Pentaerythritol: A Versatile Substrate in Organic Transformations, Centralization on the Reaction Medium

Author(s): Zahra Khademi, Kobra Nikoofar*, Fatemeh Shahriyari.

Journal Name: Current Organic Synthesis

Volume 16 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Pentaerythritol (2,2-bis (hydroxymethyl) propane-1,3-diol) as white crystalline odorless solid has been synthesized in 1891. Pentaerythritol is multifaceted species in many compounds, which are wildly utilized in medicine and industry. Also, multicomponent reactions (MCRs) play a crucial role in organic and medicinal chemistry. Hence, in these reactions, pentaerythritol is a versatile substrate for the synthesis of many polyfunctionalized products, because of the presence of the neopentane core and one hydroxyl group in each of the four terminal carbons.

Objective: The review describes pentaerythritol multicomponent reactions in the presence of different solvents in the reaction medium to produce various compounds including pentaerythritols. This review covers the literature relevant up to 2018.

Conclusion: It is obvious from the provided review that a great deal of research has been done in this field, utilizing various mediums (solvent-free conditions, aqueous media, and organic solvents) for the synthesis of the products of containing pentaerythritols. This classification is based on the importance of economic and environmental friendly reactions. Due to the whole aforesaid reports, some reactions required heat for their progress, and some others were accompanied by microwave or ultrasonic waves.

Keywords: Pentaerythritol, reaction media, solvent-free, aqueous, multicomponent reactions, organic transformations.

[1]
Favre, H.A. Powell, W.H. Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013: Applications to Specific Classes of Compounds; The Royal Society of Chemistry: Cambridge, 2013, p. 691.
[2]
Tollens, B.; Wigand, P. Ueber den Penta-Erythrit, einen aus Formaldehyd und Acetaldehyd synthetisch hergestellten vierwerthigen Alkohol. Eur. J. Org. Chem., 1891, 265(3), 316-340.
[3]
Schurink, H.B.J. Pentaerythritol. Org. Synth., 1941, 1, 425.
[4]
[6]
Pani, B.; Sirohi, S.; Singh, D. Studies on the effects of various flame retardants on polypropylene. Am. J. Polym. Sci., 2013, 3(4), 63-69.
[8]
NPCS Board of Consultants & Engineers. The Complete Book on Adhesives, Glues & Resins Technology (with Process & Formulations), 2nd, Revised Edition; Asia Pacific Business Press Inc: Delhi, 2016.
[9]
NIIR Board of Engineers & Consultants. Synthetic Resins Technology Handbook; Asia Pacific Business Press Inc: Delhi, 2005.
[10]
Decato, S.; Bemis, T.; Madsen, E.; Mecozzi, S. Synthesis and characterization of perfluoro-tertbutyl semifluorinated amphiphilic polymers and their potential application in hydrophobic drug delivery. Polym. Chem., 2014, 5(22), 6461-6471.
[11]
Marrian, S.F. The chemical reactions of pentaerythritol and its derivatives. Chem. Rev., 1948, 43(1), 149-202.
[12]
Barabanova, G.V.; Klimov, A.K.; Ivanov, V.I.; Kossova, L.V.; Vilenchuk, F.S.; Bebikh, G.F. Derivatives of 1,3-pyrimidine-thione (5,6-dihydro-2(1H)-pyrimidinethione) as additives for synthetic lubricating oils. Chem. Technol. Fuels Oils, 1980, 16(2), 780-782.
[13]
Nikonorov, E.M.; Sazonova, N.S.; Petrova, L.N.; Irisova, K.N.; Kalinina, E.V. Evaluation of thermal and thermal-oxidative stability of synthetic lubricants by derivatographic method. Chem. Technol. Fuels Oils, 1983, 19(4), 201-203.
[14]
Krakowiak, J. Densimetric and ultrasonic characterization of pentaerythritol in water and in aqueous NaCl and MgCl2 solutions at different temperatures. J. Chem. Thermodyn., 2012, 54, 444-452.
[15]
Venkitaraj, K.P.; Suresh, S. Experimental study on thermal and chemical stability of pentaerythritol blended with low melting alloy as possible pcm for latent heat storage. Exp. Therm. Fluid Sci., 2017, 88, 73-87.
[16]
Venkitaraj, K.P.; Suresh, S.; Venugopal, A. Experimental study on the thermal performance of nano enhanced pentaerythritol in IC engine exhaust heat recovery application. Appl. Therm. Eng., 2018, 137, 461-474.
[17]
Venkitaraj, K.P.; Suresh, S. Experimental study on the thermal storage performance and non-isothermal crystallization kinetics of pentaerythritol blended with low melting metal. Thermochim. Acta, 2018, 662, 75-89.
[18]
Mandrekar, V.K.; Chourasiya, G.; Kalsi, P.C.; Tilve, S.G.; Nadkarni, V.S. Nuclear track detection using thermoset polycarbonates derived from pentaerythritol. Nucl. Instrum. Methods Phys. Res. Sect. B., 2010, 268(5), 537-542.
