Recent Developments in the Synthesis and Antimicrobial Activity of Indole and its Derivatives

Author(s): Jaskirat Kaur, Divya Utreja*, Ekta, Nisha Jain, Shivali Sharma.

Journal Name: Current Organic Synthesis

Volume 16 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Heterocyclic compounds containing nitrogen have been known to possess a very important role in the field of medicinal chemistry. Indole and its derivatives displayed a wide range of biological properties such as anti-inflammatory, analgesic, anti-microbial, anti-convulsant, antidepressant, anti-diabetic, antihelmintic and anti-allergic activities etc. The diverse biological activities exhibited by compounds containing indole moiety has provided the impetus to explore its anti-microbial activity in order to save the valuable life of patients.

Objective: The review focuses on the advances in the synthesis of indole derivatives and antimicrobial properties exhibited by them.

Conclusion: A great deal of work has been done in order to synthesize indole derivatives and to evaluate antimicrobial potential, as indicated by the review. The information provided in this article may be helpful for the researchers for the development of efficient antimicrobial drugs.

Keywords: Indole, heterocyclic, antimicrobial, antibacterial, antifungal, indole derivatives.

[1]
Hiroya, K.; Itoh, S.; Sakamoto, T. Development of an efficient procedure for indole ring synthesis from 2-ethynylniline derivatives catalyzed by Cu (II) salts and its application to natural product synthesis. J. Org. Chem., 2004, 69, 1126-1136.
[2]
Ashour, M.A.; Elkhayat, E.S.; Ebel, R.; Edrada, R.; Proksch, P. Indole alkaloid from the Red Sea sponge Hyrtios erectus. ARKIVOC, 2007, XV, 225-231.
[3]
Gribble, G.W. Recent developments in indole ring synthesis- methodology and applications. J. Chem. Soc.Perkin Trans. I., 2000, 1045-1075.
[4]
Kumar, A.; Sharma, S.; Maurya, R.A. A novel multi-component reaction of indole, formaldehyde, and tertiary aromatic amines. Tetrahedron Lett., 2009, 50, 5937-5940.
[5]
Mane, A.; Lohar, T.; Salunkhe, R. Baker’s yeast as an efficient biocatalyst for regioselective 1,4-conjugate addition of indoles to nitroolefins in aqueous medium. Tetrahedron Lett., 2016, 57, 2341-2346.
[6]
Shelke, S.M.; Bhosale, S.H.; Mahadik, K.R. 3-(5H-[1,2,4]Triazino[5,6-b]indol-3-ylthio)-N-(substituted phenyl)propionamides: Synthesis and antidepressant activity evaluation. Der Pharma Chemica., 2010, 2(4), 169-177.
[7]
Rajaraman, D.; Sundararajan, G.; Loganath, N.K.; Krishnasamy, K. Synthesis, molecular structure, DFT studies and antimicrobial activities of some novel 3-(1-(3,4-dimethoxyphenethyl)4,5-diphenyl-1H-imidazol-2-yl)-1H-indole derivatives and its molecular docking studies. J. Mol. Struc., 2017, 1127, 597-610.
[8]
Akhaja, T.N.; Raval, J.P. 1,3-Dihydro-2H-indol-2-ones derivatives: design, synthesis, in vitro antibacterial, antifungal and antitubercular study. Eur. J. Med. Chem., 2011, 46(11), 5573-5579.
[9]
Lakshmi, N.V.; Thirumurugan, P.; Noorulla, K.M.; Perumal, P.T. InCl3 mediated one-pot multicomponent synthesis, anti-microbial, antioxidant and anticancer evaluation of 3-pyranyl indole derivatives. Bioorg. Med. Chem. Lett., 2010, 20, 5054-5061.
[10]
