Grey Relational Analysis based Keypoints Selection in Bag-of-Features for Histopathological Image Classification

Author(s): Raju Pal*, Mukesh Saraswat.

Journal Name: Recent Patents on Computer Science

Volume 12 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: With the expeditious development of current medical imaging technology, the availability of histopathological images has been increased in a large number. Hence, histopathological image classification and annotation have emerged as the prime research fields in the pathological diagnosis and clinical practices. Several methods are available for the automation of image classification.

Methods: Recently, the bag-of-features appeared as a successful histopathological image classification method. However, all the extracted keypoints in bag-of-features are not relevant and generally have very high dimensions, which degrade the performance of a classifier. Therefore, this paper introduces a new Grey relational analysis-based bag-of-features method to search the relevant keypoints.

Results: The efficacy of the proposed method has been analyzed on animal diagnostics lab histopathological image datasets having healthy and inflamed images of three organs. The average accuracy of the proposed method is 88.3%, which is the highest among other state-of-the-art methods.

Conclusion: This paper introduced a new Grey relational analysis-based bag-of-features which improves the efficiency of vector quantization step of the standard bag-of-features method. The method used Grey relational analysis for similarity measure in vector quantization method of bag-offeatures. The proposed method has been validated in terms of precision, recall, G-mean, F1 score, and radar charts on three datasets, Kidney, Lung, and Spleen of ADL histopathological images.

Keywords: Histopathological image classification, Bag-of-features, Grey relational analysis, keypoints selection, clustering, keypoints detection.

