Improved Performance of CuFe2O4/rGO Nanohybrid as an Anode Material for Lithium-ion Batteries Prepared Via Facile One-step Method

Author(s): Sumair Ahmed Soomro, Iftikhar Hussain Gul*, Hashim Naseer, Shafiqullah Marwat, Muhammad Mujahid.

Journal Name: Current Nanoscience

Volume 15 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: CuFe2O4 nanoparticles possess good electrochemical properties apart from their inadequate electronic conductivity and large volume variation. The resulting performance lag can be modified by the addition of conductive materials to form a composite. Hence, the properties of CuFe2O4/rGO nanohybrid are presented for application as anode material for lithium-ion batteries.

Methods: The composites are synthesized through a facile one-step method of thermochemical reaction. The samples are characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Fourier transform infrared spectroscopy (FTIR), Dielectric behavior and Galvanostatic charge-discharge test.

Result & Conclusion: The XRD analysis confirmed the reduction of GO and formation of CuFe2O4/rGO composite, whereas FTIR results showed two major vibrational bands that correspond to spinel structure formation and attachment of rGO to CuFe2O4. The SEM images confirmed tethering of CuFe2O4 nanoparticles with rGO sheets. It was also observed that the formation of the nanohybrid of CuFe2O4 with rGO resulted in expected enhancement of the dielectric properties; dielectric constant and AC conductivity. At 100 Hz frequency, the dielectric constant of the composite with 15 wt. % of GO was 1.27×105, which is higher than that of pure CuFe2O4 (3.57×104). The parameters such as charge storage capacity and rate capability, which are reminiscent of battery performance were also enhanced with the increase of rGO content in the composite. Hence, a substantial enhancement of battery performance was depicted that projects the composite as a promising candidate for applications in electrode material for lithium-ion batteries.

Keywords: AC conductivity, dielectric behavior, Fourier transforms infrared spectroscopy, lithium-ion batteries, nanohybrid, Scanning electron microscopy, X-ray diffraction.

