Diverse Effects of Different “Protein-Based” Vehicles on the Stability and Bioavailability of Curcumin: Spectroscopic Evaluation of the Antioxidant Activity and Cytotoxicity In Vitro

Author(s): Farideh Mirzaee , Leila Hosseinzadeh , Mohammad Reza Ashrafi-Kooshk , Sajjad Esmaeili , Sirous Ghobadi , Mohammad Hosein Farzaei , Mahmoud Reza Zad-Bari , Reza Khodarahmi* .

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: Curcumin is a natural polyphenolic compound with anti-cancer, antiinflammatory, and anti-oxidation properties. Low water solubility and rapid hydrolytic degradation are two challenges limiting use of curcumin.

Objective: In this study, the roles of the native/modified forms of Bovine Serum Albumin (BSA), β-lactoglobulin (β-lg) and casein, as food-grade biopolymers and also protein chemical modification, in stabilizing and on biological activity of curcumin were surveyed.

Methods: In this article, we used various spectroscopic as well as cell culture-based techniques along with calculation of thermodynamic parameters.

Results: Investigation of curcumin stability indicated that curcumin binding to the native BSA and modified β -lg were stronger than those of the modified BSA and native β -lg, respectively and hence, the native BSA and modified β-lg could suppress water-mediated and light-mediated curcumin degradation, significantly. Moreover, in the presence of the native proteins (BSA and casein), curcumin revealed elevated in vitro anti-cancer activity against MCF-7 (human breast carcinoma cell line) and SKNMC (human neuroblastoma cell line). As well, curcumin, in the presence of the unmodified “BSA and β-lg”, was more potent to decrease ROS generation by hydrogen peroxide (H2O2) whereas it led to an inverse outcome in the presence of native casein. Overall, in the presence of the protein-bound curcumin, increased anti-cancer activity and decreased ROS generation by H2O2 in vitro were documented.

Conclusion: It appears that “water exclusion” is major determinant factor for increased stability/ efficacy of the bound curcumin so that some protein-curcumin systems may provide novel tools to increase both food quality and the bioavailability of curcumin as health promoting agent.

Keywords: Curcumin, bovine serum albumin, stability, antioxidant activity, oxidative stress, water exclusion.

