Phytochemicals in Anticancer Drug Development

Author(s): Rohit Dutt, Vandana Garg, Naveen Khatri, Anil K. Madan*.

Journal Name: Anti-Cancer Agents in Medicinal Chemistry

Volume 19 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: In spite of major technological advances in conventional therapies, cancer continues to remain the leading cause of mortality worldwide. Phytochemicals are gradually emerging as a rich source of effective but safer agents against many life-threatening diseases.

Methods: Various phytochemicals with reported anticancer activity have been simply categorized into major phytoconstituents- alkaloids, polyphenols, saponins, tannins and terpenoids.

Results: The adverse effects associated with currently available anticancer medications may be overcome by using plant-derived compounds either alone or in combination. Exploration of plant kingdom may provide new leads for the accelerated development of new anticancer agents.

Conclusion: Although numerous potent synthetic drugs have been introduced for cancer chemotherapy, yet their serious toxicity concerns to normal cells apart from drug resistance have emerged as the major obstacles for their clinical utility over a prolonged duration of time. Current status and potential of phytochemicals and their derivatives in cancer therapy have been briefly reviewed in the present manuscript.

Keywords: Anticancer agents, phytochemicals, secondary metabolites, oncology research, chemotherapy, cancer treatment.

[1]
Tímár, J.; Csuka, O.; Orosz, Z.; Jeney, A.; Kopper, L. Molecular pathology of tumor metastasis I: Predictive pathology. Pathol. Oncol. Res., 2001, 7, 217-230.
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. Cancer J. Clin, 2017, 67, 7-30.
[3]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70, 461-477.
[4]
Roy, M.; Mukherjee, A.; Sarkar, R.; Mukherjee, S.; Biswas, J. In search of natural remediation for cervical cancer. Anticancer. Agents Med. Chem., 2015, 15, 57-65.
[5]
Singh, S.; Sharma, B.; Kanwar, S.S.; Kumar, A. Lead phytochemicals for anticancer drug development. Front. Plant Sci., 2016, 7, 1667.
[6]
Rodak, B.F.; Fritsma, G.A.; Doig, K. Hematology: Clinical principles and applications, 4th ed; Saunders Elsevier: New York, 2011.
[7]
da Rocha, A.B.; Lopes, R.M.; Schwartsmann, G. Natural products in anticancer therapy. Curr. Opin. Pharmacol., 2001, 1, 364-369.
[8]
Bachrach, Z.Y. Contribution of selected medicinal plants for cancer prevention and therapy. Sci. J. Faculty Med. Niš, 2012, 29, 117- 123.
[9]
Hartwell, J.L. Plants used against cancer: A survey. Lloydia, 1971, 34, 204-255.
[10]
Rivera, J.O.; Loya, A.M.; Ceballos, R. Use of herbal medicines and implications for conventional drug therapy medical sciences. Altern. Integr. Med., 2013, 2, 130.
[11]
Robinson, M.M.; Zhang, X. Traditional Medicines: Global Situation, Issues and Challenges. The World Medicines Situation, 3rd ed; WHO: Geneva, 2011, pp. 1-14.
[12]
Patridge, E.; Gareiss, P.; Kinch, M.S.; Hoyer, D. An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discov. Today, 2016, 21, 204-207.
[13]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79, 629-661.
[14]
Saklani, A.; Kutty, S.K. Plant-derived compounds in clinical trials. Drug Discov. Today, 2008, 13, 161-171.
[15]
Pan, L.; Chai, H.; Kinghorn, A.D. The continuing search for antitumor agents from higher plants. Phytochem. Lett., 2010, 3, 1-8.
[16]
Sashidhara, K.V.; White, K.N.; Crews, P. A selective account of effective paradigms and significant outcomes in the discovery of inspirational marine natural products. J. Nat. Prod., 2008, 72, 588-603.
[17]
Dutt, R.; Garg, V.; Madan, A. Can plants growing in diverse hostile environments provide a vital source of anticancer drugs? Cancer Ther., 2014, 10, 13-37.
[18]
Katiyar, C.; Gupta, A.; Kanjilal, S.; Katiyar, S. Drug discovery from plant sources: An integrated approach. Ayu, 2012, 33, 10-19.