Li, J.T.; Lin, X.E. An efficient and practical synthesis of 2,3-epoxy-1,3-diaryl-1-propanone by combination of phase transfer catalyst and ultrasound irradiation. Ultrason. Sonochem., 2008, 15(4), 330-333.
[11]
Singh, N.; Agarwal, R.C.; Singh, C.P. Synthesis and evaluation of some substituted indole derivatives for cardiovascular activity. Inter. J. Pharma. Sci. Drug Res., 2013, 5(1), 14-17.
[12]
Radwan, M.A.; Ragab, E.A.; Shabry, N.M.; El-Shenawy, S.M. Synthesis and biological evaluation of new 3-substituted indole derivatives as potential anti-inflammatory and analgesic agents. Bioorg. Med. Chem., 2007, 15(11), 3832-3841.
[13]
Rossiter, S.; Folkes, L.K.; Wardman, P. Halogenated indole-3-acetic acids as oxidatively activated prodrugs with potential for targeted cancer therapy. Bioorg. Med. Chem. Lett., 2002, 16(12), 2523-2526.
[14]
Aboul-Enien, H.Y.; Kruk, I.; Lichszteld, K.; Michalska, T.; Kladna, A.; Marczynski, S.; Olgen, S. Scavenging of reactive oxygen species by N-substituted indole-2 and 3-carboxamides. Luminenscence, 2004, 19(1), 1-7.
[15]
Sundberg, R.J. Indoles; 1-159.Academic Press: New York, 1996, pp.
[16]
Matsukawa, E.; Nakagawa, Y.; Iimura, Y.; Hayakawa, M. Stimulatory effect of indole-3-acetic acid on aerial mycelium formation and antibiotic production in Streptomyces spp. Actinomycetologica, 2007, 21, 32-39.
[17]
Scuotto, M.; Abdelnabi, R.; Collarile, S.; Schiraldi, C.; Leen, D.; Massa, A.; Ferla, S.; Brancale, A.; Leyssen, P.; Neyts, J.; Filosa, R. Discovery of novel multi-target indole-based derivatives as potent and selective inhibitors of chikungunya virus replication. Bioorg. Med. Chem. Lett., 2017, 25(1), 327-337.
[18]
Neu, H.C. The crisis in antibiotic resistance. Science, 1992, 257(5073), 1064-1073.
[19]
Witte, W. Medical consequences of antibiotic use in agriculture. Science, 1998, 27(5353), 996-997.
[20]
Arumugam, N.; Raghunathan, R.; Almansour, A.; Karama, U. An efficient synthesis of highly functionalized novel chromeno[4,3-b]pyrroles and indolizino[6,7-b]indoles as potent antimicrobial and antioxidant agents. Bioorg. Med. Chem. Lett., 2012, 22, 1375-1379.
[21]
Yamamoto, Y.; Kurazono, M. A new class of anti-MRSA and anti-VRE agents: Preparation and antibacterial activities of indole containing compounds. Bioorg. Med. Chem. Lett., 2006, 17, 1626-1628.
[22]
Altintas, H.; Ates, O.; Uydes-Dogan, B.S.; Alp, F.I.; Kaleli, D.; Ozdemir, O.; Birteksoz, S.; Otuk, G.; Satana, D.; Uzun, M. Synthesis and evaluation of antimicrobial and anticonvulsant activities of some new 3-[2-(5-aryl-1,3,4-oxadiazol-2-yl/4-carbethoxymethylthiazol-2-yl)imino-4-thiazolidinon5-ylidene]-5-substituted/nonsubstituted 1H-indole-2-ones and Investigation of their structure-activity relationships. Arzneim. Forsch. Drug Res., 2006, 56(3), 239-248.
[23]
Oh, K.B.; Mar, W.; Kim, S.; Kim, J.Y.; Lee, T.H.; Kim, J.G.; Shin, D.; Sim, C.J.; Shin, J. Antimicrobial activity and cytotoxicity of bis(indole) alkaloids from the sponge Spongosorites sp. Biol. Pharm. Bull., 2006, 29(3), 570-573.
[24]
Reddy, M.V.N.; Kumar, B.S.; Balakrishna, A.; Reddy, C.S.; Nayak, S.K.; Reddya, C.D. One-pot synthesis of novel α-amino phosphonates using tetramethylguanidine as a catalyst. ARKIVOC, 2007, 15, 246-254.
[25]
Sung, W.S.; Lee, D.G. In vitro Antimicrobial Activity and the Mode of Action of Indole-3-carbinol against Human Pathogenic Microorganisms. Biol. Pharm. Bull., 2007, 30(10), 1865-1869.
