Ring-Opening Polymerization of L-lactide Initiated by Samarium(III) Acetate

Author(s): Jesús Miguel Contreras Ramírez*, Dimas Medina, Francisco López-Carrasquero, Ricardo Rafael Contreras.

Journal Name: Current Applied Polymer Science

Volume 3 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The synthesis of the aliphatic polyesters obtained by the ring opening polymerization has been achieved using as initiators a large amount of organometallic compounds derivative from: Alkali metals, alkaline earth metals, transition metals and lanthanide metals. Of all these compounds, the lanthanide derivatives have acquired great importance in the synthesis of aliphatic polyesters, since these show a greater catalytic activity and also can provide polymer with characteristics that will be very useful in the design of biomaterials.

Objective: It was proposed the synthesis of poly(L-lactida) (PL-LA) through a ring opening polymerization process of L-lactide initiated with samarium(III) acetate (Sm(OAc)3) under solvent-free melt conditions. The influence of different parameters of reaction, such as temperature, time, molar ratio monomer to initiator, on typical variables of polymers, e.g., conversion, dispersity, and molar mass, were analyzed.

Methods: All polymerizations were carried out under solvent-free melt conditions in ampoules-like flasks, equipped with a magnetic stirrer. The obtained polyesters were characterized by size exclusion chromatography (SEC) and 1H-NMR.

Results: The Sm(OAc)3 induces the polymerization of L-LA at high conversion, and produce polyesters with number-average molecular weights of 1.00 x 103 to 30.00 x 103 Dalton. The 1H-NMR analysis indicates a typical polymerization mechanism of coordination-insertion, with a breakdown of the acyl-oxygen bond of the L-LA.

Conclusion: Sm(OAc)3 was an effective initiator for the ring-opening polymerization of L-LA. SEC chromatography showed that, at high temperatures and prolonged reaction times, the molar mass of the polyester decreases, which is associated with the transesterification collateral reactions that occur during the polymerization process.

Keywords: Aliphatic polyesters, L-lactide, poly(L-lactide), polycondensation, ring-opening polymerization, Samarium(III) acetate.