[19]
Bougard, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of plant secondary metabolites: A historical perspective. Plant Sci., 2001, 161, 839-851.
[20]
Wink, M. Modes of action of herbal medicines and plant secondary metabolites. Medicines, 2015, 2, 251-286.
[21]
Habli, Z.; Toumieh, G.; Fatfat, M.; Rahal, O.N.; Gali-Muhtasib, H. Emerging cytotoxic alkaloids in the battle against cancer: Overview of molecular mechanisms. Molecules, 2017, 22(2), 250.
[22]
Millimouno, F.M.; Dong, J.; Yang, L.; Li, J.; Li, X. Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prev. Res., 2014, 7, 1081-1107.
[23]
Ferreres, F.; Pereira, D.M.; Valentão, P.; Andrade, P.B.; Seabra, R.M.; Sottomayor, M. New phenolic compounds and antioxidant potential of Catharanthus roseus. J. Agric. Food Chem., 2008, 56, 9967-9974.
[24]
Sun, Y.; Xun, K.; Wang, Y.; Chen, X. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs, 2009, 20, 757-769.
[25]
Fei, X.F.; Wang, B.X.; Li, T.J.; Tashiro, S.; Minami, M.; Xing, D.J.; Ikejima, T. Evodiamine, a constituent of Evodiaefructus, induces anti-proliferating effects in tumor cells. Cancer Sci., 2003, 94, 92-98.
[26]
Manayi, A.; Nabavi, S.M.; Setzer, W.N.; Jafari, S. Piperine as a potential anti-cancer agent: A review on preclinical studies. Curr. Med. Chem., 2017, 25(37), 4918-4928.
[27]
Kuo, P.L.; Lin, C.C. Tetrandrine-induced cell cycle arrest and apoptosis in Hep G2 cells. Life Sci., 2003, 73, 243-252.
[28]
Wall, M.E.; Wani, M.C. Camptothecin and taxol: From discovery to clinic. J. Ethnopharmacol., 1996, 51, 239-253.
[29]
Oberlies, N.H.; Kroll, D.J. Camptothecin and taxol: Historic achievements in natural products research. J. Nat. Prod., 2004, 67, 129-135.
[30]
Creemers, G.J.; Bolis, G.; Gore, M.; Scarfone, G.; Lacave, A.J.; Guastalla, J.P.; Despax, R.; Favalli, G.; Kreinberg, R.; Vanbelle, S.; Hudson, I.; Verweij, J.; Huinink, W.W.T. Topotecan, an active drug in the second-line treatment of epithelial ovarian cancer: Results of a large European phase II study. J. Clin. Oncol., 1996, 14, 3056-3061.
[31]
Li, M.; Li, P.; Zhang, M.; Ma, F.; Su, L. Brucine inhibits the proliferation of human lung cancer cell line PC-9 via arresting cell cycle. Zhongguo Fei Ai Za Zhi, 2014, 17, 444-450.
[32]
Huang, J.; Liang, L. Oxymatrine inhibits epithelial-mesenchymal transition through regulation of NF-B signaling in colorectal cancer cells. Oncol. Rep., 2016, 36, 1333-1338.
[33]
Niu, M.; Shen, Y.; Xu, X.; Yao, Y.; Fu, C.; Yan, Z.; Wu, Q.; Cao, J.; Sang, W.; Zeng, L.; Li, Z.; Liu, X.; Xu, K. Piperlongumine selectively suppresses ABC-DLBCL through inhibition of NF-_B p65 subunit nuclear import. Biochem. Biophys. Res. Commun., 2015, 462, 326-331.
[34]
Gaziano, R.; Moroni, G.; Buè, C.; Miele, M.T.; Sinibaldi-Vallebona, P.; Pica, F. Antitumor effects of the benzophenanthridine alkaloid sanguinarine: Evidence and perspectives. World J. Gastrointest. Oncol., 2016, 8, 30-39.
[35]
Nordin, N.; Majid, N.A.; Hashim, N.M.; Rahman, M.A.; Hassan, Z.; Ali, H.M. Liriodenine, an aporphine alkaloid from Enicosanthellumpulchrum, inhibits proliferation of human ovarian cancer cells through induction of apoptosis via the mitochondrial signaling pathway and blocking cell cycle progression. Drug Des. Devel. Ther., 2015, 9, 1437-1448.