[19]
Slough, W.; Perger, W.F. Application of an empirical dispersion potential to van der Waals binding in nitromethane, pentaerythritol, and pentaerythritol tetranitrate. Chem. Phys. Lett., 2010, 498(1-3), 97-100.
[20]
Trevoy, L.W.; Myers, M.E. Pentaerythritol derivatives: I. Mechanism of formation of dipentaerythritol. Can. J. Chem., 1963, 41(3), 770-776.
[21]
(a)Elibrocht, P.; Bärfacker, L.; Buss, C.; Hollmann, C.; Kitsos-Rzychon, B.E.; Kranemann, C.L.; Rische, T.; Roggenbuck, R.; Schmidt, A. Tandem reaction sequences under hydroformylation conditions: new synthetic applications of transition metal catalysis. Chem. Rev., 1999, 99(11), 3329-3366.
(b)Ugi, I. Recent progress in the chemistry of multicomponent reactions. Pure Appl. Chem., 2001, 73(1), 187-191.
(c)Simon, C.; Constantieux, T.; Rodriguez, J. Utilisation of 1,3‐dicarbonyl derivatives in multicomponent reactions. Eur. J. Org. Chem., 2004, 2004(24), 4957-4980.
(d)Hajipour, A.R.; Zarei, A.; Khazdooz, L.; Pourmousavi, S.A.; Zahmatkesh, S.; Ruoho, A.E. Efficient deprotection of tetrahydropyranyl ethers by silica sulfuric acid. Indian J. Chem. Sec. B, 2006, 45, 305-308.
[22]
Weber, L. The application of multi-component reactions in drug discovery. Curr. Med. Chem., 2002, 9(23), 2085-2093.
[23]
Padwa, A. Domino reactions of rhodium(II) carbenoids for alkaloid synthesis. Chem. Soc. Rev., 2009, 38(11), 3072-3081.
[24]
Rahman, O.U.; Bhat, S.I.; Yu, H.; Ahmad, S. Hyperbranched soya alkyd nanocomposite: a sustainable feedstock-based anticorrosive nanocomposite coatings. ACS Sustainable . Chem. Eng., 2017, 5(11), 9725-9734.
[25]
Fourcade, D.; Ritter, B.S.; Walter, P.; Schönfeld, R.; Mülhaupt, R. Renewable resource-based epoxy resins derived from multifunctional poly(4-hydroxybenzoates). Green Chem., 2013, 15(4), 910-918.
[26]
Chen, H.; Yu, B.; Jin, S. Production of levulinic acid from steam exploded rice straw via solid superacid, S2O82-/ZrO2–SiO2–Sm2O3. Bioresour. Technol., 2011, 102(3), 3568-3570.
[27]
Ji, H.; Wang, B.; Zhang, X.; Tan, T. Synthesis of levulinic acid-based polyol ester and its influence on tribological behavior as a potential lubricant. RSC Adv, 2015, 5(122), 100443-100451.
[28]
Wallace, K.J.; Hanes, R.; Anslyn, E.; Morey, J.; Kilway, K.V.; Siegel, J. Preparation of 1, 3, 5-tris (aminomethyl)-2, 4, 6-triethylbenzene from two versatile 1, 3, 5-tri (halosubstituted) 2, 4, 6-triethylbenzene derivatives. Synthesis, 2005, 2005(12), 2080-2083.
[29]
Içli, B.; Christinat, N.; Tönnemann, J.; Schüttler, C.; Scopelliti, R.; Severin, K. Synthesis of molecular nanostructures by multicomponent condensation reactions in a ball mill. J. Am. Chem. Soc., 2009, 131(9), 3154-3155.
[30]
Itsikson, T.M.; Kagan, L.K.; Zharova, E.Y.; Sudarikova, T.I.; Itsikson, L.B.; Nikonorov, E.M.; D’yakonova, K.D. Influence of catalyst on method of preparation and properties of pentaerythritol esters. Chem. Technol. Fuels Oils, 1975, 11(8), 594-596.
[31]
Bien, F.; Ziegler, T. Chemoenzymatic synthesis of glycosylated enantiomerically pure 4-pentene 1,2- and 1,3-diol derivatives. Tetrahedron Asymmmetry, 1998, 9(5), 781-790.
[32]
Lindhorst, T.K.; Dubber, M.; Krallmann-Wenzel, U.; Ehlers, S. Cluster mannosides as inhibitors of type 1 fimbriae-mediated adhesion of escherichia coli: pentaerythritol derivatives as scaffolds. Eur. J. Org. Chem., 2000, 2000(11), 2027-2034.
[33]
Ihre, H.; Hult, A.; Fréchet, J.M.; Gitsov, I. Double-stage convergent approach for the synthesis of functionalized dendritic aliphatic polyesters based on 2,2-bis(hydroxymethyl)propionic acid. Macromolecules, 1998, 31(13), 4061-4068.
[34]
Pant, C.S.; Wagh, R.M.; Nair, J.K.; Gore, G.M.; Thekkekara, M.; Venugopalan, S. Synthesis and Characterization of First Generation Dendritic Azidoesters. Propellants Explos. Pyrotech., 2007, 32(6), 461-467.