[1]
Gupta AP, Kumar V. New emerging trends in synthetic biodegradable polymers-polylactide: A critique. Eur Polym J 2007; 43: 4053-74.
[http://dx.doi.org/10.1016/j.eurpolymj.2007.06.045]
[2]
Davis SS, Illum L, Stolnik S. Polymers in drug delivery. Curr Opin Colloid Interface Sci 1996; 1: 660-6.
[http://dx.doi.org/10.1016/S1359-0294(96)80105-1]
[3]
Gilding DK, Reed AM. Biodegradable polymers for use in surgery-polyglycolic/poly(actic acid) homo and copolymers: 1. Polymer (Guildf) 1979; 20: 1459-64.
[http://dx.doi.org/10.1016/0032-3861(79)90009-0]
[4]
Temenoff JS, Mikos AG. Review: Tissue engineering for regeneration of articular cartilage. Biomaterials 2000; 21(5): 431-40.
[http://dx.doi.org/10.1016/S0142-9612(99)00213-6] [PMID: 10674807]
[5]
Lee CW, Kimura Y, Masutani K. Difference in cell adhesion on three biodegradable aliphatic polyesters. Curr Appl Polym Sci 2018; 2: 94.
[http://dx.doi.org/10.2174/2452271602666180530075844]
[6]
Carothers WH. Polymerization. Chem Rev 1931; 8: 353-426.
[http://dx.doi.org/10.1021/cr60031a001]
[7]
Ahmed J, Varshney S. Polylactides-chemistry, properties and green packaging technology: A review. Int J Food Prop 2010; 14: 37-58.
[http://dx.doi.org/10.1080/10942910903125284]
[8]
Albertsson AC, Varma IK. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 2003; 4(6): 1466-86.
[http://dx.doi.org/10.1021/bm034247a] [PMID: 14606869]
[9]
Ajioka M, Enomoto K, Suzuki K, Yamaguchi A. Basic properties of polylactic acid produced by the direct condensation polymerization of lactic acid. Bull Chem Soc Jpn 1995; 68: 2125-31.
[http://dx.doi.org/10.1246/bcsj.68.2125]
[10]
Williams CK. Synthesis of functionalized biodegradable polyesters. Chem Soc Rev 2007; 36(10): 1573-80.
[http://dx.doi.org/10.1039/b614342n] [PMID: 17721582]
[11]
Bourissou D, Martin-Vaca B, Dumitrescu A, Graullier M, Lacombe F. Controlled cationic polymerization of lactide. Macromolecules 2005; 38: 9993-8.
[http://dx.doi.org/10.1021/ma051646k]
[12]
Gross RA, Kumar A, Kalra B. Polymer synthesis by in vitro enzyme catalysis. Chem Rev 2001; 101(7): 2097-124.
[http://dx.doi.org/10.1021/cr0002590] [PMID: 11710242]
[13]
Matsumura S, Mabuchi K, Toshima K. Lipase-catalyzed ring-opening polymerization of lactide. Macromol Rapid Commun 1997; 18: 477-82.
[http://dx.doi.org/10.1002/marc.1997.030180604]
[14]
Matsumura S, Mabuchi K, Toshima K. Novel ring-opening polymerization of lactide by lipase. Macromol Symp 1998; 130: 285-304.
[http://dx.doi.org/10.1002/masy.19981300125]
[15]
Matsumura S, Tsukada K, Toshima K. Novel lipase-catalyzed ring-opening copolymerization of lactide and trimethylene carbonate forming poly(ester carbonate)s. Int J Biol Macromol 1999; 25(1-3): 161-7.
[http://dx.doi.org/10.1016/S0141-8130(99)00030-6] [PMID: 10416663]
[16]
Matsumura S. Enzymatic synthesis of polyesters via ring-opening polymerization. Adv Polym Sci 2006; 194: 95-132.
[http://dx.doi.org/10.1007/12_030]
[17]
Bourrissou D, Moez-Sanchez S, Martin-Vaca B. Recent advances in the controlled preparation of poly(α-hydroxy acids): Metal-free catalysts and new monomers. C R Chim 2007; 10: 775-94.
[http://dx.doi.org/10.1016/j.crci.2007.05.004]
[18]
Myers M, Connor EF, Glauser T, Möck A, Nyce G, Hedrick JL. Phosphines: Nucleophilic organic catalysts for the controlled ring opening polymerization of lactides. J Polym Sci A Polym Chem 2002; 40: 844-51.
