Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synthesis of Phenyl- and Pyridyl-substituted Benzyloxybenzaldehydes by Suzuki-Miyaura Coupling Reactions

Author(s): Hedvig Bölcskei*, Andrea Német-Hanzelik, Zsófia Dubrovay, Viktor Háda and György Keglevich

Volume 16, Issue 11, 2019

Page: [1248 - 1257] Pages: 10

DOI: 10.2174/1570180816666181106123809

Abstract

Background: Aryl-methoxybenzaldehydes substituted in various positions may serve as valuable starting materials for the synthesis of biologically active compounds.

Methods: Biaryl-methoxybenzaldehydes and pyridyl-aryl-methoxybenzaldehydes were synthesized by the Suzuki-Miyaura cross-coupling reactions as intermediates of potential drug substances. Three different catalytic approaches were compared. The classical Suzuki method utilising tetrakis(triphenylphosphine)palladium and sodium ethoxide, the protocol applying palladium acetate and tri(o-tolyl)phosphine, and the method using tetrakis(triphenylphosphine)palladium and cesium carbonate, were studied.

Results: The selected boronic acids were the classical phenylboronic acid, as well as 4-pyridineand 3-pyridineboronic acids. 26 New biaryl-methoxybenzaldehydes or pyridyl-phenylmethoxybenzaldehydes have been synthesized, which may be intermediates for pharmaceutically active compounds.

Conclusion: The method of Anderson et al. was preferred, because it provides satisfactory results in all cases.

Keywords: Suzuki-miyaura cross-coupling reaction, biaryl-oxyaryl-aldehyde, phenylboronic acid, pyridineboronic acids, tetrakis(triphenylphosphine)palladium, palladium acetate.

