High-throughput Strategy Accelerates the Progress of Marine Anticancer Peptide Drug Development

Author(s): Peng Lyu , Hang F. Kwok* .

Journal Name: Recent Patents on Anti-Cancer Drug Discovery

Volume 14 , Issue 1 , 2019

Become EABM
Become Reviewer

[1]
Fosgerau K, Hoffmann T. Peptide therapeutics: Current status and future directions. Drug Discov Today 2015; 20(1): 122-8.
[2]
Padhi A, Sengupta M, Sengupta S, Roehm KH, Sonawane A. Antimicrobial peptides and proteins in mycobacterial therapy: Current status and future prospects. Tuberculosis (Edinb) 2014; 94(4): 363-73.
[3]
Buchwald H, Dorman RB, Rasmus NF, Michalek VN, Landvik NM, Ikramuddin S. Effects on GLP-1, PYY, and leptin by direct stimulation of terminal ileum and cecum in humans: Implications for ileal transposition. Surg Obes Relat Dis 2014; 10(5): 780-6.
[4]
Lau JL, Dunn MK. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg Med Chem 2018; 26(10): 2700-7.
[5]
Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Synthetic therapeutic peptides: Science and market. Drug Discov Today 2010; 15(1-2): 40-56.
[6]
Otvos L Jr, Wade JD. Current challenges in peptide-based drug discovery. Front Chem 2014; 2: 62.
[7]
Lax R. The future of peptide development in the pharmaceutical industry. PharManufacturing. The Int Pep Rev 2010; 2: 10-5.
[8]
Zheng L, Xu Y, Lin X, Yuan Z, Liu M, Cao S, et al. Recent progress of marine polypeptides as anticancer agents. Recent Pat Anti-Cancer Drug Discov 2018; 13(4): 445-54.
[9]
Sable R, Parajuli P, Jois S. Peptides, peptidomimetics, and polypeptides from marine sources: A wealth of natural sources for pharmaceutical applications. Mar Drugs 2017; 15(4)
[http://dx.doi.org/10.3390/md15040124]
[10]
Senter PD, Sievers EL. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nature Biotech 2012; 30(7): 631-8.
[11]
Spicka I, Ocio EM, Oakervee HE, Greil R, Banh RH, Catley L, et al. Randomized Phase III study (ADMYRE) of plitidepsin in combination with dexamethasone vs dexamethasone alone in patients with relapsed/refractory multiple myeloma. Am Soc Hematology 2017; pp. 89-96.
[12]
Leisch M, Egle A, Greil R. Plitidepsin: A potential new treatment for relapsed/refractory multiple myeloma. Future Oncol 2018.
[http://dx.doi.org/10.2217/fon-2018-0492]
[13]
Loganzo F, Discafani CM, Annable T, Beyer C, Musto S, Hari M, et al. HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo. Cancer Res 2003; 63(8): 1838-45.
[14]
Rademaker-Lakhai JM, Horenblas S, Meinhardt W, Stokvis E, de Reijke TM, Jimeno JM, et al. Phase I clinical and pharmacokinetic study of kahalalide F in patients with advanced androgen refractory prostate cancer. Clin Cancer Res 2005; 11(5): 1854-62.
[15]
Martin-Algarra S, Espinosa E, Rubio J, Lopez Lopez JJ, Manzano JL, Carrion LA, et al. Phase II study of weekly Kahalalide F in patients with advanced malignant melanoma. Eur J Cancer 2009; 45(5): 732-5.
[16]
Goel S, Viteri S, Morán T, Coronado C, Dios JLI, Miguel-Lillo B, et al. Phase I, dose-escalating study of elisidepsin (Irvalec®), a plasma membrane-disrupting marine antitumor agent, in combination with erlotinib in patients with advanced malignant solid tumors. Invest New Drugs 2016; 34(1): 75-83.
[17]
Cheung RC, Ng TB, Wong JH. Marine peptides: Bioactivities and applications. Mar Drugs 2015; 13(7): 4006-43.
[18]
