The Hydrosilylation and Cyanosilylation of Ketones Catalyzed using Metal Borohydrides

Author(s): Yu Liu, Duodong Zhang, Yangyang Ma, Jiayun Li*, Ying Bai, Jiajian Peng*.

Journal Name: Current Organic Synthesis

Volume 16 , Issue 2 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Abstract:

Aim and Objective: The hydrosilylation reaction of carbonyl compounds has emerged as a powerful method in organic synthesis. The catalytic hydrosilylation of ketones is a valuable transformation because it generates protected cyanosilylation reaction of carbonyl compounds is an efficient procedure for the synthesis of silylated cyanohydrins, which are readily converted into useful functionalized compounds, such as cyanohydrins, α-hydroxy acids, β-amino alcohols and other biologically active compounds.

Materials and Methods: A facile, economic and efficient method has been developed for the hydrosilylation and cyanosilylation of ketones using metal borohydrides. A series of silylated ethers and silylated cyanohydrins can be isolated via direct distillation.

Results: The catalytic properties of a range of metal borohydrides in the hydrosilylation reaction of acetophenone with diphenylsilane were investigated. The relative catalytic activity of the borohydride catalyst studied was as follows: (CH3)4NBH4> (PhCH2)(CH3)3NBH4> (CH2CH3)4NBH4> (CH3CH2CH2CH3)4NBH4> NaBH4> KBH4> LiBH4. The cyanosilylation of acetophenone using trimethylsilyl cyanide (TMSCN) in the presence of NaBH4 occurred under similar reaction conditions. An excellent reaction rate and high conversion were obtained.

Conclusion: The metal borohydride-catalyzed hydrosilylation alcohols in one step. The and cyanosilylation of ketones could be carried out smoothly under mild reaction conditions. Among the metal borohydrides studied, an excellent reaction rate and high conversion were obtained using NaBH4, NaBH (CH2CH3)3 or (alkyl)4 NBH4 as the reaction catalyst.

Keywords: Hydrosilylation, cyanosilylation, ketone, borohydride, metal borohydrides, organic synthesis.

