, C.; Lindqvist, Y.; Schneider, G. Identification of catalytically important residues in yeast transketolase. Biochemistry, 1997, 36(50), 15643-15649.
[57]
Gothel, S.F.; Marahiel, M.A. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell. Mol. Life Sci., 1999, 55(3), 423-436.
[58]
Schiene-Fischer, C.; Yu, C. Receptor accessory folding helper enzymes: the functional role of peptidyl prolyl cis/trans isomerases. FEBS Lett., 2001, 495, 1-6.
[59]
Valente, M.A.; Faria, J.A.; Soares-Ramos, J.R.; Reis, P.A.; Pinheiro, G.L.; Piovesan, N.D.; Morais, A.T.; Menezes, C.C.; Cano, M.A.; Fietto, L.G.; Loureiro, M.E.; Aragao, F.J.; Fontes, E.P. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J. Exp. Bot., 2009, 60(2), 533-546.
[60]
Gibson, S.I. Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol., 2000, 124(4), 1532-1539.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 3
Year: 2019
Page: [231 - 245]
Pages: 15
DOI: 10.2174/1570164616666181116124050
Price: $58

Article Metrics

PDF: 25
HTML: 1