[http://dx.doi.org/10.1002/pola.10168]
[19]
Connor EF, Nyce GW, Myers M, Möck A, Hedrick JL. First example of N-heterocyclic carbenes as catalysts for living polymerization: Organocatalytic ring-opening polymerization of cyclic esters. J Am Chem Soc 2002; 124(6): 914-5.
[http://dx.doi.org/10.1021/ja0173324] [PMID: 11829593]
[20]
Nyce GW, Glauser T, Connor EF, Möck A, Waymouth RM, Hedrick JL. In situ generation of carbenes: a general and versatile platform for organocatalytic living polymerization. J Am Chem Soc 2003; 125(10): 3046-56.
[http://dx.doi.org/10.1021/ja021084+] [PMID: 12617671]
[21]
Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 2004; 104(12): 6147-76.
[http://dx.doi.org/10.1021/cr040002s] [PMID: 15584698]
[22]
Biela T, Kowalski A, Libiszowski J, Duda A, Penczek S. Progress in polymerization of cyclic esters: Mechanisms and synthetic applications. Macromol Symp 2006; 240: 47-55.
[http://dx.doi.org/10.1002/masy.200650807]
[23]
Cushion MG, Mountford P. Cationic and charge-neutral calcium tetrahydroborate complexes and their use in the controlled ring-opening polymerisation of rac-lactide. Chem Commun (Camb) 2011; 47(8): 2276-8.
[http://dx.doi.org/10.1039/C0CC04348F] [PMID: 21165502]
[24]
Amgoune A, Thomas CM, Carpentier J. Controlled ring-opening polymerization of lactide by group 3 metal complexes. Pure Appl Chem 2007; 79: 2013-30.
[http://dx.doi.org/10.1351/pac200779112013]
[25]
Clark L, Cushion MG, Dyer HE, Schwarz AD, Duchateau R, Mountford P. Dicationic and zwitterionic catalysts for the amine-initiated, immortal ring-opening polymerisation of rac-lactide: facile synthesis of amine-terminated, highly heterotactic PLA. Chem Commun (Camb) 2010; 46(2): 273-5.
[http://dx.doi.org/10.1039/B919162C] [PMID: 20024349]
[26]
Ajellal N, Carpentier JF, Guillaume C, et al. Metal-catalyzed immortal ring-opening polymerization of lactones, lactides and cyclic carbonates. Dalton Trans 2010; 39(36): 8363-76.
[http://dx.doi.org/10.1039/c001226b] [PMID: 20424735]
[27]
Wheaton CA, Hayes PG, Ireland BJ. Complexes of Mg, Ca and Zn as homogeneous catalysts for lactide polymerization. Dalton Trans 2009; 38(25): 4832-46.
[http://dx.doi.org/10.1039/b819107g] [PMID: 19662272]
[28]
Buffet J, Okuda J. Initiators for the stereoselective ring-opening polymerization of meso-lactide. Polym Chem 2011; 2: 2758-63.
[http://dx.doi.org/10.1039/c1py00206f]
[29]
Okada M. Chemical syntheses of biodegradable polymers. Prog Polym Sci 2002; 27: 87-133.
[http://dx.doi.org/10.1016/S0079-6700(01)00039-9]
[30]
Kricheldorf HR. Syntheses and application of polylactides. Chemosphere 2001; 43(1): 49-54.
[http://dx.doi.org/10.1016/S0045-6535(00)00323-4] [PMID: 11233824]
[31]
Penczek S, Cypryk M, Duda A, Kubisa P, Slomkowski S. Living ring-opening polymerizations of heterocyclic monomers. Prog Polym Sci 2007; 32: 247-82.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.01.002]
[32]
O’Keefe BJ, Hillmyer MA, Tolman WB. Polymerization of lactide and related cyclic esters by discrete metal complexes. J Chem Soc, Dalton Trans 2001; 15: 2215-24.
[http://dx.doi.org/10.1039/b104197p]
[33]
Wu J, Yu TL, Chen CT, Lin CC. Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters. Coord Chem Rev 2006; 250: 602-26.
[http://dx.doi.org/10.1016/j.ccr.2005.07.010]
[34]
Chisholm MH. Trispyrazolylborate ligands as ancillary ligands in the development of single-site metal alkoxide catalysts for ring-opening polymerization of cyclic esters. Inorg Chim Acta 2009; 362: 4284-90.