Graphical Abstract
[1]
Pevarello, P.; Bonsignori, A.; Dostert, P.; Heidempergher, F.; Pinciroli, V.; Colombo, M.; McArthur, R.A.; Salvati, P.; Post, C.; Fariello, R.G.; Varasi, M. Synthesis and anticonvulsant activity of a new class of 2-[(arylalky)amino]alkanamide derivatives. J. Med. Chem., 1998, 41(4), 579-590.
[http://dx.doi.org/10.1021/jm970599m] [PMID: 9484507]
[2]
Bird, T.; Geoffrey, C. Bruneau, P.; Crawley, G. C.; Edwards, M. P.; Foster, S. J.; Girodeau, J-M.; Kingston, J.F.; McMillan, R.M. (Methoxyalkyl)thiazoles: A New Series of Potent, Selec-tive, and Orally Active 5-Lipoxygenase Inhibitors Displaying High Enantioselectivity. J. Med. Chem., 1991, 34(7), 2176-2186.
[http://dx.doi.org/10.1021/jm00111a038] [PMID: 1648621]
[3]
Yeh, S.; Smith, P.J.; Chibale, K. Dual-acting diamine antiplasmodial and chloroquine resistance modulating agents. Biochem. Pharmacol., 2006, 72(2), 156-165.
[http://dx.doi.org/10.1016/j.bcp.2006.04.006] [PMID: 16730664]
[4]
Darwish, K.M.; Salama, I.; Mostafa, S.; Gomaa, M.S.; Helal, M.A. Design, synthesis, and biological evaluation of novel thiazolidinediones as PPARγ/FFAR1 dual agonists. Eur. J. Med. Chem., 2016, 109(15), 157-172.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.049] [PMID: 26774923]
[5]
Panetta, J. A.; Phillips, M. LeRoy; Reel, J. K.; Shadle, J. K.; Sigmund, S. K.; Simon, R.L.; Whitesitt, C.A. Preparation of 5-benzylidenerhodanines as cathepsin D inhibitors for treatment of Alzheimer’s disease EP 677,517 A1 October 18, 1995.
[6]
Cho, H.; Wu, Y.; Choi, C-H. Preparation of thiazolidinedione derivatives as 15-PGDH inhibitors WO 2010,077,101 A2, July 07, 2010.
[7]
Wu, Y.; Tai, H.H.; Cho, H. Synthesis and SAR of thiazolidinedione derivatives as 15-PGDH inhibitors. Bioorg. Med. Chem., 2010, 18(4), 1428-1433.
[http://dx.doi.org/10.1016/j.bmc.2010.01.016] [PMID: 20122835]
[8]
Patani, G.A.; LaVoie, E.J. Bioisosterism: A Rational Approach in Drug Design. Chem. Rev., 1996, 96(8), 3147-3176.
[http://dx.doi.org/10.1021/cr950066q] [PMID: 11848856]
[9]
Bölcskei, H.; Német-Hanzelik, A. Greiner. I.; Dubrovay, Zs.; Háda, V.; Keglevich, Gy. The Synthesis of (Iodoben-zyl)oxybenzaldehydes. Useful Intermediates for Biologically Active Targets Letters in Drug Design and Discovery, 2017, 14, 233-239.
[10]
Miyaura, N.; Yamada, K.; Suzuki, A. A New Stereospecific Cross-coupling by the Palladium-catalyzed Reaction of 1-Alkenylboranes with 1-Alkenyl or Alkynyl Halides. Tetrahedron Lett., 1979, 20(36), 3437-3440.
[11]
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95, 2457-2483.
[12]
Stanforth, S.P. Catalytic Cross-coupling reactions in biaryl synthesis. Tetrahedron, 1998, 54(3-4), 263-303.
[13]
Kotha, S.; Lahiri, K.; Kashinath, D. Recent applications of the suzuki-miyaura cross coupling reaction in organic synthesis. Tetrahedron, 2002, 58(48), 9633-9695.
[http://dx.doi.org/10.1016/S0040-4020(02)01188-2]
[14]
Felpin, F-X.; Ayad, T.; Mitra, S. Pd/C An old catalyst for new applications its use for the suzuki-miyaura reaction. Eur. J. Org. Chem., 2006, (12), 2679-2690.
[http://dx.doi.org/10.1002/ejoc.200501004]
[15]
Fekete, M.; Kolonits, P.; Novák, L. Preparation of new vin-doline derivatives by palladium-catalyzed cross coupling reactions. Heterocycles, 2005, 65(1), 165-171.
[16]
Rossi, R.; Carpita, A.; Messeri, T. Synthetic applications of stereodefined 1-silyl-1-stannylethenes: a new synthesis of 5-ethenyl-5′-1-propynyl)-2,2′-bithiophene, a naturally-occuring phototoxin synth. Comm., 1991, 21, 1875-1888.
[http://dx.doi.org/10.1080/00397919108021778]
[17]
Bellina, F.; Carpita, A.; Rossi, R. Palladium catalysts for the suzuki cross-couplling reaction: An overview of recent advances. Synthesis, 2004, 15, 2419-2440.
[18]