[35]
Abrishami, F.; Zarei, A.; Karegar, M. Synthesis of novel plasticizers based on poly(ε-caprolactone) and a consideration of their influence on nitroglycerine migration in double base solid propellants. Cent. Eur. J. Energ. Mater., 2018, 15(1), 150-161.
[36]
Sanchez, J.C.; Trogler, W.C. Polymerization of a boronate-functionalized fluorophore by double transesterification: applications to fluorescence detection of hydrogen peroxide vapor. J. Mater. Chem., 2008, 18(42), 5134-5141.
[37]
Issidorides, C.H.; Gulen, R.C. Monobenzalpentaerythritol. In: Organic Syntheses; Rabjohn, N., Ed.; John Wiley and Sons: New York, 1963; Collect. Vol. IV, pp. 679-681.
[38]
Garegg, P.J.; Johansson, R.; Ortega, C.; Samuelsson, B. Novel reagent system for converting a hydroxy-group into an iodogroup in carbohydrates with inversion of configuration. Part 3. J. Chem. Soc., Perkin Trans. 1, 1982, 681-683.
[39]
Lubineau, A.; Malleron, A.; Le Narvor, C. Chemo-enzymatic synthesis of oligosaccharides using a dendritic soluble support. Tetrahedron Lett., 2000, 41(46), 8887-8891.
[40]
Omura, K.; Swern, D. Oxidation of alcohols by “activated” dimethyl sulfoxide. A preparative, steric and mechanistic study. Tetrahedron, 1978, 34(11), 1651-1660.
[41]
Jahan, N.; Paul, N.; Petropolis, C.J.; Marangoni, D.G.; Grindley, T.B. Synthesis of surfactants based on pentaerythritol. i. cationic and zwitterionic gemini surfactants. J. Org. Chem., 2009, 74(20), 7762-7773.
[42]
Cheng, J.; Shi, W.; Zhang, L.; Zhang, R. A novel polyester composite nanofiltration membrane formed by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC). Appl. Surf. Sci., 2017, 416, 152-159.
[43]
a)Ben, T.; Pei, C.; Zhang, D.; Xu, J.; Deng, F.; Jing, X.; Qiu, S. Gas storage in porous aromatic frameworks (PAFs). Energy Environ. Sci., 2011, 4(10), 3991-3999.
(b)Rabbani, M.G.; El-Kaderi, H.M. Template-free synthesis of a highly porous benzimidazole-linked polymer for CO2 capture and H2 storage. Chem. Mater., 2011, 23(7), 1650-1653.
(c)Chen, Q.; Luo, M.; Hammershøj, P.; Zhou, D.; Han, Y.; Laursen, B.W.; Yan, C.G.; Han, B.H. Microporous polycarbazole with high specific surface area for gas storage and separation. J. Am. Chem. Soc., 2012, 134(14), 6084-6087.
(d)Zhao, Y.C.; Cheng, Q.Y.; Zhou, D.; Wang, T.; Han, B.H. Preparation and characterization of triptycene-based microporous poly(benzimidazole) networks. J. Mater. Chem., 2012, 22(23), 11509-11514.
(e)Wood, C.D.; Tan, B.; Trewin, A.; Su, F.; Rosseinsky, M.J.; Bradshaw, D.; Sun, Y.; Zhou, L.; Cooper, A.I. Microporous organic polymers for methane storage. Adv. Mater., 2008, 20(10), 1916-1921.
(f)Farha, O.K.; Bae, Y.S.; Hauser, B.G.; Spokoyny, A.M.; Snurr, R.Q.; Mirkin, C.A.; Hupp, J.T. Chemical reduction of a diimide based porous polymer for selective uptake of carbon dioxide versus methane. Chem. Commun. , 2010, 46(7), 1056-1058.
[44]
(a)Rakow, N.A.; Wendland, M.S.; Trend, J.E.; Poirier, R.J.; Paolucci, D.M.; Maki, S.P.; Lyons, C.S.; Swierczek, M.J. Visual indicator for trace organic volatiles. Langmuir, 2010, 26(6), 3767-3770.
(b)Liu, J.; Zong, E.; Fu, H.; Zheng, S.; Xu, Z.; Zhu, D. Adsorption of aromatic compounds on porous covalent triazine-based framework. J. Colloid Interface Sci., 2012, 372(1), 99-107.
(c)Rao, K.V.; Mohapatra, S.; Maji, T.K.; George, S.J. Guest-responsive reversible swelling and enhanced fluorescence in a super-absorbent, dynamic microporous polymer. Chem, 2012, 18(15), 4505-4509.
[45]
(a)Ding, S.Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.G.; Su, C.Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc., 2011, 133(49), 19816-19822.
(b)Zhang, K.; Kopetzki, D.; Seeberger, P.H.; Antonietti, M.; Vilela, F. Surface area control and photocatalytic activity of conjugated microporous poly(benzothiadiazole) networks. Angew. Chem. Int. Ed., 2013, 52(5), 1432-1436.