[26]
Olgen, S.; Altanlar, N.; Karatayl, E.; Bozday, M. Antimicrobial and antiviral screening of novel indole carboxamide and propanamide derivatives. Z. Naturforsch., 2008, 63c, 189-195.
[27]
Samsoniya, S.A.; Trapaidze, M.V.; Kuprashvili, N.A. Synthesis and ad ntimicrobial activity of 1H,10H-Benzo[E]pyrrolo[3,2-G]indole derivatives. Pharm. Chem. J., 2009, 43(2), 23-25.
[28]
Jain, S.; Chourasia, O.P. Synthesis, characterization and antimicrobial activity of 3-indolyl chalcones. Asian J. Chem., 2009, 21(5), 4133-4135.
[29]
Gurkok, G.; Altanlar, N.; Suzen, S. Investigation of Antimicrobial activities of indole-3-aldehyde hydrazide/hydrazone derivatives. Chemother, 2009, 55, 15-19.
[30]
Thadhaney, B.; Sain, D.; Pemawat, G.; Talesara, G.L. Synthesis and antimicrobial evaluation of ethoxyphthalimide derivatized spiro[indole-3,5′-(1,3)thiazolo(4,5-c)isoxazol]-2-(1H)-ones via ring closure metathesis. Indian J. Chem., 2010, 49B, 368-373.
[31]
Sarma, K.N.; Subha, M.C.S.; Rao, K.C. A facial synthesis and antimicrobial activity of pyrazole derivatives carrying indole. E-J. Chem., 2010, 7(3), 745-750.
[32]
El-Sayed, W.A.; Abdel Megeid, R.E.; Abbas, H.A.S. Synthesis and antimicrobial activity of new 1-[(tetrazol-5-yl) methyl] indole derivatives, their 1,2,4-triazole thioglycosides and acyclic analogs. Arch. Pharm. Res., 2011, 34(7), 1085-1096.
[33]
Kamaria, P.; Kawathekar, N.; Chaturvedi, P. Microwave assisted synthesis and antimicrobial evaluation of Schiff bases of indole-3-aldehyde. E-J. Chem., 2011, 8(1), 305-311.
[34]
Ajala, O.S.; Piggott, A.M.; Plisson, F.; Khalil, Z.; Huang, X.C.; Adesegun, S.A.; Coker, H.A.B.; Capon, R.J.; Ikirydinium, A. A New Indole Alkaloid from the Seeds of Hunteria umbellata (K. Schum). Tetrahedron Lett., 2011, 52(52), 7125-7127.
[35]
Sakhuja, R.; Panda, S.S.; Khanna, L.; Khurana, S.; Jain, S.C. Design and Synthesis of Spiro[indole-thiazolidine]spiro[indole-pyrans] as Antimicrobial Agents. Bioorganic. Med. Chem. Lett., 2011, 21(18), 5465-5469.
[36]
Gomha, S.M.; Riyadh, S.M. Synthesis under microwave irradiation of [1,2,4]triazolo[3,4-b] [1,3,4]thiadiazoles and other diazoles bearing indole moieties and their antimicrobial evaluation. Molecules, 2011, 16(10), 8244-8256.
[37]
Rao, V.; Rao, M.; Jain, N.; Panwar, J.; Kumar, A. Silver triflate catalyzed synthesis of 3-aminoalkylated indoles and evaluation of their antibacterial activities. Org. Med. Chem. Lett., 2011, 1(1), 10.
[38]
Rindhe, S.S.; Karale, B.K.; Gupta, R.C.; Rode, M.A. Synthesis, antimicrobial and antioxidant activity of some oxindoles. Indian J. Pharm. Sci., 2011, 73(3), 292-296.
[39]
Paudel, A.; Hamamoto, H.; Kobayashi, Y.; Yokoshima, S.; Fukuyama, T.; Sekimizu, K. Identification of novel deoxyribofuranosyl indole antimicrobial Agents. J. Antibiot., 2012, 65(2), 53-57.
[40]
Parwati, C.V.; Ramesh, H.; Prakash, P.; Sonar, V.N.; Neelavati, C.V. Synthesis and antimicrobial activity of triazinoindoles. Int. Res. J. Pharm., 2011, 2(3), 175-177.
[41]
Chauhan, R.; Dwivedi, J.; Siddiqi Anees, S.S.; Kishore, D. Synthesis of antimicrobial activity of chalcone derivatives of indole nucleus. Pharm. Chem. J., 2011, 44(10), 542-550.
[42]
Rao, R.M.; Reddy, G.N.; Sreeramulu, J. Synthesis of some new pyrazolo-pyrazole derivatives containing indoles with antimicrobial activity. Der. Pharma. Chemica., 2011, 3(5), 301-309.