[36]
Uche, F.I.; Drijfhout, F.P.; McCullagh, J.; Richardson, A.; Wen, L.W. Cytotoxicity effects and apoptosis induction by bis-benzylisoquinoline alkaloids from Triclisiasubcordata. Phytother. Res., 2016, 30, 1533-1539.
[37]
Wang, X.D.; Li, C.Y.; Jiang, M.M.; Li, D.; Wen, P.; Song, X.; Chen, J.D.; Guo, L.X.; Hu, X.P.; Li, G.Q.; Zhang, J.; Wang, C.H.; He, Z.D. Induction of apoptosis in human leukemia cells through an intrinsic pathway by cathachunine, a unique alkaloid isolated from Catharanthus roseus. Phytomedicine, 2016, 23, 641-653.
[38]
Liew, S.Y.; Looi, C.Y.; Paydar, M.; Cheah, F.K.; Leong, K.H.; Wong, W.F.; Mustafa, M.R.; Litaudon, M.; Awang, K. Subditine, a new monoterpenoid indole alkaloid from bark of Naucleasubdita (Korth.) Steud. Induces apoptosis in human prostate cancer cells. PLoS One, 2014, 9, e87286.
[39]
Shih, Y.W.; Shieh, J.M.; Wu, P.F.; Lee, Y.C.; Chen, Y.Z. Alpha-tomatine inactivates PI3K/Akt and ERK signaling pathways in human lung adenocarcinoma A549 cells: Effect on metastasis. Food Chem. Toxicol., 2009, 47, 1985-1995.
[40]
Gong, Q.A.; Li, M. Effect of lappaconitine on postoperative pain and serum complement 3 and 4 levels of cancer patients undergoing rectum surgery. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2015, 35, 668-672.
[41]
Wada, K.; Ohkoshi, E.; Zhao, Y.; Goto, M.; Morris-Natschke, S.L.; Lee, K.H. Evaluation of Aconitum diterpenoid alkaloids as antiproliferative agents. Bioorg. Med. Chem. Lett., 2015, 25, 1525-1531.
[42]
Sheng, L.R.; Xu, M.; Xu, L.Q.; Xiong, F. Cytotoxic effect of lappaconitine on non-small cell lung cancer in vitro and its molecular mechanism. J. Chin. Med. Mater., 2014, 37, 840-843.
[43]
Kim, D.K.; Kwon, H.Y.; Lee, K.R.; Rhee, D.K.; Zee, O.P. Isolation of a multidrug resistance inhibitor from Aconitum pseudo-laeve var. erectum. Arch. Pharm. Res., 1998, 21, 344-347.
[44]
Gao, F.; Li, Y.Y.; Wang, D.; Huang, X.; Liu, Q. Diterpenoid alkaloids from the Chinese traditional herbal “Fuzi” and their cytotoxic activity. Molecules, 2012, 17, 5187-5194.
[45]
Zeng-Jun, G.; Ying, X.; Zhang, H.; Meng, Y.L.; Ke, X. New alkaloids from Aconitum taipaicum and their cytotoxic activities. Nat. Prod. Lett., 2014, 28(3), 164-168.
[46]
Liu, X.Q.; Chen, X.Y.; Wang, Y.Z.; Yuan, S.J.; Tang, Y. Study on reversing multi-drug tolerance of KBV200 cell by aconitine. Chin. J. Basic Med. Tradit. Chin. Med, 2004, 10, 55-57.
[47]
Wada, K.; Hazawa, M.; Takahashi, K.; Mori, T.; Norio, K.; Ikuo, K. Inhibitory effects of diterpenoid alkaloids on the growth of A172 human malignant cells. J. Nat. Prod., 2007, 70, 1854-1858.
[48]
Kamarajan, P.; Sekar, N.; Mathuram, V.; Govindasamy, S. Antitumor effect of echitamine chloride on methylcholonthrene induced fibrosarcoma in rats. Biochem. Int., 1991, 25(3), 491-498.
[49]
Jaramillo, M.; Arango, G.; Gonzalez, M.; Robledo, S.; Velez, I.D. Cytotoxicity and antileishmanial activity of Annona muricata pericarp. Fitoterapia, 2000, 71, 183-186.