[1]
Kang, K.; Meng, Y.S.; Bréger, J.; Grey, C.P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science, 2006, 311, 977-980.
[2]
Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater., 2008, 7, 845-854.
[3]
Kötz, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta, 2000, 45, 2483-2498.
[4]
Bhujun, B.; Tan, M.T.; Shanmugam, A.S. Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications. Results Phys., 2017, 7, 345-353.
[5]
Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett., 2009, 9, 1045-1051.
[6]
Jansen, A.N.; Kahaian, A.J.; Kepler, K.D.; Nelson, P.A.; Amine, K.; Dees, D.W.; Vissers, D.R.; Thackeray, M.M. Development of a high-power lithium-ion battery. J. Power Sources, 1999, 81, 902-905.
[7]
Cui, L.F.; Yang, Y.; Hsu, C.M.; Cui, Y. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett., 2009, 9, 3370-3374.
[8]
Li, Y.; Tan, B.; Wu, Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett., 2008, 8, 265-270.
[9]
Wu, Z.S.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H.M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano, 2010, 4, 3187-3194.
[10]
Yang, Y.; Zheng, G.; Misra, S.; Nelson, J.; Toney, M.F.; Cui, Y. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J. Am. Chem. Soc., 2012, 134, 15387-15394.
[11]
Wang, X.; Hou, X.; Mao, J.; Gao, Y.; Ru, Q.; Hu, S.; Lam, K-h. Synthesis of intertwined Zn0.5Mn0.5Fe2O4@CNT composites as a superior anode material for Li-ion batteries. J. Mater. Sci., 2016, 51, 5843-5856.
[12]
Jang, B.; Park, M.; Chae, O.B.; Park, S.; Kim, Y.; Oh, S.M.; Piao, Y.; Hyeon, T. Direct synthesis of self-assembled ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes. J. Am. Chem. Soc., 2012, 134, 15010-15015.
[13]
Zhao, H.; Zheng, Z.; Wong, K.W.; Wang, S.; Huang, B.; Li, D. Fabrication and electrochemical performance of nickel ferrite nanoparticles as anode material in lithium ion batteries. Electrochem. Commun., 2007, 9, 2606-2610.
[14]
Chu, Y.Q.; Fu, Z.W.; Qin, Q.Z. Cobalt ferrite thin films as anode material for lithium ion batteries. Electrochim. Acta, 2004, 49, 4915-4921.
[15]
Jin, Y.H.; Seo, S.D.; Shim, H.W.; Park, K.S.; Kim, D.W. Synthesis of core/shell spinel ferrite/carbon nanoparticles with enhanced cycling stability for lithium ion battery anodes. Nanotechnology, 2012, 23, 125402.
[16]
He, C.; Wu, S.; Zhao, N.; Shi, C.; Liu, E.; Li, J. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano, 2013, 7, 4459-4469.
[17]
Zhang, Z.; Li, W.; Zou, R.; Kang, W.; San Chui, Y.; Yuen, M.F.; Lee, C.S.; Zhang, W. Layer-stacked cobalt ferrite (CoFe2O4) mesoporous platelets for high-performance lithium ion battery anodes. J. Mater. Chem. A, 2015, 3, 6990-6997.
[18]
Fu, Y.; Wan, Y.; Xia, H.; Wang, X. Nickel ferrite–graphene heteroarchitectures: Toward high-performance anode materials for lithium-ion batteries. J. Power Sources, 2012, 213, 338-342.
[19]
Wang, Y.; Cao, G. Developments in nanostructured cathode materials for high‐performance lithium‐ion batteries. Adv. Mater., 2008, 20, 2251-2269.
[20]
Li, Z.H.; Zhao, T.P.; Zhan, X.Y.; Gao, D.S.; Xiao, Q.Z.; Lei, G.T. High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion batteries. Electrochim. Acta, 2010, 55, 4594-4598.
[21]
Ding, Y.; Yang, Y.; Shao, H. High capacity ZnFe2O4 anode material for lithium ion batteries. Electrochim. Acta, 2011, 56, 9433-9438.
[22]
Zhang, W.; Quan, B.; Lee, C.; Park, S.K.; Li, X.; Choi, E.; Diao, G.; Piao, Y. One-step facile solvothermal synthesis of copper ferrite-graphene composite as a high-performance supercapacitor material. ACS Appl. Mater. Interfaces, 2015, 7, 2404-2414.
[23]
Ding, Y.; Yang, Y.; Shao, H. Synthesis and characterization of nanostructured CuFe2O4 anode material for lithium ion battery. Solid State Ion., 2012, 217, 27-33.
[24]