[43]
Saundane, A.R.; Manjunatha, Y. Synthesis, antimicrobial and antioxidant activities of some new 3-indolyl pyrazolo[2,3-c]pyran and its derivatives. Indian J. Chem., 2012, 51B(2), 380-387.
[44]
Laxmi, S.V.; Rajitha, B. Synthesis and antimicrobial activity of newer indole semicarbazones. Med. Chem. Res., 2012, 21(1), 85-90.
[45]
Kalshetty, B.M.; Gani, R.S.; Chandrasekhar, V.M.; Kalashetti, M.B. Synthesis and evaluation of some new ethoxy-indole derivatives as potential antimicrobial agents. J. Chem. Bio. Phy. Sci., 2012, 2(4), 1759-1722.
[46]
Panda, S.; Tripathy, J.K. A comparative study of inclusion complexes of orthosubstituted [Arylidenamino]-1,3,4-thiadiazino[6,5b] indole derivatives. E-J. Chem., 2012, 9(3), 1213-1222.
[47]
Al-Qawasmeh, R.A.; Khanfar, M.A.; Semreen, M.; Abu Odeh, R.; Al-Tel, T.H. Design and synthesis of new hybrid triazine-indole derivatives as potential antimicrobial agents against hospital resistant strains. Heterocycles, 2013, 87(11), 2385-2394.
[48]
Özdemir, A.; Altintop, M.D.; Kaplancıklı, Z.A.; Turan-Zitouni, G.; Karaca, H.; Tunalı, Y. Synthesis and biological evaluation of pyrazoline derivatives bearing an indole moiety as new antimicrobial agents. Arch. Pharm. (Weinheim), 2013, 346(6), 463-469.
[49]
Saundane, A.R.; Vijaykumar, K.; Vaijinath, A.V.; Walmik, P. Synthesis, antimicrobial and antioxidant activities of some new indole derivatives containing pyridopyrimidine and pyrazolopyridine moieties. Med. Chem. Res., 2013, 22(2), 806-817.
[50]
Mostafa, M.S.; Abd El-Salam, N.M. Synthesis and biological evaluation of 3-methyl- 2-pyrazolin-5-one derivatives containing thiazole and indole moieties. Der. Pharma. Chemica., 2013, 5(1), 1-7.
[51]
Ermut, G.; Karalı, N.; Çetin, İ.; Topçul, M.; Birteksoz, S. Synthesis and chemotherapeutic activities of 5-chloro-1H-Indole-2, 3-dione-3-Theosemicarbazones. Marmara Pharm. J., 2013, 2(13), 147-154.
[52]
Saundaneanand, R. Prabhakerwalmik; Kirankumar, N.M.; Annapurna, H. Synthesis of novel N-(aryl) diazenyl thiazol-2-amines and bezylidenethiazolidin-4-ones linked to indole nucleus as antioxidant, antimicrobial, antimycobacterial and cytotoxic agents. Int. J. Pharm. Pharm. Sci., 2014, 6(2), 141-147.
[53]
Rahaman, F.; Mruthyunjayaswamy, B.H.M. Synthesis, spectral characterization and biological activity studies of transition metal complexes of Schiff base ligand containing indole moiety. Complex Met., 2014, 1(1), 8-95.
[54]
Karimi, A.R.; Dalirnasab, Z.; Yousefi, G.H.; Akbarizadeh, A.R. Synthesis of mono and bis-[3,3-di(indolyl)indolin-2-ones] and evaluation of their antimicrobial activity. Res. Chem. Intermed., 2015, 41(12), 10007-10016.
[55]
Mhaske, G.; Dighe, S.; Ram, B.; Patil, A.; Chimbalkar, A. Design, synthesis and evaluation of novel indole derivatives as antimicrobial and antifungal agents. World J. Pharm. Pharm. Sci., 2014, 3(8), 825-840.
[56]
Jeevaratnam, K.; Vidhyasagar, V.; Agaliya, P.J.; Saraniya, A.; Umaiyaparvathy, M. Characterization of an antibacterial compound, 2-hydroxyl indole-3-propanamide, produced by lactic acid bacteria isolated from fermented batter. Appl. Biochem. Biotechnol., 2015, 177(1), 137-147.
[57]
Raju, P.A.G.; Mallikarjunarao, R.; Gopal, K.V.; Sreeramulu, J.P.; Reddy, M.; Krishnamurthi, K.P.; Reddy, S.R. Synthesis and biological activity of some new indole derivatives containing pyrazole moiety. J. Chem. Pharm. Res., 2013, 5(10), 21-27.