[1]
M. Abdel-Nasser, J. Melendez, A. Moreno, O.A. Omer, and D. Puig, "Breast tumor classification in ultrasound images using texture analysis and super-resolution methods", Eng. Appl. Artif. Intell., vol. 59, pp. 84-92, 2017. [http://dx.doi.org/10.1016/j.engappai.2016.12.019].
[2]
D.W. Aha, D. Kibler, and M.K. Albert, "Instance-based learning algorithms", Mach. Learn., vol. 6, no. 1, pp. 37-66, 1991. [http://dx.doi.org/10.1007/BF00153759].
[3]
H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, "Speeded-up robust features", Comp. Vis. Image Underst., vol. 110, no. 3, pp. 346-359, 2008. [http://dx.doi.org/10.1016/j.cviu.2007.09.014].
[4]
H. Brighton, and C. Mellish, "Advances in instance selection for instance-based learning algorithms", Data Min. Knowl. Discov., vol. 6, no. 2, pp. 153-172, 2002. [http://dx.doi.org/10.1023/A:1014043630878].
[5]
J.C. Caicedo, A. Cruz, and F.A. Gonzalez, "Histopathology image classification using bag of features and kernel functions", In: Proceeding of Conference on Artificial Intelligence in Medicine in Europe, Springer: Berlin, Heidelberg, pp. 126-135 2009. [http://dx.doi.org/10.1007/978-3-642-02976-9_17]
[6]
K.C. Chang, and M.F. Yeh, "Grey relational analysis-based approach for data clustering", IEE Proceeding. Visual Image Signal Processing., vol. 152, no. 2, pp. 165-172, 2005. [http://dx.doi.org/10.1049/ip-vis:20041209].
[7]
D. C. Cires¸ A. Giusti L. M. Gambardella and J. Schmidhuber, "Mitosis detection in breast cancer histology images with deep neural networks", In: International Conference on Medical Image Computing and Computer-assisted Intervention, Springer: Berlin, Heidelberg, pp. 411-418 2013. [http://dx.doi.org/10.1007/978-3-642-40763-5_51]
[8]
A. Cruz-Roa, J.C. Caicedo, and F.A. González, "Visual pattern mining in histology image collections using bag of features", Artif. Intell. Med., vol. 52, no. 2, pp. 91-106, 2011. [http://dx.doi.org/10.1016/j.artmed.2011.04.010]. [PMID: 21664806].
[9]
G. D’ıaz, and E. Romero, "Histopathological image classification using stain component features on a PLSA model", In: Iberoamerican Congress on Pattern Recognition., Springer: Berlin, Heidelberg, pp. 55-62. 2010
[10]
G. Dorko, and C. Schmid, "Selection of scale-invariant parts for object class recognition", In: Proceedings Ninth IEEE International Conference on Computer Vision, Nice, France, pp. 634-640 2003. [http://dx.doi.org/10.1109/ICCV.2003.1238407]
[11]
A. Esteva, B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, H.M. Blau, and S. Thrun, "Dermatologist-level classification of skin cancer with deep neural networks", Nature, vol. 542, no. 7639, pp. 115-118, 2017. [http://dx.doi.org/10.1038/nature21056]. [PMID: 28117445].
[12]
M. Gabryel, and G. Capizzi, "The bag-of-words method with dictionary analysis by evolutionary algorithm", In: International Conference on Artificial Intelligence and Soft Computing, Springer: Cham, pp. 43-51. 2017. [http://dx.doi.org/10.1007/978-3-319-59060-8_5]
[13]
M.J. Gangeh, L. Sørensen, S.B. Shaker, M.S. Kamel, M. De Bruijne, and M. Loog, "A texton-based approach for the classification of lung parenchyma in CT images", In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, pp. 595-602. 2010. [http://dx.doi.org/10.1007/978-3-642-15711-0_74]
[14]
M.N. Gurcan, L.E. Boucheron, A. Can, A. Madabhushi, N.M. Rajpoot, and B. Yener, "Histopathological image analysis: a review", IEEE Rev. Biomed. Eng., vol. 2, pp. 147-171, 2009. [http://dx.doi.org/10.1109/RBME.2009.2034865].
[15]
G. Iannello, L. Onofri, and P. Soda, A bag of visual words approach for centromere and cytoplasmic staining pattern classification on hep-2 images 2012 In: 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS), Rome, Italy, pp. 1-6. 2012. [http://dx.doi.org/10.1109/CBMS.2012.6266360]
[16]
H. Irshad, A. Veillard, L. Roux, and D. Racoceanu, "Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-current status and future potential", IEEE Rev. Biomed. Eng., vol. 7, pp. 97-114, 2014. [http://dx.doi.org/10.1109/RBME.2013.2295804]. [PMID: 24802905].
[17]
D. Julong, "Introduction to grey system theory", J. Grey Syst., vol. 1, no. 1, pp. 1-24, 1989. [https://doi.org/10.1007/978-3-642-16158-2_1].
[18]
M.D. Kumar, M. Babaie, S. Zhu, S. Kalra, and H.R. Tizhoosh, "A comparative study of CNN, BOVW and LBP for classification of histopathological images", In: IEEE Symposium Series on Computational Intelligence, Honolulu, Hawaii, USA, pp. 1-7. 2017. [https://doi.org/10.1109/SSCI.2017.8285162]
[19]
T. Li, T. Mei, I.S. Kweon, and X.S. Hua, "Contextual bag-of-words for visual categorization", IEEE Trans. Circ. Syst. Video Tech., vol. 21, no. 4, pp. 381-392, 2011. [http://dx.doi.org/10.1109/TCSVT.2010.2041828].
[20]
X. Li, K.W. Hipel, and Y. Dang, "An improved grey relational analysis approach for panel data clustering", Expert Syst. Appl., vol. 42, no. 23, pp. 9105-9116, 2015. [http://dx.doi.org/10.1016/j.eswa.2015.07.066].
[21]
W.C. Lin, C.F. Tsai, Z.Y. Chen, and S.W. Ke, "Key point selection for efficient bag-of-words feature generation and effective image classification", Inf. Sci., vol. 329, pp. 33-51, 2016. [http://dx.doi.org/10.1016/j.ins.2015.08.021].
[22]
J.C. Lu, and M.F. Yeh, "Robot path planning based on modified grey relational analysis", Cybern. Syst., vol. 33, no. 2, pp. 129-159, 2002. [http://dx.doi.org/10.1080/019697202753435908].
[23]
H. Mittal, and M. Saraswat, "Classification of histopathological images through bag-of-visual-words and gravitational search algorithm", In: Proceeding of International Conference on Soft Computing for Problem Solving, Springer: Singapore, 2017, pp. 231-241.
[24]