[50]
George, V.C.; Kumar, D.; Rajkumar, V.; Suresh, P.; Kumar, R.A. Quantitative assessment of the relative antineoplastic potential of the n-butanolic leaf extract of Annona muricata linn in normal and immortalized human cell lines. Asian Pac. J. Cancer Prev., 2012, 13, 699-704.
[51]
Xie, J.; Ma, T.; Gu, Y.; Zhang, X.; Qiu, X.; Zhang, L.; Xu, R.; Yu, Y. Berbamine derivatives: A novel class of compounds for anti-leukemia activity. Eur. J. Med. Chem., 2009, 44, 3293-3298.
[52]
Xu, R.; Dong, Q.; Yu, Y.; Zhao, X.; Gan, X.; Wu, D.; Lu, Q.; Xu, X.; Yu, X.F. Berbamine: A novel inhibitor of bcr/abl fusion gene with potent anti-leukemia activity. Leuk. Res., 2006, 30, 17-23.
[53]
Monroe, E.W.; Wani, M.C.; Cook, C.E.; Palmer, K.H.; McPhail, A.T.; Sim, G. A Plant anti-tumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminate. J. Am. Chem. Soc., 1966, 88(16), 3888-3890.
[54]
Bertino, J.R. Irinotecan for colorectal cancer. Semin. Oncol., 2004, 24, S18-S23.
[55]
Munson, A.E.; Harris, L.E.; Friedman, M.A.; Dewey, W.L.; Carchman, R.A. Antineoplastic activity of cannabinoids. J. Natl. Cancer Inst., 1975, 55, 597-602.
[56]
Casanova, M.L. Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. J. Clin. Invest., 2003, 111, 43-50.
[57]
Noble, R.L. The discovery of the vinca alkaloids-chemotherapeutic agents against cancer. Biochem. Cell Biol., 1990, 68, 1344-1351.
[58]
Jordan, A.; Hadfield, J.A.; Lawrence, N.J.; McGown, A.T. Tubulin as a target for anticancer drugs: Agents which interact with the mitotic spindle. Med. Res. Rev., 1998, 18, 259-296.
[59]
Shoeb, M.; MacManus, S.M.; Jaspars, M.; Trevidadu, J.; Nahar, L.; Thoo-Lin, P.K.; Sarker, S.D. Montamine, a unique dimeric indole alkaloid, from the seeds of Centaurea montana(Asteraceae), and its in vitro cytotoxic activity against the CaCo-2 colon cancer cells. Tetrahedron, 2006, 62, 11172-11177.
[60]
Shoeb, M.; Celik, S.; Jaspars, M.; Kumarasamy, Y.; MacManus, S.M.; Nahar, L.; Thoo-Lin, P.K.; Sarker, S.D. Isolation, structure elucidation and bioactivity of schischkiniin, a unique indole alkaloid from the seeds of Centaurea schischkinii. Tetrahedron, 2005, 61, 9001-9006.
[61]
Powell, R.G.; Weisleder, D.; Smith, Jr, J.R. Antitumor alkaloids from Cephalotaxusharringtonia: Structure and activity. J. Pharm. Sci., 1972, 61, 1227-1230.
[62]
Itokawa, H.; Wang, X.; Lee, K.H. Homoharringtonine and related compounds.In: Anticancer agents from natural products; Cragg, G.M.; Kingston, D.G.I.; New-man, D., Eds.; Brunner-Routledge Psychology Press, Taylor & Francis Group: Boca Raton, 2005, pp. 47-70.
[63]
Enricabosisio, M.L. Pharmacological activities of Chelidoniummajus (Papaveraceae). Pharmacol. Res., 1996, 33, 127-134.
[64]
Scambia, C.; Ferlini, M.; Distefano, P.; Filippini, A.; Riva, E.; Bombardelli, D.; Pocar, M.L. Gelmi, Benedetti P.P.; Mancuso, S. Antiproliferative activity of colchicine analogues on MDR-positive and MDR-negative human cancer celllines. Anticancer Drug Des., 1998, 13, 19-33.
[65]
Yui, S.; Mikami, M.; Kitahara, M.; Yamazaki, M. The inhibitory effect of lycorine on tumor cell apoptosis induced by polymorphonuclear leukocytederived calprotectin. Immunopharmacology, 1998, 40, 151-162.