Fu, Y.; Chen, Q.; He, M.; Wan, Y.; Sun, X.; Xia, H.; Wang, X. Copper ferrite-graphene hybrid: A multifunctional heteroarchi-tecture for photocatalysis and energy storage. Ind. Eng. Chem. Res., 2012, 51, 11700-11709.
[25]
Bhattacharya, P.; Dhibar, S.; Hatui, G.; Mandal, A.; Das, T.; Das, C.K. Graphene decorated with hexagonal shaped M-type ferrite and polyaniline wrapper: A potential candidate for electromagnetic wave absorbing and energy storage device applications. RSC Adv, 2014, 4, 17039-17053.
[26]
Rasheed, A.; Mahmood, M.; Ali, U.; Shahid, M.; Shakir, I.; Haider, S.; Khan, M.A.; Farooq, M. ZrxCo0.8−xNi0.2−xFe2O4-graphene nanocomposite for enhanced structural, dielectric and visible light photocatalytic applications. Ceram. Int., 2016, 42, 15747-15755.
[27]
Shakir, I.; Sarfraz, M.; Ali, Z.; Aboud, M.F.; Agboola, P.O. Magnetically separable and recyclable graphene-MgFe2O4 nanocomposites for enhanced photocatalytic applications. J. Alloy Compd., 2016, 660, 450-455.
[28]
Pramanik, N.; De, J.; Basu, R.K.; Rath, T.; Kundu, P.P. Fabrication of magnetite nanoparticle doped reduced graphene oxide grafted polyhydroxyalkanoate nanocomposites for tissue engineering application. RSC Adv, 2016, 6, 46116-46133.
[29]
Wang, L.; Zhuo, L.; Cheng, H.; Zhang, C.; Zhao, F. Porous carbon nanotubes decorated with nanosized cobalt ferrite as anode materials for high-performance lithium-ion batteries. J. Power Sources, 2015, 283, 289-299.
[30]
Varzi, A.; Bresser, D.; von Zamory, J.; Müller, F.; Passerini, S. ZnFe2O4‐C/LiFePO4‐CNT: A novel high‐power lithium‐ion battery with excellent cycling performance. Adv. Energy Mater., 2014, 4, 1400054.
[31]
Yang, Y.; Li, J.; Chen, D.; Zhao, J. A facile electrophoretic deposition route to the Fe3O4/CNTs/rGO composite electrode as a binder-free anode for lithium ion battery. ACS Appl. Mater. Interfaces, 2016, 8, 26730-26739.
[32]
Jin, R.; Wang, Q.; Cui, Y.; Zhang, S. MFe2O4 (M= Ni, Co) nanoparticles anchored on amorphous carbon coated multiwalled carbon nanotubes as anode materials for lithium-ion batteries. Carbon, 2017, 123, 448-459.
[33]
Momeni, M.M.; Nazari, Z.; Kazempour, A.; Hakimiyan, M.; Mirhoseini, S.M. Preparation of CuO nanostructures coating on copper as supercapacitor materials. Surf. Eng., 2014, 30, 775-778.
[34]
Momeni, M.M.; Ghayeb, Y.; Menati, M. Fabrication, characterization and photoelectrochemical properties of cuprous oxide-reduced graphene oxide photocatalysts for hydrogen generation. J. Mater. Sci. Mater. Electron., 2018, 29, 4136-4146.
[35]
Momeni, M.M.; Ahadzadeh, I. Fabrication of tungsten decorated titania nanotube arrays as electrode materials for supercapacitor applications. Int. J. Hydrog Energy, 2015, 40, 8769-8777.
[36]
Momeni, M.M.; Ghayeb, Y.; Ezati, F. Fabrication, characterization and photoelectrochemical activity of tungsten-copper co-sensitized TiO2 nanotube composite photoanodes. J. Colloid Interface Sci., 2018, 514, 70-82.
[37]
Momeni, M.M.; Ghayeb, Y. Mozafari1, A.A. Optical and photo catalytic characteristics of Ag2S/TiO2 nanocomposite films prepared by electrochemical anodizing and SILAR approach. J. Mater. Sci. Mater. Electron., 2016, 27, 11201-11210.
[38]
Momeni, M.M. Dye-sensitized solar cell and photocatalytic performance of nanocomposite photocatalyst prepared by electrochemical anodization. Bull. Mater. Sci., 2016, 39, 1389-1395.
[39]
Momeni, M.M.; Ghayeb, Y. Cobalt modified tungsten-titania nanotube composite photoanodes for photoelectrochemical solar water splitting. J. Mater. Sci. Mater. Electron., 2016, 27, 3318-3327.
[40]
Momeni, M.M.; Ghayeb, Y. Fabrication, characterization and photocatalytic properties of Au/TiO2-WO3 nanotubular composite synthesized by photo-assisted deposition and electrochemical anodizing methods. J. Mol. Catal. Chem., 2016, 417, 107-115.
[41]