Schön, U.; Messinger, J.; Eichner, S.; Kirschning, A. Comparison of monomode and multimode microwave equipment in Suzuki-Miyaura reactions - en route to high throughput parallel synthesis under microwave conditions. Tetrahedron Lett., 2008, 49(20), 3204-3207.
[http://dx.doi.org/10.1016/j.tetlet.2008.03.094]
[19]
Estrada, G.O.D.; Flores, M.C.; da Silva, J.F.M.; de Souza, R.O.M.A.; Miranda, L.S.M. 4-Methylbiphenyl-2-carbonitrile synthesis by continuous flow Suzuki-Miyaura reaction. Tetrahedron Lett., 2012, 53(32), 4166-4168.
[http://dx.doi.org/10.1016/j.tetlet.2012.05.145]
[20]
Larsen, R.D.; King, A.O.; Chen, C.Y.; Corley, E.G.; Foster, B.S.; Roberts, F.E.; Yang, C.; Lieberman, D.R.; Reamer, R.A.; Tscahen, D.M.; Verhoeven, T.R.; Reider, P.J. Efficient synthesis of losartan, a nonpeptide angiotensin ii receptor antagonist. J. Org. Chem., 1994, 59(5), 6391-6394.
[http://dx.doi.org/10.1021/jo00100a048]
[21]
Estrada, G.O.D.; Blanco, A.L.P.; da Silva, J.F.M.; Alonso, C.G.; Fernandes-Machado, N.R.C.; Cardozo-Filho, L.; de Souza, R.O.M.A.; Miranda, L.S.M. Pd/Nb2O5 efficient supported palladium heterogeneous catalyst in the production of key intermediates for the synthesis of ‘sartans’ via. the Suzuki reaction. Tetrahedron Lett., 2012, 53(9), 1089-1093.
[http://dx.doi.org/10.1016/j.tetlet.2011.12.076]
[22]
Micheli, F.; Cavanni, P.; Andreotti, D.; Arban, R.; Benedetti, R.; Bertani, B.; Bettati, M.; Bettelini, L.; Bonanomi, G.; Braggio, S.; Carletti, R.; Checchia, A.; Corsi, M.; Fazzolari, E.; Fontana, S.; Marchioro, C.; Merlo-Pich, E.; Negri, M.; Oliosi, B.; Ratti, E.; Read, K.D.; Roscic, M.; Sartori, I.; Spada, S.; Tedesco, G.; Tarsi, L.; Terreni, S.; Visentini, F.; Zocchi, A.; Zonzini, L.; Di Fabio, R. 6-(3,4-dichlorophenyl)-1-[(methyloxy)methyl]-3-azabicyclo[4.1.0]heptane: A new potent and selective triple reuptake inhibitor. J. Med. Chem., 2010, 53(13), 4989-5001.
[http://dx.doi.org/10.1021/jm100481d] [PMID: 20527970]
[23]
Bedford, R.B.; Blake, M.E.; Butts, C.P.; Holder, D. The Suzuki coupling of aryl chlorides in TBAB-water mixtures. Chem. Commun. (Camb.), 2003, (4), 466-467.
[http://dx.doi.org/10.1039/b211329e] [PMID: 12638952]
[24]
Ritchie, T.J.; Macdonald, S.J. The impact of aromatic ring count on compound developability-are too many aromatic rings a liability in drug design? Drug Discov. Today, 2009, 14(21-22), 1011-1020.
[http://dx.doi.org/10.1016/j.drudis.2009.07.014] [PMID: 19729075]
[25]
Ritchie, T.J.; Ertl, P.; Lewis, R. The graphical representation of ADME-related molecule properties for medicinal chemists. Drug Discov. Today, 2011, 16(1-2), 65-72.
[http://dx.doi.org/10.1016/j.drudis.2010.11.002] [PMID: 21074634]
[26]
Ritchie, T.J.; Macdonald, S.J.; Young, R.J.; Pickett, S.D. The impact of aromatic ring count on compound developability: further insights by examining carbo- and hetero-aromatic and -aliphatic ring types. Drug Discov. Today, 2011, 16(3-4), 164-171.
[http://dx.doi.org/10.1016/j.drudis.2010.11.014] [PMID: 21129497]
[27]
Anderson, D.R.; Meyers, M.J.; Vernier, W.F.; Mahoney, M.W.; Kurumbail, R.G.; Caspers, N.; Poda, G.I.; Schindler, J.F.; Reitz, D.B.; Mourey, R.J. Pyrrolopyridine inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2). J. Med. Chem., 2007, 50(11), 2647-2654.
[http://dx.doi.org/10.1021/jm0611004] [PMID: 17480064]
[28]
Morris, G.A.; Nuyen, S.T. A general route to pyridine-modified salicylaldehydes via Suzuki coupling Tetrahedron Let. Tetrahedron Lett., 2011, 42(11), 2093-2096.
[29]
Moreno-Manas, M.; Pérez, M.; Pleixats, R. Palladium catalyzed suzuki-type self-coupling of arylboronic acids. A mechanistic study. J. Org. Chem., 1996, 61(7), 2346-2351.
[http://dx.doi.org/10.1021/jo9514329]

© 2024 Bentham Science Publishers | Privacy Policy