(a)Rasouli, H.; Hosseini-Ghazvini, S.M-B.; Adibi, H.; Khodarahmi, R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes. Food Funct., 2017, 8, 1942-1954.
(b)Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and their benefits: A review. Int. J. Food Prop., 2017, 20, 1700-1741.
(c)Siah, M.; Farzaei, M.H.; Ashrafi-Kooshk, M.R.; Adibi, H.; Arab, S.S.; Rashidi, M.R.; Khodarahmi, R. Inhibition of guinea pig aldehyde oxidase activity by different flavonoid compounds: An in vitro study. Bioorg. Chem., 2016, 64, 74-84.
(a)Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res., 2003, 23, 363-398.
(b)Sahu, A.; Kasoju, N.; Bora, U. Fluorescence study of the curcumin-casein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromolecules, 2008, 9, 2905-2912.
Aggarwal, B.B.; Bhatt, I.D.; Ichikawa, H.; Ahn, K.S.; Sethi, G.; Sandur, S.K.; Natarajan, C.; Seeram, N.; Shishodia, S. Curcumin-Biological and Medicinal Properties.Turmeric: The Genus Curcuma; Ravindran, P.N.; Babu, K.N.; Sivaraman, K., Eds.; CRC Press: Boca Raton, FL, 2006, pp. 297-368.
(b) Leung, M.H.; Kee, T.W. Effective stabilization of curcumin by association to plasma proteins: human serum albumin and fibrinogen. Langmuir, 2009, 25, 5773-5777.
Hsu, C-H.; Cheng, A-L. Clinical studies with curcumin.The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease; Aggarwal, B.B.; Surh, Y-J.; Shishodia, S., Eds.; Springer: Berlin, Germany, 2007, pp. 471-480.
(b)Hsieh, C-Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res., 2001, 21, 2895-2900.
Krishnakumar, I.; Ravi, A.; Kumar, D.; Kuttan, R.; Maliakel, B. An enhanced bioavailable formulation of curcumin using fenugreek-derived soluble dietary fibre. J. Funct. Foods, 2012, 4, 348-357.
Wang, Y-J.; Pan, M-H.; Cheng, A-L.; Lin, L-I.; Ho, Y-S.; Hsieh, C-Y.; Lin, J-K. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal., 1997, 15, 1867-1876.
Liang, G.; Shao, L.; Wang, Y.; Zhao, C.; Chu, Y.; Xiao, J.; Zhao, Y.; Li, X.; Yang, S. Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorg. Med. Chem., 2009, 17, 2623-2631.
(a)Canamares, M.; Garcia-Ramos, J.; Sanchez-Cortes, S. Degradation of curcumin dye in aqueous solution and on Ag nanoparticles studied by ultraviolet-visible absorption and surface-enhanced Raman spectroscopy. Appl. Spectrosc., 2006, 60, 1386-1391.
(b)Mohanty, C.; Sahoo, S.K. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials, 2010, 31, 6597-6611.
Shahlaei, M.; Rahimi, B.; Nowroozi, A.; Ashrafi-Kooshk, M.R.; Sadrjavadi, K.; Khodarahmi, R. Exploring binding properties of sertraline with human serum albumin: Combination of spectroscopic and molecular modeling studies. Chem. Biol. Interact., 2015, 242, 235-246.
(a)Kunwar, A.; Barik, A.; Pandey, R.; Priyadarsini, K.I. Transport of liposomal and albumin loaded curcumin to living cells: An absorption and fluorescence spectroscopic study. Biochim. Biophys. Acta, 2006, 1760, 1513-1520.
(b)Mohammadi, F.; Bordbar, A-K.; Divsalar, A.; Mohammadi, K.; Saboury, A.A. Interaction of curcumin and diacetylcurcumin with the lipocalin member β-lactoglobuli. Protein J., 2009, 28, 117-123.
(c)Peters, T., Jr Serum albumin. In: Advances in Protein Chemistry; Anfinsen, C.B.; Edsall, J.T.; Richards, F.M., Eds.; Elsevier: Amsterdam, 1985; Vol. 37, pp. 161-245.
(d)Sneharani, A.H.; Karakkat, J.V.; Singh, S.A.; Rao, A.A. Interaction of curcumin with β-lactoglobulin stability, spectroscopic analysis, and molecular modeling of the complex. J. Agric. Food Chem., 2010, 58, 11130-11139.
(a)Zamboni, W.C. Liposomal, nanoparticle, and conjugated formulations of anticancer agents. Clin. Cancer Res., 2005, 11, 8230-8234.