[66]
Banu, N.B.; Julie, J.; Abirami, J.; Kumareasan, R.; Muthukumaran, T.; Rajasree, S.; Jeya Jothi, K.; Kumaran, S. Anti-cancer activity of Datura metel on mcf-7 cell line. Asian J. Pharm. Clin. Res, 2014, 7, 181-183.
[67]
Li, Z.H.; Gao, J.; Hu, P.H. Jian- Ping. Anticancer effects of liriodenine on the cell growth and apoptosis of human breast cancer MCF-7 cells through the upregulation of p53 expression. Oncol. Lett., 2017, 14, 1979-1984.
[68]
Li, L.; Xu, Y.; Wang, B. Liriodenine induces the apoptosis of human laryngocarcinoma cells via theupregulation of p53 expression. Oncol. Lett., 2014, 15, 1121-1127.
[69]
Umezawa, K.; Taniguchi, T.; Toi, M.; Ohse, T.; Tsutsumi, N.; Yamamoto, T.; Koyano, T.; Ishizuka, M. Growth inhibition of K-ras-expressing tumors by a new vinca alkaloid, conophylline, in nude mice. Drugs Exp. Clin. Res., 1996, 22, 35-40.
[70]
Kanchanapoom, T.; Kasai, R.; Chumsri, P.; Hiraga, Y.; Yamasah, K. Canthin-6-one and -carboline alkaloids from Eurycomaharmadiana. Phytochemistry, 2001, 56, 383-386.
[71]
Wall, M.E.; Wani, M.C.; Taylor, H. Plant antitumor agents, 27. Isolation, structure, and structure activity relationships of alkaloids from Fagaramacrophylla. J. Nat. Prod., 1987, 50, 1095-1099.
[72]
Comoe, L.; Carpentier, Y.; Desoize, B.; Jardillier, J.C. Effect offagaronine on cell cycle progression of human erythroleukemia K562 cells. Leuk. Res., 1988, 12, 667-672.
[73]
Madhuri, S.; Pandey, G. Some anticancer medicinal plants of foreign origin. Curr. Sci., 2009, 96, 779-780.
[74]
Kalita, S.; Kumar, G.; Karthik, L.; Venkata, K.; Rao, B. Phytochemical compositionand in vitro hemolytic activity of Lantana camara L. (Verbenaceae) leaves. Pharmacologyonline, 2011, 1, 59-67.
[75]
Ghangale, G.D.; Tambe, R.Y.; Gaykar, A.J.; Dama, G.Y. Antimitotic activity of Lantana camara flowers. Int. J. Inst. Pharm. Life Sci, 2011, 1, 1-6.
[76]
Erdelmeier, C.A.; Regenass, U.; Rali, T.; Sticher, O. Indole alkaloids with in vitro antiproliferative activity from the ammonia cal extract of Naucleaorientalis. Planta Med., 1992, 58, 43-48.
[77]
Yaffe, P.B.; Power Coombs, M.R.; Doucette, C.D.; Walsh, M.; Hoskin, D.W. Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmicreticulum stress. Mol. Carcinog., 2015, 54, 1070-1085.
[78]
Greenshields, A.L.; Doucette, C.D.; Sutton, K.M.; Madera, L.; Annan, H.; Yaffe, P.B.; Knickle, A.F.; Dong, Z.; Hoskin, D.W. Piperine inhibit the growth and motility of triple-negative breast cancer cells. Cancer Lett., 2015, 357, 129-140.
[79]
Zhang, J.; Zhu, X.; Li, H.; Li, B.; Sun, L.; Xie, T.; Zhu, T.; Zhou, H.; Ye, Z. Piperine inhibits proliferation ofhuman osteosarcoma cells via G2/M phase arrest and metastasis by suppressing MMP-2/-9 expression. Int. Immunopharmacol., 2015, 24, 50-58.
[80]
Kim, T.H.; Song, J.; Kim, S.H.; Parikh, A.K.; Mo, X.; Palanichamy, K.; Kaur, B.; Yu, J.; Yoon, S.O.; Nakano, I.; Kwon, C.H. Piperlongumine treatment inactivates peroxiredoxin 4, exacerbates endoplasmic reticulum stress, andpreferentially kills high-grade glioma cells. Neuro-oncol., 2014, 16, 135-164.