Momeni, M.M.; Hakimian, M.; Kazempour, A. Preparation and characterisation of manganese-TiO2 nanocomposites for solar water splitting. Surf. Eng., 2016, 32, 514-519.
[42]
(a)Pitkethly, M.J. Nanomaterials-the driving force. Mater. Today, 2004, 7, 20-29.
(b)Naseri, M.G.; Saion, E.B.; Ahangar, H.A.; Shaari, A.H. Fabrication, characterization, and magnetic properties of copper ferrite nanoparticles prepared by a simple, thermal-treatment method. Mater. Res. Bull., 2013, 48, 1439-1446.
[43]
Lv, W.Z.; Liu, B.; Luo, Z.K.; Ren, X.Z.; Zhang, P.X. XRD studies on the nanosized copper ferrite powders synthesized by sonochemical method. J. Alloy Compd., 2008, 465, 261-264.
[44]
Rashad, M.M.; Mohamed, R.M.; Ibrahim, M.A.; Ismail, L.F.M.; Abdel-Aal, E.A. Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources. Adv. Powder Technol., 2012, 23, 315-323.
[45]
Ponhan, W.; Maensiri, S. Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers. Solid State Sci., 2009, 11, 479-484.
[46]
Hankare, P.P.; Sanadi, K.R.; Pandav, R.S.; Patil, N.M.; Garadkar, K.M.; Mulla, I.S. Structural, electrical and magnetic properties of cadmium substituted copper ferrite by sol-gel method. J. Alloy Compd., 2012, 540, 290-296.
[47]
Goya, G.F.; Rechenberg, H.R.; Jiang, J.Z. Structural and magnetic properties of ball milled copper ferrite. J. Appl. Phys., 1998, 84, 1101-1108.
[48]
Liu, T.; Wang, L.; Yang, P.; Hu, B. Preparation of nanometer CuFe2O4 by auto-combustion and its catalytic activity on the thermal decomposition of ammonium perchlorate. Mater. Lett., 2008, 62, 4056-4058.
[49]
Deraz, N.M. Size and crystallinity-dependent magnetic properties of copper ferrite nano-particles. J. Alloy Compd., 2010, 501, 317-325.
[50]
Singh, S.; Yadav, B.C.; Prakash, R.; Bajaj, B. Synthesis of nanorods and mixed shaped copper ferrite and their applications as liquefied petroleum gas sensor. Appl. Surf. Sci., 2011, 257, 10763-10770.
[51]
Pandya, P.B.; Joshi, H.H.; Kulkarni, R.G. Magnetic and structural properties of CuFe2O4 prepared by the co-precipitation method. J. Mater. Sci. Lett., 1991, 10, 474-476.
[52]
Tao, S.; Gao, F.; Liu, X.; Sørensen, O.T. Preparation and gas-sensing properties of CuFe2O4 at reduced temperature. Mater. Sci. Eng. B, 2000, 77, 172-176.
[53]
Sultana, S.; Khan, M.Z.; Umar, K. Synthesis and characterization of copper ferrite nanoparticles doped polyaniline. J. Alloys Compd., 2012, 535, 44-49.
[54]
Liu, Y.C.; Fu, Y.P. Magnetic and catalytic properties of copper ferrite nanopowders prepared by a microwave-induced combustion process. Ceram. Int., 2010, 36, 1597-1601.
[55]
Qi, J.Q.; Chen, W.P.; Lu, M.; Wang, Y.; Tian, H.Y.; Li, L.T.; Chan, H.L.W. Fabrication of copper ferrite nanowalls on ceramic surfaces by an electrochemical method. Nanotechnology, 2005, 16, 3097.
[56]
Reddy, M.P.; Madhuri, W.; Reddy, N.R.; Kumar, K.S.; Murthy, V.R.K.; Reddy, R.R. Influence of copper substitution on magnetic and electrical properties of MgCuZn ferrite prepared by microwave sintering method. Mater. Sci. Eng. C, 2010, 30, 1094-1099.
[57]
Gingaşu, D.; Mîndru, I.; Patron, L.; Carp, O.; Matei, D.; Neagoe, C.; Balint, I. Copper ferrite obtained by two “soft chemistry” routes. J. Alloy Compd., 2006, 425, 357-361.
[58]
Zhang, L.; Yu, X.; Hu, H.; Li, Y.; Wu, M.; Wang, Z.; Li, G.; Sun, Z.; Chen, C. Facile synthesis of iron oxides/reduced graphene oxide composites: Application for electromagnetic wave absorption at high temperature. Sci. Rep., 2015, 5, 9298.
[59]
Chen, J.; Yao, B.; Li, C.; Shi, G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 2013, 64, 225-229.
[60]
Huang, X.; Zhang, J.; Rao, W.; Sang, T.; Song, B.; Wong, C. Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites. J. Alloys Compd., 2016, 662, 409-414.
[61]
Nethravathi, C.; Rajamathi, M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon, 2008, 46, 1994-1998.
[62]