[46]
McKeown, N.B.; Budd, P.M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev., 2006, 35(8), 675-683; (b) Budd, P.M.; McKeown, N.B. Highly permeable polymers for gas separation membranes. Polym. Chem., 2010, 1(1), 63-68.
[47]
Wolf, M.O.; Fox, H.H.; Fox, M.A. Reduction of acetylated tetraphenylethylenes: electrochemical behavior and stability of the related reduced anions. J. Org. Chem., 1996, 61(1), 287-294.
[48]
Li, H.; Ding, X.; Han, B-H. Tetraphenylethylene-based microporous organic polymers: insight into structure geometry, porosity, and CO2/CH4 selectivity. RSC Adv, 2016, 6(56), 51411-51418.
[49]
Zhao, Y.C.; Zhang, L.M.; Wang, T.; Han, B.H. Microporous organic polymers with acetal linkages: synthesis, characterization, and gas sorption properties. Polym. Chem., 2014, 5(2), 614-621.
[50]
Jana, T.; Koley, T.; Dhar, T.K. Effect of branching in hyperbranched alkyd on the performance of alkyd polyurethane coating. J. Appl. Polym. Sci., 2018, 135(9), 45835.
[51]
Wang, L.S.; Liu, Y.; Wang, R. Solubilities of some phosphaspirocyclic compounds in selected solvents. J. Chem. Eng. Data, 2006, 51(5), 1686-1689.
[52]
Zhang, P.; Zhang, Z.; Fan, H.; Tian, S.; Chen, Y.; Yan, J. Waterborne polyurethane conjugated with novel diol chain-extender bearing cyclic phosphoramidate lateral group: synthesis, flammability and thermal degradation mechanism. RSC Adv, 2016, 6(61), 56610-56622.
[53]
Wang, S.; Du, Z.; Cheng, X.; Liu, Y.; Wang, H. Synthesis of a phosphorus- and nitrogen-containing flame retardant and evaluation of its application in waterborne polyurethane. J. Appl. Polym. Sci., 2018, 135(16), 46093.
[54]
Padias, A.B.; Hall, Jr , H.K. Synthesis and polymerization of pentaerythritol monoacrylate and methacrylate and their bicyclic ortho esters. Macromolecules, 1982, 15(2), 217-223.
[55]
Stetsyshyn, Y.; Fornal, K.; Raczkowska, J.; Zemla, J.; Kostruba, A.; Ohar, H.; Ohar, M.; Donchak, V.; Harhay, K.; Awsiuk, K.; Rysz, J.; Bernasik, A.; Budkowski, A. Temperature and pH dual-responsive POEGMA-based coatings for protein adsorption. J. Colloid Interface Sci., 2013, 411, 247-256.
[56]
Stetsyshyn, Y.; Zemla, J.; Zolobko, O.; Fornal, K.; Budkowski, A.; Kostruba, A.; Donchak, V.; Harhay, K.; Awsiuk, K.; Rysz, J.; Bernasik, A.; Voronov, S. Temperature and pH dual-responsive coatings of oligoperoxide-graf t-poly(N-isopropylacrylamide): Wettability, morphology, and protein adsorption. J. Colloid Interface Sci., 2012, 387(1), 95-105.
[57]
Kostruba, A.; Ohar, M.; Kulyk, B.; Zolobko, O.; Stetsyshyn, Y. Surface modification by grafted sensitive polymer brushes: An ellipsometric study of their properties. Appl. Surf. Sci., 2013, 276, 340-346.
[58]
Stetsyshyn, Y.; Raczkowska, J.; Budkowski, A.; Kostruba, A. Harhay, Harhay, K.; Ohar, H.; Awsiuk, K.; Bernasik, A.; Ripak, N.; Zemła, J. Synthesis and postpolymerization modification of thermoresponsive coatings based on pentaerythritol monomethacrylate: surface analysis, wettability, and protein adsorption. Langmuir, 2015, 31(35), 9675-9683.
[59]
Grajewski, J.; Piotrowska, K.; Zgorzelak, M.; Janiak, A.; Biniek-Antosiak, K.; Rychlewska, U.; Gawronski, J. Introduction of axial chirality at a spiro carbon atom in the synthesis of pentaerythritol-imine macrocycles. Org. Biomol. Chem., 2018, 16, 981-987.
[60]
Celis, N.A.; Godoy-Alcántar, C.; Guerrero-Álvarez, J.; Barba, V. Boron macrocycles based on multicomponent assemblies using (3-aminophenyl)boronic acid and pentaerythritol as common reagents; molecular receptors toward lewis bases. Eur. J. Inorg. Chem., 2014, 2014(9), 1477-1484.
[61]
Cruz-Huerta, J.; Salazar-Mendoza, D.; Hernández-Paredes, J.; Ahuactzic, I.F.H.; Höpfl, H. N-containing boronic esters as self-complementary building blocks for the assembly of 2D and 3D molecular networks. Chem. Commun. , 2012, 48(35), 4241-4243.
[62]
Christinat, N.; Scopelliti, R.; Severin, K. Multicomponent assembly of boronic acid based macrocycles and cages. Angew. Chem., 2008, 120(10), 1874-1878.