(b)Portnaya, I.; Cogan, U.; Livney, Y.D.; Ramon, O.; Shimoni, K.; Rosenberg, M.; Danino, D. Micellization of bovine β-casein studied by isothermal titration microcalorimetry and cryogenic transmission electron microscopy. J. Agric. Food Chem., 2006, 54, 5555-5561.
Mohammadi, F.; Bordbar, A-K.; Divsalar, A.; Mohammadi, K.; Saboury, A.A. Analysis of binding interaction of curcumin and diacetylcurcumin with human and bovine serum albumin using fluorescence and circular dichroism spectroscopy. Protein J., 2009, 28, 189-196.
(a) Mitra, S.P. Binding and stability of curcumin in presence of bovine serum albumin. J. Surf. Sci. Technol, 2007, 23, 91.
(b) Esmaili, M.; Ghaffari, S.M.; Moosavi-Movahedi, Z.; Atri, M.S.; Sharifizadeh, A.; Farhadi, M.; Yousefi, R.; Chobert, J-M.; Haertlé, T.; Moosavi-Movahedi, A.A. Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. J. Lebensm. Wiss. Technol., 2011, 44, 2166-2172.
(a) Kulmyrzaev, A.A.; Levieux, D.; Dufour, É. Front-face fluorescence spectroscopy allows the characterization of mild heat treatments applied to milk. Relations with the denaturation of milk proteins. J. Agric. Food Chem., 2005, 53, 502-507.
(b) Tayyab, S.; Haq, S.K.; Aziz, M.A.; Khan, M.M.; Muzammil, S. Effect of lysine modification on the conformation and indomethacin binding properties of human serum albumin. Int. J. Biol. Macromol., 1999, 26, 173-180.
(a) Mirzaee, F.; Kooshk, M.R.A.; Rezaei-Tavirani, M.; Khodarahmi, R. Protective effects of accompanying proteins on light-and water-mediated degradation of Curcumin. J. Paramed. Sci., 2013, 5.
(b) Kooshk, M.R.A.; Mansouri, K.; Nadi, M.M.; Khodarahmi, S.; Khodarahmi, R. In vitro anti-cancer activity of native curcumin and “Protein-Curcumin” systems: A perspective on drug-delivery application. J. Rep. Pharm. Sci., 2013, 2, 66-74.
Lozano, J.M.; Giraldo, G.I.; Romero, C.M. An improved method for isolation of β-lactoglobulin. Int. Dairy J., 2008, 18, 55-63.
(a) Lawal, O.; Adebowale, K. The acylated protein derivatives of Canavalia ensiformis (jack bean): A study of functional characteristics. LWT-Food. Sci. Tech., 2006, 39, 918-929.
(b) Jangholi, A.; Ashrafi-Kooshk, M.R.; Arab, S.S.; Riazi, G.; Mokhtari, F.; Poorebrahim, M.; Mahdiuni, H.; Kurganov, B.I.; Moosavi-Movahedi, A.A.; Khodarahmi, R. Appraisal of role of the polyanionic inducer length on amyloid formation by 412-residue 1N4R Tau protein: A comparative study. Arch. Biochem. Biophys., 2016, 609, 1-19.
Snyder, S.L.; Sobocinski, P.Z. An improved 2, 4, 6-trinitrobenzenesulfonic acid method for the determination of amines. Anal. Biochem., 1975, 64, 284-288.
Hudson, E.A.; de Paula, H.M.C.; Ferreira, G.M.D.; Ferreira, G.M.D.; do Carmo Hespanhol, M.; da Silva, L.H.M.; Pires, A.C.S. Thermodynamic and kinetic analyses of curcumin and bovine serum albumin binding. Food Chem., 2018, 242, 505-512.
Lakowicz, J. Principles of Fluorescent Spectroscopy, 2nd ed; Kluwer Academic/Plenum Press: New York, 1999.
Moradi, N.; Ashrafi-Kooshk, M.R.; Ghobadi, S.; Shahlaei, M.; Khodarahmi, R. Spectroscopic study of drug-binding characteristics of unmodified and pNPA-based acetylated human serum albumin: Does esterase activity affect microenvironment of drug binding sites on the protein? J. Lumin., 2015, 160, 351-361.
Goupy, P.; Dufour, C.; Loonis, M.; Dangles, O. Quantitative kinetic analysis of hydrogen transfer reactions from dietary polyphenols to the DPPH radical. J. Agric. Food Chem., 2003, 51, 615-622.
Shen, L.; Ji, H-F. Low stability remedies the low bioavailability of curcumin. Trends Mol. Med., 2012, 18, 363-364.
Mondal, S.; Ghosh, S.; Moulik, S.P. Stability of curcumin in different solvent and solution media: UV-visible and steady-state fluorescence spectral study. J. Photochem. Photobiol., 2016, 158, 212-218.