Mishra, S.K.; Tripathi, S.N.; Choudhary, V.; Gupta, B.D. SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sens. Actuators B Chem., 2014, 199, 190-200.
[63]
Jabbar, A.; Yasin, G.; Khan, W.Q.; Anwar, M.Y.; Korai, R.M.; Nizam, M.N.; Muhyodin, G. Electrochemical deposition of nickel graphene composite coatings: effect of deposition temperature on its surface morphology and corrosion resistance. RSC Adv, 2017, 7, 31100-31109.
[64]
Liu, G.; Wang, L.; Wang, B.; Gao, T.; Wang, D. A reduced graphene oxide modified metallic cobalt composite with superior electrochemical performance for supercapacitors. RSC Adv, 2015, 5, 63553-63560.
[65]
Li, Z.; Kinloch, I.A.; Young, R.J. The role of interlayer adhesion in graphene oxide upon its reinforcement of nanocomposites. Philos. Trans. A Math. Phys. Eng. Sci., 2016, 374, 20150283.
[66]
Urbas, K.; Aleksandrzak, M.; Jedrzejczak, M.; Jedrzejczak, M.; Rakoczy, R.; Chen, X.; Mijowska, E. Chemical and magnetic functionalization of graphene oxide as a route to enhance its biocompatibility. Nanoscale Res. Lett., 2014, 9, 656.
[67]
Lian, P.; Zhu, X.; Liang, S.; Li, Z.; Yang, W.; Wang, H. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta, 2010, 55, 3909-3914.
[68]
Fu, Y.; Wang, X. Magnetically separable ZnFe2O4–graphene catalyst and its high photocatalytic performance under visible light irradiation. Ind. Eng. Chem. Res., 2011, 50, 7210-7218.
[69]
Ameer, S.; Gul, I.H.; Mahmood, N.; Mujahid, M. Semiconductor-to-metallic flipping in a ZnFe2O4–graphene based smart nano-system: Temperature/microwave magneto-dielectric spectroscopy. Mater. Charact., 2015, 99, 254-265.
[70]
Zhang, Q.; Zhu, M.; Zhang, Q.; Li, Y.; Wang, H. Synthesis and characterization of carbon nanotubes decorated with manganese–zinc ferrite nanospheres. Mater. Chem. Phys., 2009, 116, 658-662.
[71]
Soomro, S.A.; Gul, I.H.; Khan, M.Z.; Naseer, H.; Khan, A.N. Dielectric properties evaluation of NiFe2O4/MWCNTs nanohybrid for microwave applications prepared via novel one step synthesis. Ceram. Int., 2017, 43, 4090-4095.
[72]
Koops, C. On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev., 1951, 83, 121.
[73]
George, M.; Nair, S.S.; Malini, K.A.; Joy, P.A.; Anantharaman, M.R. Finite size effects on the electrical properties of sol–gel synthesized CoFe2O4 powders: Deviation from Maxwell–Wagner theory and evidence of surface polarization effects. J. Phys. D Appl. Phys., 2007, 40, 1593.
[74]
Yu, Z.; Ang, C. Maxwell–Wagner polarization in ceramic composites BaTiO3–(Ni0.3Zn0.7) Fe2.1O4. J. Appl. Phys., 2002, 91, 794-797.
[75]
Van Uitert, L.G. Dielectric properties of and conductivity in ferrites. Proc. IEEE, 1956, 44, 1294-1303.
[76]
Kambale, R.C.; Shaikh, P.A.; Bhosale, C.H.; Rajpure, K.Y.; Kolekar, Y.D. Dielectric properties and complex impedance spectroscopy studies of mixed Ni–Co ferrites. Smart Mater. Struct., 2009, 18, 085014.
[77]
El Ata, A.A.; Attia, S.M.; Meaz, T.M. AC conductivity and dielectric behavior of CoAlxFe2−xO4. Solid State Sci., 2004, 6, 61-69.
[78]
Selvan, R.K.; Kalaiselvi, N.; Augustin, C.O.; Doh, C.H.; Sanjeeviraja, C. CuFe2O4/SnO2 nanocomposites as anodes for Li-ion batteries. J. Power Sources, 2006, 157, 522-527.
[79]
Ilyas, T.; Nasim, F.; Choucair, M.; Ullah, S.; Khan, M.A.; Badshah, A.; Nadeem, M.A. A high performance electrode material for lithium ion batteries derived from a cobalt-based coordination polymer. Int. J. Hydrog Energy, 2016, 41, 17029-17036.
[80]
Kollu, P.; Kumar, P.R.; Santosh, C.; Kim, D.K.; Grace, A.N. A high capacity MnFe2O4/rGO nanocomposite for Li and Na-ion battery applications. RSC Adv, 2015, 5, 63304-63310.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 15
ISSUE: 4
Year: 2019
Page: [420 - 429]
Pages: 10
DOI: 10.2174/1573413714666181115122016
Price: $58

Article Metrics

PDF: 49
HTML: 6
EPUB: 4
PRC: 4