[1]
Nishiyama, Y.; Kajimoto, H.; Kotani, K.; Sonoda, N. Hydrosilylation of Carbonyl Compounds Using a PhSeSiMe3/Bu3SnH/AIBN System. Org. Lett., 2001, 3(20), 3087-3089.
[2]
Nolin, K.A.; Krumper, J.R.; Pluth, M.D.; Bergman, R.G.; Toste, F.D. Analysis of an unprecedented mechanism for the catalytic hydrosilylation of carbonyl compounds. J. Am. Chem. Soc., 2007, 129(47), 14684-14696.
[3]
Süsse, L.; Hermeke, J.; Oestreich, M. The asymmetric piers hydrosilylation. J. Am. Chem. Soc., 2016, 138(22), 6940-6943.
[4]
Xue, B.J.; Sun, H.J.; Niu, Q.F.; Li, X.Y.; Fuhr, O.; Fenske, D. Catalytic hydrosilylation of carbonyl compounds by hydridothiophenolatoiron(II) complexes. Catal. Commun., 2017, 94, 23-28.
[5]
Liu, X.H.; Qin, B.; Zhou, X.; He, B.; Feng, X.M. Catalytic asymmetric cyanosilylation of ketones by a chiral amino acid salt. J. Am. Chem. Soc., 2005, 127(35), 12224-12225.
[6]
Díez-González, S.; Nolan, S.P. Transition metal-catalyzed hydrosilylation of carbonyl compounds and imines. A review. Org. Prep. Proced. Int., 2007, 39, 523-559.
[7]
Díez-González, S.; Nolan, S.P. N-heterocyclic carbene-copper(i) complexes in homogeneous catalysis. Synlett, 2007, 14, 2158-2167.
[8]
Sirol, S.; Courmarcel, J.; Mostefai, N.; Riant, O. Efficient enantioselective hydrosilylation of ketones catalyzed by air stable copper fluoride−phosphine complexes. Org. Lett., 2001, 3(25), 4111-4113.
[9]
Moreau, C.; Frost, C.G.; Murrer, B. Catalytic asymmetric hydrosilylation of ketones using mixed-ligand ruthenium complexes. Tetrahedron Lett., 1999, 40(30), 5617-5620.
[10]
Corriu, R.J.P.; Moreau, J.J.E. Asymmetric hydrosilylation of ketones catalysed by a chiral rhodium complex. J. Organomet. Chem., 1974, 64(3), c51-c54.
[11]
Malacea, R.; Poli, R.; Manoury, E. Asymmetric hydrosilylation, transfer hydrogenation and hydrogenation of ketones catalyzed by iridium complexes. Coord. Chem. Rev., 2010, 254(5-6), 729-752.
[12]
Liu, S.; Peng, J.J.; Yang, H.; Bai, Y.; Li, J.Y.; Lai, G.Q. Highly efficient and convenient asymmetric hydrosilylation of ketones catalyzed with zinc Schiff base complexes. Tetrahedron, 2012, 68(5), 1371-1375.
[13]
Yun, J.; Buchwald, S.L. Titanocene-catalyzed asymmetric ketone hydrosilylation: The effect of catalyst activation protocol and additives on the reaction rate and enantioselectivity. J. Am. Chem. Soc., 1999, 121(24), 5640-5644.
[14]
Díez-González, S.; Kaur, H.; Zinn, F.K.; Stevens, E.D.; Nolan, S.P. A simple and efficient copper-catalyzed procedure for the hydrosilylation of hindered and functionalized ketones. J. Org. Chem., 2005, 70(12), 4784-4796.
[15]
Vergote, T.; Nahra, F.; Merschaert, A.; Riant, O.; Peeters, D.; Leyssens, T. Mechanistic insight into the (NHC)copper(I)-catalyzed hydrosilylation of ketones. Organometallics, 2014, 33(8), 1953-1963.
[16]
Lee, D.; Yun, J. Copper-catalyzed asymmetric hydrosilylation of ketones using air and moisture stable precatalystCu(OAc)2.H2O. Tetrahedron Lett., 2004, 45(28), 5415-5417.
[17]
Manas, M.G.; Sharninghausen, L.S.; Balcells, D.; Crabtree, R.H. Experimental and computational studies of borohydride catalyzed hydrosilylation of a variety of C=O and C-N functionalities including esters, amides and heteroarenes. New J. Chem., 2014, 38, 1694-1700.
[18]
Wang, L.J.; Huang, X.; Jiang, J.; Liu, X.H.; Feng, X.M. Catalytic cyanosilylation of ketones using organic catalyst 1,1,3,3-tetramethylguanidine. Tetrahedron Lett., 2006, 47(10), 1581-1584.
[19]
Chen, F.X.; Feng, X.M. Synthesis of racemic tertiary cyanohydrins. Synlett, 2005, 06, 892-899.
[20]
Kanai, M.; Kato, N.; Ichikawa, E.; Shibasaki, M. Power of cooperativity: lewis acid-lewis base bifunctional asymmetric catalysis. Synlett, 2005, 10, 1491-1508.
[21]
Achard, T.R.J.; Clutterbuck, L.A.; North, M. Asymmetric catalysis of carbon-carbon bond-forming reactions using metal(salen) complexes. Synlett, 2005, 12, 1828-1847.
[22]
Brunel, J.M.; Holmes, I.P. Chemically catalyzed asymmetric cyanohydrin syntheses. Angew. Chem. Int. Ed., 2004, 43, 2752-2778.
[23]
Gregory, R.J.H. Cyanohydrins in nature and the laboratory: Biology, preparations, and synthetic applications. Chem. Rev., 1999, 99(12), 3649-3682.
[24]
Dekamin, M.G.; Mokhtari, J.; Naimi-Jamal, M.R. Organocatalytic cyanosilylation of carbonyl compounds by tetrabutylammonium phthalimide-N-oxyl. Catal. Commun., 2009, 10(5), 582-585.
[25]
Karimi, B. Ma’Mani, L. A highly efficient and recyclable silica-based scandium(III) interphase catalyst for cyanosilylation of carbonyl compounds. Org. Lett., 2004, 6(26), 4813-4815.
[26]
Kurono, N.; Yamaguchi, M.; Suzuki, K.; Ohkuma, T. Lithium chloride: An active and simple catalyst for cyanosilylation of aldehydes and ketones. J. Org. Chem., 2005, 70(16), 6530-6532.
[27]
Song, J.J.; Gallou, F.; Reeves, J.T.; Tan, Z.L.; Yee, N.K.; Senanayake, C.H. Activation of TMSCN by N-heterocyclic carbenes for facile cyanosilylation of carbonyl compounds. J. Org. Chem., 2006, 71(3), 1273-1276.
[28]
Dekamin, M.G.; Javanshir, S.; Naimi-Jamal, M.R.; Hekmatshoar, R.; Mokhtari, J. Potassium phthalimide-N-oxyl: An efficient catalyst for cyanosilylation of carbonyl compounds under mild conditions. J. Mol. Catal.A Chem., 2008, 283(1-2), 29-32.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 16
ISSUE: 2
Year: 2019
Page: [276 - 282]
Pages: 7
DOI: 10.2174/1570179415666181114111939
Price: $58

Article Metrics

PDF: 17