V. Murugappan, and R. Sabeenian, "Texture based medical image classification by using multi-scale Gabor rotation-invariant local binary pattern", Cluster Comput., vol. •••, pp. 1-14, 2017. [https://doi.org/10.1007/978-981-13-1595-4_18].
[25]
N. Orlov, L. Shamir, T. Macura, J. Johnston, D.M. Eckley, and I.G. Goldberg, "WND-CHARM: multi-purpose image classification using compound image transforms", Pattern Recognit. Lett., vol. 29, no. 11, pp. 1684-1693, 2008. [http://dx.doi.org/10.1016/j.patrec.2008.04.013]. [PMID: 18958301].
[26]
Pathologists PSU Animal Diagnostics Lab (ADL) Histopathological image data sets. [Available from:, http://signal.ee.psu.edu/ histimg2.html (Accessed on 08/04/2018).
[27]
S.H. Raza, R.M. Parry, Y. Sharma, Q. Chaudry, R.A. Moffitt, A. Young, and M.D. Wang, "Automated classification of r enal cell carcinoma subtypes using bag-of-features", In: Conf. Eng. Med. Biol. Society, IEEE Vol.2010, 2010 [http://dx.doi.org/10.1109/IEMBS.2010.5626009], pp. 6749-6752.
[28]
S.H. Raza, R.M. Parry, R.A. Moffitt, A.N. Young, and M.D. Wang, "An analysis of scale and rotation invariance in the bag-of-features method for histopathological image classification", In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer: Berlin, Heidelberg 2011, pp. 66-74. [http://dx.doi.org/10.1007/978-3-642-23626-6_9]
[29]
R. Sallehuddin, S.M.H. Shamsuddin, and S.Z.M. Hashim, "Application of grey relational analysis for multivariate time series", In: 8th International Conference on Intelligent Systems Design and Applications, Kaohsiung, Taiwan Vol. 2. 2008, pp. 432-437. [http://dx.doi.org/10.1109/ISDA.2008.181]
[30]
M. Saraswat, and K. Arya, "Leukocyte classification in skin tissue images", In: Proceeding of 7th International Conference on Bio-Inspired Computing: Theories and Applications, Springer: India, pp. 65-73. 2013. [https://doi.org/10.1007/978-81-322-1038-2_6]
[31]
M. Saraswat, and K.V. Arya, "Automated microscopic image analysis for leukocytes identification: a survey", Micron, vol. 65, pp. 20-33, 2014. [http://dx.doi.org/10.1016/j.micron.2014.04.001]. [PMID: 25041828].
[32]
M. Saraswat, and K.V. Arya, "Feature selection and classification of leukocytes using random forest", Med. Biol. Eng. Comput., vol. 52, no. 12, pp. 1041-1052, 2014. [http://dx.doi.org/10.1007/s11517-014-1200-8]. [PMID: 25284218].
[33]
M. Saraswat, and K. Arya, "Supervised leukocyte segmentation in tissue images using multi-objective optimization technique", Eng. Appl. Artif. Intell., vol. 31, pp. 44-52, 2014. [http://dx.doi.org/10.1016/j.engappai.2013.09.010].
[34]
M. Saraswat, K. Arya, and H. Sharma, "Leukocyte segmentation in tissue images using differential evolution algorithm", Swarm Evol. Comput., vol. 11, pp. 46-54, 2013. [http://dx.doi.org/10.1016/j.swevo.2013.02.003].
[35]
N. Situ, X. Yuan, J. Chen, and G. Zouridakis, "Malignant melanoma detection by bag-of-features classification", In: 30th Annual International Conference Engineering in Medicine and Biology Society, IEEE: Vancouver, BC, Canada, pp. 3110-3113. 2008. [http://dx.doi.org/10.1109/ IEMBS.2008.4649862]
[36]
U. Srinivas, H. Mousavi, C. Jeon, V. Monga, A. Hattel, and B. Jayarao, "SHIRC: a simultaneous sparsity model for histopathological image representation and classification", In: IEEE 10th International Symposium on Biomedical Imaging, IEEE, 2013, pp. 1118-1121. [http://dx.doi.org/10.1109/ISBI.2013.6556675]
[37]
U. Srinivas, H.S. Mousavi, V. Monga, A. Hattel, and B. Jayarao, “Simultaneous sparsity model for histopathological image representation and classification”, IEEE Trans. Med. Imaging., IEEE, 2014, pp. 1163-1179. [http://dx.doi.org/10.1109/TMI.2014.2306173]
[38]
J. Tang, Z.J. Zha, D. Tao, and T.S. Chua, "Semantic-gap-oriented active learning for multilabel image annotation", IEEE Trans. Image Process., vol. 21, no. 4, pp. 2354-2360, 2012. [http://dx.doi.org/10.1109/TIP.2011.2180916]. [PMID: 22194245].
[39]
T.H. Vu, H.S. Mousavi, V. Monga, G. Rao, and U.A. Rao, “Histopathological image classification using discriminative feature-oriented dictionary learning”, IEEE Trans. Med. Imaging., IEEE, 2016, pp. 738-751. [http://dx.doi.org/10.1109/ TMI.2015.2493530]
[40]
A. Wagner, J. Wright, A. Ganesh, Z. Zhou, H. Mobahi, and Y. Ma, "Toward a practical face recognition system: robust alignment and illumination by sparse representation", IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 2, pp. 372-386, 2012. [http://dx.doi.org/10.1109/TPAMI.2011.112]. [PMID: 21646680].
[41]
C. Wang, S.F. Chen, and M.M.F. Yuen, "Fuzzy part family formation based on grey relational analysis", Int. J. Adv. Manuf. Technol., vol. 18, no. 2, pp. 128-132, 2001. [http://dx.doi.org/10.1007/s001700170083].
[42]
D.R. Wilson, and T.R. Martinez, "Reduction techniques for instance-based learning algorithms", Mach. Learn., vol. 38, no. 3, pp. 257-286, 2000. [http://dx.doi.org/10.1023/A:1007626913721].
[43]
M.F. Yeh, and H.C. Lu, "Evaluating weapon systems based on grey relational analysis and fuzzy arithmetic operations", Zhongguo Gongcheng Xuekan, vol. 23, no. 2, pp. 211-221, 2000. [http://dx.doi.org/10.1080/02533839.2000.9670539].
[44]
R. Zhang, J. Shen, F. Wei, X. Li, and A.K. Sangaiah, "Medical image classification based on multi-scale non-negative sparse coding", Artif. Intell. Med., vol. 83, pp. 44-51, 2017. [https://doi.org/ 10.1016/j.artmed.2017.05.006].
[45]
R. Pal, and M. Saraswat, "Enhanced bag of features using AlexNet and improved biogeography-based optimization for histopathological image analysis", In: 11th IEEE International Conference on Contemporary Computing (IC3). 2018.[http://dx.doi.org/10.1109/IC3.2018.8530540]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 12
ISSUE: 4
Year: 2019
Page: [260 - 268]
Pages: 9
DOI: 10.2174/2213275911666181114144049
Price: $58

Article Metrics

PDF: 34
HTML: 1