[81]
Liu, Y.; Yadev, V.R.; Aggarwal, B.B.; Nair, M.G. Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid peroxidation and nuclear transcription factor-kappa-B. Nat. Prod. Commun., 2010, 5(8), 1253-1257.
[82]
Badami, S.; Manohara Reddy, S.A.; Kumar, E.P.; Vijayan, P.; Suresh, B. Antitumor activity of total alkaloid fraction of Solanum pseudocapsicum leaves. Phytother. Res., 2003, 17, 1001-1004.
[83]
Vijayan, P.; Vijayaraj, P.; Setty, P.H.; Hariharpura, R.C.; Godavarthi, A.; Badami, S.; Arumugam, D.S.; Bhojraj, S. The cytotoxic activity of the total alkaloids isolated from different parts of Solanum pseudocapsicum. Biol. Pharm. Bull., 2004, 27, 528-530.
[84]
Lin, B.; Li, D.; Zhang, L. Oxymatrine mediates Bax and Bcl-2 expression in human breast cancer MCF-7 cells. Pharmazie, 2016, 71, 154-157.
[85]
Li, J.; Jiang, K.; Zhao, F. Oxymatrine suppresses proliferation and facilitates apoptosis of human ovariancancer cells through upregulating microRNA-29b and down regulating matrix metalloproteinase-2 expression. Mol. Med. Rep., 2015, 12, 5369-5374.
[86]
Hu, W.; Wu, C.; Huang, W.; Guo, Y.; Xia, P.; Sun, X.; Pan, X. Oxymatrine inhibits the proliferation of prostatecancer cells in vitro and in vivo. Mol. Med. Rep., 2015, 11, 4129-4134.
[87]
Ze, L.; Chang-Fa, H.; Xiao-Shan, L.; Jikai, J. In vitro Anti-tumour activities of quinolizidine alkaloids derived from Sophoraflavescens Ait. Basic Clin. Pharmacol. Toxicol., 2011, 108(5), 304-309.
[88]
Zhu, Y.; Wang, B.; Han, Q. Oxymatrine inhibited cell proliferation by inducing apoptosis in human lung cancer A549 cells. Biomed. Mater. Eng., 2015, 26, S165-S172.
[89]
Li, M.; Su, B.S.; Chang, L.H.; Gao, Q.; Chen, K.L.; An, P.; Huang, C.; Yang, J.; Li, Z.F. Oxymatrine inducesapoptosis in human cervical cancer cells through guanine nucleotide depletion. Anticancer Drugs, 2014, 25, 161-173.
[90]
Khwaja, T.A.; Dias, C.B.; Pentecost, S. Recent studies on the anticancer activities of mistletoe (Viscum album) and its alkaloids. Oncology, 1986, 43, 42-50.
[91]
Roussakis, C.; Chinou, I.; Vayas, C.; Harvala, C.; Verbist, J.F. Cytotoxicactivity of xanthatin and the crude extracts of Xanthium strumarium. Planta Med., 1994, 60, 473-474.
[92]
Huang, M.; Lu, J.J.; Huang, M.Q.; Bao, J.L.; Chen, X.P.; Wang, Y.T. Terpenoids: Natural products for cancer therapy. Expert Opin. Investig. Drugs, 2012, 21, 1801-1818.
[93]
Chen, Y.N.; Chen, J.C.; Yin, S.C.; Wang, G.S.; Tsauer, W.; Hsu, S.F.; Hsu, S.L. Effectors mechanisms of norcantharidin-induced mitotic arrest and apoptosis in human hepatoma cells. Int. J. Cancer, 2002, 100, 158-165.
[94]
Jiao, Y.; Ge, C.M.; Meng, Q.H.; Cao, J.P.; Tong, J.; Fan, S.J. Dihydroartemisinin is an inhibitor of ovarian cancer cell growth. Acta Pharmacol. Sin., 2007, 28, 1045-1056.
[95]
Chen, H.; Sun, B.; Pan, S.; Jiang, H.; Sun, X. Dihydroartemisinin inhibits growth of pancreatic cancer cells in vitro and in vivo. Anticancer Drugs, 2009, 20, 131-140.