[58]
Zhang, P.; Li, X.M.; Li, X.; Wang, B.G. New indole-diterpenoids from the algal-associated fungus Aspergillus nidulans. Phytochem. Lett., 2015, 12, 182-185.
[59]
Khan, K.A.; Faidallah, H.M. 1-Substituted carbamoyl and thiocabamoyl-4,5-dihydro-1H-pyrazoles as possible cytotoxic and antimicrobial agents. J. Enzyme Inhib. Med. Chem., 2016, 31(4), 619-627.
[60]
Boopathy, M.; Selvam, R.; Johnsanthoshkumar, S.; Subramanian, K. Synthesis and evaluation of polyacrylamides derived from polycyclic pendant naphthalene, indole, and phenothiazine based Chalcone moiety as potent antimicrobial agents. Polym. Adv. Technol., 2017, 28(6), 717-727.
[61]
Cheng, G.G.; Li, D.; Hou, B.; Li, X.N.; Liu, L.; Chen, Y.Y.; Lunga, P.K.; Khan, A.; Liu, Y.P.; Zuo, Z.L.; Luo, X.D. Melokhanines A-J, Bioactive monoterpenoid indole alkaloids with diverse skeletons from Melodinus Khasianus. J. Nat. Prod., 2016, 79(9), 2158-2166.
[62]
Ashok, D.; Srinivas, G.; Kumar, A.V.; Gandhi, D.M. Microwave-assisted synthesis and evaluation of indole based benzofuran scaffolds as antimicrobial and antioxidant agents. Russ. J. Bioorg Chem., 2016, 42(5), 560-566.
[63]
Mane, Y.D.; Sarnikar, Y.P.; Surwase, S.M.; Biradar, D.O.; Gorepatil, P.B.; Shinde, V.S.; Khade, B.C. Design, Synthesis, and antimicrobial activity of novel 5-substituted Indole-2-carboxamide derivatives. Res. Chem. Intermed., 2017, 43(2), 1253-1275.
[64]
Udayagiri, M.D.; Yernale, N.G.; Mruthyunjayaswam, B.H.M. Synthesis, characterization, DNA cleavage and antimicrobial activities of Schiff Base ligand derived from 5-chloro-3-phenyl-1H-Indole-2- carboxyhydrazide and o-vanillin and its metal (Li) complexes. Int. J. Pharm. Pharm. Sci., 2016, 8(3), 1-8.
[65]
Felix, M.B.; de Souza, E.R.; de Lima, M.D.C.A.; Frade, D.K.G.; Serafim, V.L.; Rodrigues, K.A. da F.; Neris, P.L.D.N.; Ribeiro, F.F.; Scotti, L.; Scotti, M.T.; Aquino, T.M.; Junior, F.J.B.M.; de-Oliverira, M.R. Antileishmanial activity of new thiophene-indole hybrids: Design, synthesis, biological and cytotoxic evaluation, and chemometric Studies. Bioorg. Med. Chem., 2016, 24(18), 3972-3977.
[66]
Rajaraman, D.; Sundararajan, G.; Loganath, N.K.; Krishnasamy, K. Synthesis, molecular structure, DFT studies and antimicrobial activities of some novel 3-(1-3,4-dimethoxyphenethyl)4,5-diphenyl-1H-imidazol-2-yl)-1H-indole derivatives and its molecular docking studies. J. Mol. Struc., 2017, 1127, 597-610.
[67]
Labriere, C.; Gong, H.; Finlay, B.B.; Reiner, N.E. Further investigation of inhibitors of MRSA pyruvate kinase: Towards the conception of novel antimicrobial agents. Eur. J. Med. Chem., 2017, 125, 1-13.
[68]
Okada, M.; Sugita, T.; Wong, C.P.; Wakimoto, T.; Abe, I. Identification of Pyridinium with three indole moieties as an antimicrobial agent. J. Nat. Prod., 2017, 80(4), 1205-1209.
[69]
Chitra, G.; Franklin, D.S.; Sudarsan, S.; Sakthivel, M.; Guhanathan, S. Preparation, antimicrobial and antioxidant evaluation of indole-3-acetic acid-based ph-responsive bio-nanocomposites. Polym. Bull., 2017, 74(8), 3379-3398.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 1
Year: 2019
Page: [17 - 37]
Pages: 21
DOI: 10.2174/1570179415666181113144939
Price: $58

Article Metrics

PDF: 30
HTML: 5
EPUB: 1
PRC: 1