[63]
Makhseed, S.; McKeown, N.B. Novel spiro-polymers with enhanced solubility. Chem. Commun. , 1999, 255-256.
[64]
Sandler, S.R.; Karo, W. Polymer syntheses; Academic Press Inc: London, 1977, Vol. 2, p. 196.
[65]
Abdel-Razik, H.H.; El-Bahy, Z.M. Nanoporous materials based on spiroketal and spirothioketal polymers for separating methanol-toluene mixture. Chin. J. Polym. Sci., 2011, 29(4), 450-455.
[66]
Firouzabadi, H.; Iranpoor, N.; Hazarkhani, H. New applications of solid silica chloride (sio2-cl) in organic synthesis. Efficient preparation of diacetals of 2,2-bis(hydroxymethyl)-1,3-propanediol from different substrates and their transthioacetalization reactions. efficient regeneration of carbonyl compounds from acetals and acylals. Phosphorus Sulfur Silicon Relat. Elem., 2002, 177(12), 2847-2858.
[67]
Jin, T-S.; Wang, H-X.; Wang, K-F.; Li, T-S. Synthesis of diacetals from aldehydes and ketones with pentaerythritol catalyzed by silica sulfate under microwave irradiation. Synth. Commun., 2004, 34(16), 2993-2999.
[68]
Kim, S.J.; Bang, E.K.; Kim, B.H. Synthesis of novel phosphoramidite building blocks from pentaerythritol. Synlett, 2003, 2003(12), 1838-1840.
[69]
Ueno, Y.; Takeba, M.; Mikawa, M.; Matsuda, A. Nucleosides and Nucleotides. 182. Synthesis of Branched Oligodeoxynucleotides with Pentaerythritol at the Branch Point and Their Thermal Stabilization of Triplex Formation1. J. Org. Chem., 1999, 64(4), 1211-1217.
[70]
Liu, J.; Cui, S.; Li, Z.; Xu, S.; Xu, J.; Pan, X.; Liu, Y.; Dong, H.; Sun, H.; Guo, K. Polymerization of trimethylene carbonates using organic phosphoric acids. Polym. Chem., 2016, 7(35), 5526-5535.
[71]
Tang, X.; Gao, L.; Han, N.; Fan, X.; Zhou, Q. Synthesis and characterization of 4‐arm star side‐chain liquid crystalline polymers containing azobenzene with different terminal substituents via ATRP. J. Polym. Sci.Part A Polym. Chem., 2007, 45(15), 3342-3348.
[72]
Li, J.; Shi, L.; An, Y.; Li, Y.; Chen, X.; Dong, H. Reverse micelles of star-block copolymer as nanoreactors for preparation of gold nanoparticles. Polymer , 2006, 47(26), 8480-8487.
[73]
Luo, X.; Wang, G.; Pang, X.; Huang, J. Synthesis of a novel kind of amphiphilic graft copolymer with miktoarm star-shaped side chains. Macromolecules, 2008, 41(7), 2315-2317.
[74]
Wang, G.; Huang, J. Preparation of star‐shaped abc copolymers of polystyrene‐poly (ethylene oxide)‐polyglycidol using ethoxyethyl glycidyl ether as the cap molecule. Macromol. Rapid Commun., 2007, 28(3), 298-304.
[75]
Wang, G.; Luo, X.; Zhang, Y.; Huang, J. Synthesis of dendrimer-like copolymers based on the star[polystyrene-poly(ethylene oxide)-poly(ethoxyethyl glycidyl ether)] terpolymers by click chemistry. J. Polym. Sci.Part A Polym. Chem., 2009, 47(18), 4800-4810.
[76]
Organikum, 15th ed; VEB: Berlin, 1984, p. 490.
[77]
Nutaitis, C.F.; Gribble, G.W. Reactions of sodium borohydride in acidic media. xiv. reductive cleavage of cyclic acetals and ketals to hydroxyalkyl ethers. Org. Prep. Proced. Int., 1985, 17(1), 11-16.
[78]
Pegenau, A.; Hegmann, T.; Tschierske, C.; Diele, S. The importance of micro segregation for mesophase formation: thermotropic columnar mesophases of tetrahedral and other low-aspect-ratio organic materials. Chem. Eur. J., 1999, 5(5), 1643-1660.
[79]
Wang, G.; Fan, X.; Hu, B.; Zhang, Y.; Huang, J. Synthesis of eight-shaped poly(ethylene oxide) by the combination of glaser coupling with ring-opening polymerization. Macromol. Rapid Commun., 2011, 32(20), 1658-1663.
[80]
(a)Enhsen, A.; Kramer, W.; Wess, G. Bile acids in drug discovery. Drug Discovery . Today, 1998, 3(9), 409-418.
(b)Mukhopadhyay, S.; Maitra, U. Chemistry and biology of bile acids. Curr. Sci., 2004, 87(12), 1666-1683.
(c)Hofmann, A.F.; Hagey, L.R. Bile acids: Chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell. Mol. Life Sci., 2008, 65(16), 2461-2483.