[http://dx.doi.org/10.1016/j.ica.2009.05.051]
[35]
Sanchez-Barba LF, Hughes DL, Humphrey SM, Bochmann M. New bis(allyl)(diketiminato) and tris(allyl) lanthanide complexes and their reactivity in the polymerization of polar monomers. Organometallics 2005; 24: 3792-9.
[http://dx.doi.org/10.1021/om050309x]
[36]
Sanchez-Barba LF, Hughes DL, Humphrey SM, Bochmann M. Ligand transfer reactions of mixed-metal lanthanide/magnesium allyl complexes with β-diketimines: Synthesis, structures, and ring opening polymerization catalysis. Organometallics 2006; 25: 1012-20.
[http://dx.doi.org/10.1021/om050892h]
[37]
Contreras JM, Medina D, López-Carrasquero F, Contreras RR. Ring-opening polymerization of ε-caprolactone initiated by samarium acetate. J Polym Res 2013; 20: 244.
[http://dx.doi.org/10.1007/s10965-013-0244-z]
[38]
Monsalve M, Contreras J, Cardozo E, Contreras RR. Evaluación de la actividad de complejos de samario (III) con á¡cido L-aspártico, ácido L-glutámico, glicina y o-fenantrolina, como iniciadores en la polimerización de carbonatos cíclicos. Avances en Química 2015; 10: 129-37.
[39]
Medina D, Contreras JM, López-Carrasquero F, Cardozo E, Contreras RR. Use of samarium(III)-amino acid complexes as initiators of ring-opening polymerization of cyclic esters. Polym Bull 2018; 75: 1253-63.
[http://dx.doi.org/10.1007/s00289-017-2089-9]
[40]
Save M, Schappacher M, Soun A. Controlled ring-opening polymerization of lactones and lactides initiated by lanthanum isopropoxide. Macromol Chem Phys 2002; 203: 889-99.
[http://dx.doi.org/10.1002/1521-3935(20020401)203:5/6<889:AID-MACP889>3.0.CO;2-O]
[41]
Wang Y, Zhang L, Wang P, Shen L. Ring-opening polymerization of L-lactide with rare earth aryloxides substituted by various alkyl groups. Chin J Polym Sci 2010; 28: 509-15.
[http://dx.doi.org/10.1007/s10118-010-9065-2]
[42]
Wang Y, Niu Y, Zhang L, Wang P, Shen L. A series of rare earth phenolates substituted by alkyl groups for D,L-lactide ring-opening polymerization. J Wuhan Univ Technol-Mater Sci Ed 2011; 26: 939-44.
[http://dx.doi.org/10.1007/s11595-011-0341-y]
[43]
Duda A, Kowalski A. Thermodynamics and kinetics of ring-opening polymerization. In: Dubois P, Coulembier O, Raquez J-M, Eds. Handbook of ring-opening polymerization Weinhein. Wiley-VCH 2009; pp. 1-4.
[http://dx.doi.org/10.1002/9783527628407.ch1]
[44]
Kasperczyk J, Bero M. Stereoselective polymerization of racemic dl-lactide in the presence of butyllithium and butylmagnesium. Structural investigations of the polymers. Polymer (Guildf) 2000; 41: 391-5.
[http://dx.doi.org/10.1016/S0032-3861(99)00421-8]
[45]
Gowda R, Chakraborty D. Zinc acetate as a catalyst for the bulk ring opening polymerization of cyclic esters and lactide. J Mol Catal Chem 2010; 333: 167-72.
[http://dx.doi.org/10.1016/j.molcata.2010.10.013]
[46]
Vivas M, Mejías N, Contreras J. Ring-opening polymerization of lactones initiated by diphenylzinc-coinitiator systems. Polym Int 2003; 52: 1005-9.
[http://dx.doi.org/10.1002/pi.1183]
[47]
Vivas M, Contreras J. Ring-opening polymerization of ε-caprolactone initiated by diphenylzinc. Eur Polym J 2003; 39: 43-7.
[http://dx.doi.org/10.1016/S0014-3057(02)00190-8]
[48]
Dunsing R, Kricheldorf H. Polylactones-14. Polymerization of δ-valerolactone and ϵ-caprolactone by means of trimethylsilyl triflate. Eur Polym J 1988; 24: 145-50.