Nadi, M.M.; Kooshk, M.R.A.; Mansouri, K.; Ghadami, S.A.; Amani, M.; Ghobadi, S.; Khodarahmi, R. Comparative spectroscopic studies on curcumin stabilization by association to bovine serum albumin and casein: A perspective on drug-delivery application. Int. J. Food Prop., 2015, 18, 638-659.
Leung, M.H.; Colangelo, H.; Kee, T.W. Encapsulation of curcumin in cationic micelles suppresses alkaline hydrolysis. Langmuir, 2008, 24, 5672-5675.
Möller, M.; Denicola, A. Study of protein‐ligand binding by fluorescence. Biochem. Mol. Biol. Educ., 2002, 30, 309-312.
Sahoo, B.K.; Ghosh, K.S.; Dasgupta, S. Molecular interactions of isoxazolcurcumin with human serum albumin: Spectroscopic and molecular modeling studies. Biopolymers, 2009, 91, 108-119.
Goodsell, D.S.; Olson, A.J. Automated docking of substrates to proteins by simulated annealing. Proteins, 1990, 8, 195-202.
Chen, T.; Cao, H.; Zhu, S.; Lu, Y.; Shang, Y.; Wang, M.; Tang, Y.; Zhu, L. Investigation of the binding of Salvianolic acid B to human serum albumin and the effect of metal ions on the binding. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 81, 645-652.
Li, M.; Ma, Y.; Ngadi, M.O. Binding of curcumin to β-lactoglobulin and its effect on antioxidant characteristics of curcumin. Food Chem., 2013, 141, 1504-1511.
Ross, P.D.; Subramanian, S. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 1981, 20, 3096-3102.
(a) Khodarahmi, R.; Karimi, S.A.; Kooshk, M.R.A.; Ghadami, S.A.; Ghobadi, S.; Amani, M. Comparative spectroscopic studies on drug binding characteristics and protein surface hydrophobicity of native and modified forms of bovine serum albumin: Possible relevance to change in protein structure/function upon non-enzymatic glycation. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 89, 177-186.
(b) Hu, T-Y.; Liu, C-L.; Chen, J-Y.; Hu, M-L. Curcumin ameliorates methylglyoxal-induced alterations of cellular morphology and hyperpermeability in human umbilical vein endothelial cells. J. Funct. Foods, 2013, 5, 745-754.
Litwinienko, G.; Ingold, K. Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J. Org. Chem., 2004, 69, 5888-5896.
Yang, M.; Wu, Y.; Li, J.; Zhou, H.; Wang, X. Binding of curcumin with bovine serum albumin in the presence of ι-carrageenan and implications on the stability and antioxidant activity of curcumin. J. Agric. Food Chem., 2013, 61, 7150-7155.
Blasius, R.; Duvoix, A.; Morceau, F.; Schnekenburger, M.; Delhalle, S.; Henry, E.; Dicato, M.; Diederich, M. curcumin stability and its effect on glutathione S‐transferase P1‐1 mRNA expression in K562 cells. Ann. N. Y. Acad. Sci., 2004, 1030, 442-448.
Nishikawa, H.; Tsutsumi, J.; Kitani, S. Anti-inflammatory and anti-oxidative effect of curcumin in connective tissue type mast cell. J. Funct. Foods, 2013, 5, 763-772.
(a) Azmi, A.S.; Bhat, S.H.; Hanif, S.; Hadi, S. Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: A putative mechanism for anticancer properties. FEBS Lett., 2006, 580, 533-538.
(b) Elbling, L.; Weiss, R-M.; Teufelhofer, O.; Uhl, M.; Knasmueller, S.; Schulte-Hermann, R.; Berger, W.; Micksche, M. Green tea extract and (–)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities. FASEB J., 2005, 19, 807-809.
Agullo, G.; Gamet-Payrastre, L.; Fernandez, Y.; Anciaux, N.; Demigné, C.; Rémésy, C. Comparative effects of flavonoids on the growth, viability and metabolism of a colonic adenocarcinoma cell line (HT29 cells). Cancer Lett., 1996, 105, 61-70.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [132 - 147]
Pages: 16
DOI: 10.2174/0929866525666181114152242

Article Metrics

PDF: 33