[81]
(a)Tamminen, J.; Kolehmainen, E. Bile acids as building blocks of supramolecular hosts. Molecules, 2001, 6(1), 21-46.
(b)Virtanen, E.; Kolehmainen, E. Use of bile acids in pharmacological and supramolecular applications. Eur. J. Org. Chem., 2004, 2004(16), 3385-3399.
(c)Davis, A.P. Bile acid scaffolds in supramolecular chemistry: the interplay of design and synthesis. Molecules, 2007, 12(9), 2106-2122.
(d)Maitra, U. Unlocking the potential of bile acids in synthesis, supramolecular/materials chemistry and nanoscience. Org. Biomol. Chem., 2008, 6(4), 657-669.
[82]
Fieser, L.F.; Rajagopalan, S. Oxidation of Steroids. III. Selective Oxidations and Acylations in the Bile Acid Series1. J. Am. Chem. Soc., 1950, 72(12), 5530-5536.
[83]
Tochtrop, G.P.; DeKoster, G.T.; Cistola, D.P.; Covey, D.F. Synthesis of [3,4-13C2]-enriched bile salts as NMR probes of protein-ligand interactions. J. Org. Chem., 2002, 67(19), 6764-6771.
[84]
Ikonen, S.; Valkonen, A.; Juvonen, R.; Salo, H.; Kolehmainen, E. Bile acid-derived mono- and diketals—synthesis, structural characterization and self-assembling properties. Org. Biomol. Chem., 2010, 8(12), 2784-2794.
[85]
Huang, G.L.; Mei, X.Y.; Liu, M.X. Synthesis of (R)-2,3-epoxypropyl (1→3)-β-d-pentaglucoside. Carbohydr. Res., 2005, 340(4), 603-608.
[86]
Smith, A.; Nobmann, P.; Henehan, G.; Bourke, P.; Dunne, J. Synthesis and antimicrobial evaluation of carbohydrate and polyhydroxylated non-carbohydrate fatty acid ester and ether derivatives. Carbohydr. Res., 2008, 343(15), 2557-2566.
[87]
(a)Hanessian, S.; Prabhanjan, H.; Qiu, D.; Nambiar, S. Synthesis of chemically and functionally diverse scaffolds from pentaerythritol. Can. J. Chem., 1996, 74(9), 1731-1737.
(b)Hanessian, S.; Qiu, D.; Prabhanjan, H.; Reddy, G.V.; Lou, B. Synthesis of clustered D-GalNAc (Tn) and D-Galβ (1→3) GalNAc (T) antigenic motifs using a pentaerythritol scaffold. Can. J. Chem., 1996, 74(9), 1738-1747.
(c)Lindhorst, T.K.; Dubber, M.; Krallman-Wenzel, U.; Ehlers, S. Cluster mannosides as inhibitors of type 1 fimbriae‐mediated adhesion of escherichia coli: pentaerythritol derivatives as scaffolds. Eur. J. Org. Chem., 2000, 2000(11), 2027-2034.
(d)Ueno, Y.; Takeba, M.; Mikawa, M.; Matsuda, A. Nucleosides and nucleotides. 182. synthesis of branched oligodeoxynucleotides with pentaerythritol at the branch point and their thermal stabilization of triplex formation1. J. Org. Chem., 1999, 64(4), 1211-1217.
(e)Schmidt, M.; Dobner, B.; Nuhn, P. Synthesis of polyfunctional pentaerythritol-derivatives using a novel protective group strategy for the preparation of cluster-glycolipids. Synlett, 2000, 2000(8), 1157-1159.
[88]
David, S. The anomalous reactivity of the bis(dibutylstannylene)acetal of pentaerythritol: a case of triple activation. Carbohydr. Res., 2001, 331(3), 327-329.
[89]
Gulyás, H.; Dobó, A.; Bakos, J. Synthesis of sulfated mono- and ditertiary phosphines, complex chemistry and catalysis. Can. J. Chem., 2001, 79(5-6), 1040-1048.
[90]
Tran, T.; Jahan, N.; Marangoni, D.G.; Grindley, T.B. Synthesis of surfactants based on pentaerythritol. II. Anionic gemini surfactants. Can. J. Chem., 2013, 91(11), 1085-1092.
[91]
Saucier, M.; Sauriol, C.; Salvador, R.L. Amélioration de la synthèse des di-et tri-bromhydrines du pentaérythritol. Can. J. Chem., 1966, 44(13), 1599-1601.
[92]
Beyaert, M.; Govaert, F. Proc. Acad. Sci. Amsterdam, 1939, 42, 776-789.
[93]
Mckay, A.F.; Buchanan, M.N.; Grant, G.A. The reaction of primary amines with 2-nitramino-Δ2-1, 3-diazacycloalkenes. J. Am. Chem. Soc., 1949, 71(3), 766-770.
[94]
Bradbury, R.B.; Hancox, N.C.; Hatt, H.H. 261. The reaction between acetone and ammonia: the formation of pyrimidine compounds analogous to the aldoxans of späth. J. Chem. Soc., 1947, 1394-1399.