Hu Y, Chen J, Hu G, Yu J, Zhu X, Lin Y, et al. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar Drugs 2015; 13(1): 202-21.
[19]
Li B, Lyu P, Xi X, Ge L, Mahadevappa R, Shaw C, et al. Triggering of cancer cell cycle arrest by a novel scorpion venom-derived peptide-gonearrestide. J Cell Mol Med 2018; 22(9): 4460-73.
[20]
Ma R, Mahadevappa R, Kwok HF. Venom-based peptide therapy: Insights into anti-cancer mechanism. Oncotarget 2017; 8(59): 100908-30.
[21]
Lemes AC, Sala L, Ores Jda C, Braga AR, Egea MB, Fernandes KF. A Review of the Latest Advances in Encrypted Bioactive Peptides from Protein-Rich Waste. Int J Mol Sci 2016; 17(6)
[22]
Domon B, Aebersold R. Mass spectrometry and protein analysis. Science 2006; 312(5771): 212-7.
[23]
Graves PR, Haystead TA. Molecular biologist’s guide to proteomics. Micro Mol Biol Rev 2002; 66(1): 39-63.
[24]
Jensen ON. Interpreting the protein language using proteomics. Nature reviews Mol. Mol Cell Bio 2006; 7(6): 391-8.
[25]
Mardis ER. Next-generation sequencing platforms. Annu Rev Anal Chem 2013; 6: 287-303.
[26]
Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, et al. A tale of three next generation sequencing platforms: Comparison of ion torrent, pacific biosciences and illumina MiSeq sequencers. BMC Genomics 2012; 13(1): 341.
[27]
Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature 2016; 537(7620): 347-55.
[28]
Tran NH, Zhang X, Xin L, Shan B, Li M. De novo peptide sequencing by deep learning. Proc Natl Acad Sci USA 2017; 114(31): 8247-52.
[29]
Tran NH, Rahman MZ, He L, Xin L, Shan B, Li M. Complete de novo assembly of monoclonal antibody sequences. Sci Rep 2016; 6: 31730-7.
[30]
Zhang J, Xin L, Shan B, Chen W, Xie M, Yuen D, et al. PEAKS DB: De novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics 2012; 11(4): M111.010587. .
[31]
Dutertre S, Jin A-h, Kaas Q, Jones A, Alewood PF, Lewis RJ. Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom. Mol Cell Proteomics 2013; 12(2): 312-29.
[32]
Himaya S, Jin A-H. Comparative venomics reveals the complex prey capture strategy of the piscivorous cone snail Conus catus. J Proteome Res 2015; 14(10): 4372-81.
[33]
Jin A-h, Dutertre S, Kaas Q, Lavergne V, Kubala P, Lewis RJ, et al. Transcriptomic messiness in the venom duct of Conus miles contributes to conotoxin diversity. Mol Cell Proteomics 2013; MCP. M113.030353..
[34]
Flordellis CS, Manolis AS, Paris H, Karabinis A. Rethinking target discovery in polygenic diseases. Curr Top Med Chem 2006; 6(16): 1791-8.
[35]
Li H, Zhou H, Wang D, Qiu J, Zhou Y, Li X, et al. Versatile pathway-centric approach based on high-throughput sequencing to anticancer drug discovery. Proc Natl Acad Sci USA 2012; 109(12): 4609-14.
[36]
Robinson SD, Undheim EA, Ueberheide B, King GF. Venom peptides as therapeutics: Advances, challenges and the future of venom-peptide discovery. Expert Rev Proteomics 2017; 14(10): 931-9.
[37]
Prashanth JR, Lewis RJ. An efficient transcriptome analysis pipeline to accelerate venom peptide discovery and characterisation. Toxicon 2015; 107: 282-9.
[38]
Xie B, Huang Y, Baumann K, Fry BG, Shi Q. From marine venoms to drugs: Efficiently supported by a combination of transcriptomics and proteomics. Marine Drugs 2017; 15(4): 103-10.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 1
Year: 2019
Page: [2 - 4]
Pages: 3
DOI: 10.2174/1574892813999181114152127

Article Metrics

PDF: 33
HTML: 7