[http://dx.doi.org/10.1016/0014-3057(88)90142-5]
[49]
Abraham G, Gallardo A, Lozano A, San Roman J. ε-Caprolactone/ZnCl2 complex formation: Characterization and ring-opening polymerization mechanism. J Polym Sci A Polym Chem 2000; 38: 1355-65.
[http://dx.doi.org/10.1002/(SICI)1099-0518(20000415)38:8<1355:AID-POLA20>3.0.CO;2-Z]
[50]
Dubois Ph, Jacobs C, Jérô´me R, Teyssié Ph. Macromolecular engineering of polylactones. 4. mechanism and kinetics of lactide homopolymerization by aluminum isopropoxide. Macromolecules 1991; 24: 2266-70.
[http://dx.doi.org/10.1021/ma00009a022]
[51]
Kricheldorf H, Bornhorst K, Hachmann-Thiessen H. Bismuth(III) n-hexanoate and tin(II) 2-ethylhexanoate initiated copolymerization of ε-caprolactone and L-lactide. Macromolecules 2005; 38: 5017-24.
[http://dx.doi.org/10.1021/ma047873o]
[52]
Wang C, Li H, Zhao X. Ring opening polymerization of L-lactide initiated by creatinine. Biomaterials 2004; 25(27): 5797-801.
[http://dx.doi.org/10.1016/j.biomaterials.2004.01.030] [PMID: 15172491]
[53]
Agarwal S, Karl M, Dehnicke K, Andreas G. Sm based initiators for the ring-opening polymerization of L-lactide e-Polymers 2013; 1(1): 012.
[54]
Williams CK, Breyfogle LE, Choi SK, et al. A highly active zinc catalyst for the controlled polymerization of lactide. J Am Chem Soc 2003; 125(37): 11350-9.
[http://dx.doi.org/10.1021/ja0359512] [PMID: 16220958]
[55]
Wang Y, Zhang L, Gao X, Zhang R, Li J. Characteristics and mechanism of L-lactide polymerization using N-heterociclic carbine organocatalyst. J Polym Res 2013; 20: 87.
[http://dx.doi.org/10.1007/s10965-013-0087-7]
[56]
Pack J, Kim S, Park S, Lee Y, Kim Y. Kinetic and mechanistic studies of l-lactide polymerization in supercritical chlorodifluoromethane. Macromolecules 2003; 36: 8923-30.
[http://dx.doi.org/10.1021/ma034910n]
[57]
Agarwal S, Puchner M. Ring opening polymerizations of cyclic esters and carbonate by rare-earth LnCp3. Eur Polym J 2002; 38: 2365-71.
[http://dx.doi.org/10.1016/S0014-3057(02)00141-6]
[58]
Jérôme C, Lecomte P. Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv Drug Deliv Rev 2008; 60(9): 1056-76.
[http://dx.doi.org/10.1016/j.addr.2008.02.008] [PMID: 18403043]
[59]
Kricheldorf H, Bornhorst K, Hachmann-Thiessen H. Bismuth(III) n-hexanoate and tin(II) 2-ethylhexanoate initiated copolymerization of ε-caprolactone and L-lactide. Macromolecules 2005; 38: 5017-24.
[http://dx.doi.org/10.1021/ma047873o]
[60]
Kayan A, Mert O. Preparation of l-lactide/3-glycidyloxypropy-ltrimethoxysilane copolymeric materials with various catalysts. J Inorg Organomet Polym 2014; 24: 1055-62.
[http://dx.doi.org/10.1007/s10904-014-0083-3]
[61]
Fang L, Zhang L, Shen Z. Characteristics and kinetics of ring opening polymerization of ε-caprolactone initiated by lanthanide tris(2,4,6-trimethylphenolate)s. Polym J 2004; 36: 91-5.
[http://dx.doi.org/10.1295/polymj.36.91]
[62]
Mert O, Kayan A. Synthesis of silyliminophenolate zirconium compounds and their catalytic activity over lactide/epoxide. Appl Catal A Gen 2013; 464: 322-3.
[http://dx.doi.org/10.1016/j.apcata.2013.06.010]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 3
ISSUE: 2
Year: 2019
Page: [112 - 119]
Pages: 8
DOI: 10.2174/2452271602666181114094536
Price: $58

Article Metrics

PDF: 20
HTML: 2
EPUB: 1
PRC: 1

Special-new-year-discount