[96]
Liu, J.J.; Lin, D.J.; Liu, P.Q.; Huang, M.; Li, X.D.; Huang, R.W. Induction of apoptosis and inhibition of cell adhesive and invasive effects by tanshinone IIA in acute promyelocytic leukemia cells in vitro. J. Biomed. Sci., 2006, 13, 813-823.
[97]
Pang, X.; Yi, Z.; Zhang, J.; Lu, B.; Sung, B.; Qu, W.; Aggarwal, B.B.; Liu, M. Celastrol suppresses angiogenesis-mediated tumor growth through inhibition of AKT/ mammalian target of rapamycin pathway. Cancer Res., 2010, 70, 1951-1959.
[98]
Huang, Y.T.; Huang, D.M.; Chueh, S.C.; Teng, C.M.; Guh, J.H. Alisol B acetate, a triterpene from Alismatisrhizoma, induces Bax nuclear translocation and apoptosis in human hormone-resistant prostate cancer PC-3 cells. Cancer Lett., 2006, 231, 270-278.
[99]
Ling, H.; Zhang, Y.; Ng, K.Y.; Chew, E.H. Pachymic acid impairs breast cancer cell invasion by suppressing nuclear factor-kappaB-dependent matrix metalloproteinase-9 expression. Breast Cancer Res. Treat., 2011, 126, 609-620.
[100]
Tanaka, T.; Shnimizu, M.; Moriwaki, H. Cancer chemoprevention by carotenoids. Molecules, 2012, 17, 3202-3242.
[101]
Subbarayan, P.R.; Sarkar, M.; Rao, S.N.; Philip, S.; Kumar, P.; Altman, N.; Reis, I.; Ahmed, M.; Ardalan, B.; Lokeshwar, B.L. Achyranthes aspera (Apamarg) leaf extract inhibits human pancreatic tumor growth in athymic mice by apoptosis. J. Ethnopharmacol., 2012, 142, 523-530.
[102]
Jagetia, G.C.; Baliga, M.S. Effect of alstoniascholaris in enhancing the anticancer activity of berberine in the ehrlich ascites carcinoma-bearing mice. J. Med. Food, 2004, 7, 235-244.
[103]
Kigodi, P.G.; Blasko, G.; Thebtaranonth, Y.; Pezzuto, J.M.; Cordell, G.A. Spectroscopic and biological investigation of nimbolide and 28-deoxonimbolide from Azadirachtaindica. J. Nat. Prod., 1989, 52, 1246-1251.
[104]
Oberlies, N.H.; Burgess, J.P.; Navarro, H.A.; Pinos, R.E.; Fairchild, C.R.; Peterson, R.W.; Soejarto, D.D.; Farnsworth, N.R.; Kinghorn, A.D.; Wani, M.C.; Wall, M.E. Novel bioactive clerodane diterpenoids from the leaves and twigs of Caseariasylvestris. J. Nat. Prod., 2002, 65, 95-99.
[105]
Hamidpour, R.; Hamidpour, S.; Hamidpour, M.; Shahlari, M. Camphor (Cinnamomumcamphora), a traditional remedy with the history of treating several diseases. Int. J. Case Rep. Imag., 2013, 4, 86-89.
[106]
Escribano, J.; Alonso, G.L.; Coca-Prados, M.; Fernandez, J.A. Crocin, safranal and picrocrocin from saffron (Crocus sativusL.) inhibit the growth of human cancer cells in vitro. Cancer Lett., 1996, 27, 23-30.
[107]
Zhang, Y.J.; Nagao, T.; Tanaka, T.; Yang, C.R.; Okabe, H.; Kouno, I. Antiproliferative activity of the main constituents from Phyllanthus emblica. Biol. Pharm. Bull., 2004, 27, 251-255.
[108]
Woerdenbag, H.J.; Lemstra, W.; Malingre, T.M.; Konings, A.W.T. Enhanced cytostatic activity of the sesquiterpene lactone eupatoriopicrin by glutathione depletion. Br. J. Cancer, 1989, 59, 68-75.