[95]
Salvador, R.L.; Saucier, M. Spirocyclic tetrahydropyrimidines derived from pentaerythritol. Can. J. Chem., 1968, 46(5), 751-755.
[96]
David, S.; Thiéffry, A.; Veyrières, A. A mild procedure for the regiospecific benzylation and allylation of polyhydroxy-compounds via their stannylene derivatives in non-polar solvents. J. Chem. Soc., Perkin Trans. 1, 1981, 1796-1801.
[97]
Al-Mughaid, H.; Grindley, T.B. Syntheses of monohydroxy benzyl ethers of polyols: tri-O-benzylpentaerythritol and other highly benzylated derivatives of symmetrical polyols. Carbohydr. Res., 2004, 339(15), 2607-2610.
[10]
Decato, S.; Bemis, T.; Madsen, E.; Mecozzi, S. Synthesis and characterization of perfluoro-tertbutyl semifluorinated amphiphilic polymers and their potential application in hydrophobic drug delivery. Polym. Chem., 2014, 5(22), 6461-6471.
[98]
Findeis, R.A.; Gade, L.H. Tridentate phosphine ligands with novel linker-units. Dalton Trans., 2003, 249-254.
[99]
Findeis, R.A.; Gade, L.H. Tripodal phosphane ligands with novel linker units and their rhodium complexes as building blocks for dendrimer catalysts. Eur. J. Inorg. Chem., 2003, 2003(1), 99-110.
[100]
Padias, A.B.; Hall, Jr , H.K.; Tomalia, D.A. McConnell, J.R. Starburst Polyether Dendrimers. J. Org. Chem., 1987, 52(24), 5305-5312.
[101]
Röckendorf, N.; Sperling, O.; Lindhorst, T.K. Trivalent cluster mannosides with aromatic partial structure as ligands for the type 1 fimbrial lectin of Escherichia coli. Aust. J. Chem., 2002, 55(2), 87-93.
[102]
Al-Mughaid, H.; Grindley, T.B. Improved routes for the preparation of pentaerythritol mono-o-benzyl ether. Synth. Commun., 2006, 36(18), 2569-2575.
[103]
Dunn, T.J.; Neumann, W.L.; Rogic, M.M.; Woulfe, S.R. Versatile methods for the synthesis of differentially functionalized pentaerythritol amine derivatives. J. Org. Chem., 1990, 55(26), 6368-6373.
[104]
Jiang, Z.X.; Yu, Y.B. The design and synthesis of highly branched and spherically symmetric fluorinated oils and amphiles. Tetrahedron, 2007, 63(19), 3982-3988.
[105]
Wuts, P.G.M.; Greene, T.W. Protective Groups in Organic Synthesis; Wiley & Sons: New York, 1999.
[106]
Balakumar, V.; Aravind, A.; Baskaran, S. A highly regio-and chemoselective reductive cleavage of benzylidene acetals with EtAlCl2-Et3SiH. Synlett, 2004, 2004(4), 647-650.
[107]
Yue, X.; Taraban, M.B.; Hyland, L.L.; Yu, Y.B. Avoiding steric congestion in dendrimer growth through proportionate branching: A twist on da Vinci’s rule of tree branching. J. Org. Chem., 2012, 77(20), 8879-8887.
[108]
Sukegawa, T.; Sato, K.; Oyaizu, K.; Nishide, H. Efficient charge transport of a radical polyether/ SWCNT composite electrode for an organic radical battery with high charge-storage density. RSC Adv, 2015, 5(20), 15448-15452.
[109]
Chen, S.; He, H.; Tang, G.; Wu, B.; Ma, M.; Shi, Y.; Wang, X. Topological structure influences on the gel formation process and mechanical properties of Llysine based supramolecular gels. RSC Adv, 2015, 5(123), 101437-101443.
[110]
Sugai, N.; Heguri, H.; Ohta, K.; Meng, Q.; Yamamoto, T.; Tezuka, Y. Effective click construction of bridged-and spiro-multicyclic polymer topologies with tailored cyclic prepolymers (kyklo-telechelics). J. Am. Chem. Soc., 2010, 132(42), 14790-14802.
[111]
Oike, H.; Imamura, H.; Imaizumi, H.; Tezuka, Y. Tailored synthesis of branched and network polymer structures by electrostatic self-assembly and covalent fixation with telechelic poly (THF) having N-phenylpyrrolidinium salt groups. Macromolecules, 1999, 32(15), 4819-4825.
[112]
Ko, Y.S.; Yamamoto, T.; Tezuka, Y. Click construction of spiro- and bridged-quatrefoil polymer topologies with kyklo-telechelics having an azide group. Macromol. Rapid Commun., 2014, 35(4), 412-416.
[113]
Hanessian, S.; Prabhanjan, H.; Qiu, D.; Nambiar, S. Synthesis of chemically and functionally diverse scaffolds from pentaerythritol. Can. J. Chem., 1996, 74(9), 1731-1737.
[114]
Mollard, A.; Zharov, I. Tricarboranyl pentaerythritol-based building block. Inorg. Chem., 2006, 45(25), 10172-10179.
[115]
a)Burai, R.; Chatwichien, J.; McNaughton, B.R. A programmable “build–couple” approach to the synthesis of heterofunctionalized polyvalent molecules. Org. Biomol. Chem., 2011, 9(14), 5056-5058.
(b)Ribeiro-Viana, R.; García-Vallejo, J.J.; Collado, D.; Pérez-Inestrosa, E.; Bloem, K.; van Kooyk, Y.; Rojo, J. BODIPY-labeled DC-SIGN-targeting glycodendrons efficiently internalize and route to lysosomes in human dendritic cells. Biomacromolecules, 2012, 13(10), 3209-3219.
(c)Luczkowiak, J.; Muñoz, A.; Sanchez-Navarro, M.; Ribeiro-Viana, R.; Ginieis, A.; Illescas, B.M.; Martín, N.; Delgado, R.; Rojo, J. Glycofullerenes inhibit viral infection. Biomacromolecules, 2013, 14(2), 431-437.
(d)Ortega-Muñoz, M.; Lopez-Jaramillo, J.; Hernadez-Mateo, F.; Santoyo-Gonzalez, F. Synthesis of glyco‐silicas by Cu (I)‐catalyzed “click‐chemistry” and their applications in affinity chromatography. Adv. Synth. Catal., 2006, 348(16-17), 2410-2420.
(e)Ribeiro-Viana, R.; Sanchez-Navarro, M.; Luczkowiak, J.; Koeppe, J.R.; Delgado, R.; Rojo, J.; Davis, B.G. Virus-like glycodendrinanoparticles displaying quasi-equivalent nested polyvalency upon glycoprotein platforms potently block viral infection. Nature . Commun., 2012, 3, 1303.
[116]
Compain, P.; Decroocq, C.; Joosten, A.; Sousa, J. Rodr_guez-Lucena, D.; Butters, T.D.; Bertrand, J.; Clément, R.; Boinot, C.; Becq, F.; Norez, C. Rescue of functional cftr channels in cystic fibrosis: a dramatic multivalent effect using iminosugar cluster-based correctors. ChemBioChem, 2013, 14(15), 2050-2058.
[117]
Joosten, A.; Decroocq, C.; Sousa, J.; Schneider, J.P.; Etamé, E.; Bodlenner, A.; Butters, T.D.; Compain, P. A systematic investigation of iminosugar click clusters as pharmacological chaperones for the treatment of gaucher disease. ChemBioChem, 2014, 15(2), 309-319.
[118]
Papp, I.; Dernedde, J.; Enders, S.; Haag, R. Modular synthesis of multivalent glycoarchitectures and their unique selectin binding behavior. Chem. Commun. , 2008, (44), 5851-5853.
[119]
Joosten, A.; Schneider, J.P.; Lepage, M.L.; Tarnus, C.; Bodlenner, A.; Compain, P. A convergent strategy for the synthesis of second-generation iminosugar clusters using “clickable” trivalent dendrons. Eur. J. Org. Chem., 2014, 2014(9), 1866-1872.
[120]
Sun, P.; Jiang, Y.; Xie, G.; Du, X.; Hu, J. A room temperature supramolecular-based quartz crystal microbalance (QCM) methane gas sensor. Sens. Actuators B., 2009, 141(1), 104-108.
[121]
Jiang, W.; Nowosinski, K.; Löw, N.L.; Dzyuba, E.V.; Klautzsch, F.; Schäfer, A.; Huuskonen, J.; Rissanen, K.; Schalley, C.A. Chelate cooperativity and spacer length effects on the assembly thermodynamics and kinetics of divalent pseudorotaxanes. J. Am. Chem. Soc., 2012, 134(3), 1860-1868.
[122]
Biju, V.; Sudeep, P.K.; Thomas, K.G.; George, M.V.; Barazzouk, S.; Kamat, P.V. Clusters of bis-and tris-fullerenes. Langmuir, 2002, 18(5), 1831-1839.
[123]
Pemba, A.G.; Rostagno, M.; Lee, T.A.; Miller, S.A. Cyclic and spirocyclic polyacetal ethers from lignin-based aromatics. Polym. Chem., 2014, 5(9), 3214-3221.
[124]
Gillies, E.R.; Fréchet, J.M. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today, 2005, 10(1), 35-43.
[125]
Lee, C.C.; MacKay, J.A.; Fréchet, J.M.J.; Szoka, F.C. Designing dendrimers for biological applications. Nat. Biotechnol., 2005, 23(12), 1517-1526.
[126]
Van der Poll, D.G.; Kieler-Ferguson, H.M.; Floyd, W.C.; Guillaudeu, S.J.; Jerger, K.; Szoka, F.C.; Fréchet, J.M. Design, synthesis, and biological evaluation of a robust, biodegradable dendrimer. Bioconjugate . Chem., 2010, 21(4), 764-773.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 1
Year: 2019
Page: [38 - 69]
Pages: 32
DOI: 10.2174/1570179415666181115102643
Price: $58

Article Metrics

PDF: 22
HTML: 3
EPUB: 2
PRC: 1