[109]
Sokoloff, B.; Saelhof, C.C.; McConnell, B.; Taniguchi, E.; Funaoka, K. An oncostatic factor present in Euphorbia amygdaloides. Growth, 1962, 26, 77-81.
[110]
Itokawa, H.; Ichihara, Y.; Watanabe, K.; Takeya, K. An antitumor principle from Euphorbia lathyris. Planta Med., 1989, 55, 271-272.
[111]
Rathi, S.G.; Suthar, M.; Patel, P.; Bhaskar, V.H.; Rajgor, N.B. In vitro cytotoxic screening of Glycyrrhiza glabra L. (Fabaceae): A natural anticancer drug. Pharmacology, 2009, 1, 239-243.
[112]
Honga, Y.K.; Wub, H.T.; Mab, T.; Liuc, W.J.; He, X.J. Effects of Glycyr rhizaglabra polysaccharides on immune and antioxidant activities in high-fat mice. Int. J. Biol. Macromol., 2009, 45, 61-64.
[113]
Costa-Lotufo, L.V.; Araujo, E.C.; Lima, M.A.; Moraes, M.E.; Pessoa, C.; Silviera, E.R.; Moraes, M.O. Antiproliferative effects of abietane diterpenoids isolated from Hyptismartiusii Benth (Labiatae). Pharmazie, 2004, 59, 78-79.
[114]
Edige^nia, C.C.; Mary, A.S.L.; Raquel, C.M.; Marcelle, N.; Letı’cia, V.C.; Cla’udia, P.; Manoel, O.M.; Edilberto, R.S. Cytotoxic abietane diterpenes from Hyptismartiusii Benth. Z. Naturforschung, 2006, 61, 177-183.
[115]
Muangman, S.; Thippornwong, M.; Tohtong, R. Anti-metastatic effects of curcusone B, a diterpene from Jatropha curcas. In Vivo, 2005, 19, 265-268.
[116]
Lin, J.; Yan, F.; Tang, L.; Chen, F. Antitumor effects of curcin from seeds of Jatropha curcas. Acta Pharmacol. Sin., 2003, 24, 241-246.
[117]
He, X.; Liu, R.H. Triterpenoids isolated from apple peels have potent antiproliferative activity and may be partially responsible for apple’s anticancer activity. J. Agric. Food Chem., 2007, 55, 4366-4370.
[118]
Francois, G.; Passreiter, C.M.; Woerdenbag, H.J.; Van-Looveren, M. Antiplasmodial activities and cytotoxic effects of aqueous extracts and sesquiterpene lactones from Neurolaena lobata. Planta Med., 1996, 62, 126-129.
[119]
Lajter, I.; Vasas, A.; Béni, Z.; Forgo, P.; Binder, M.; Bochkov, V.; Zupkó, I.; Krupitza, G.; Frisch, R.; Kopp, B.; Hohmann, J. Sesquiterpenes from Neurolaenalobata and their antiproliferative and anti-inflammatory activities. J. Nat. Prod., 2014, 77, 576-582.
[120]
Ma, X.; Lee, I.S.; Chai, H.B.; Zaw, K.; Farnsworth, N.R.; Soejarto, D.D.; Cordell, G.A.; Pezzuto, J.M.; Kinghorn, A.D. Cytotoxic clerodane diterpenes from Polyalthiabarnesii. Phytochemistry, 1994, 37, 1659-1662.
[121]
Li, M.; Hong, L. Pseudolaric acid B exerts antitumor activity via suppression of the Akt signaling pathway in HeLa cervical cancer cells. Mol. Med. Rep., 2015, 12, 2021-2026.
[122]
Wenjing, Z.; Qilai, H. Zi-Chun. Oridonin: A promising anticancer drug from China. Front. Biol., 2010, 5, 540-545.
[123]
Hsieh, T.C.; Wijeratne, E.K.; Liang, J.Y.; Gunatilaka, A.L.; Wu, J.M. Differential control of growth, cell cycle progression, and expression of NF-κB in human breast cancer cells MCF-7, MCF-10A, and MDA-MB-231 by ponicidin and oridonin, diterpenoids from the chinese herb Rabdosiarubescens. Biochem. Biophys. Res. Commun., 2005, 337, 224-231.
[124]
Yoshida, M.; Feng, W.; Saijo, N.; Ikekawa, T. Antitumor activity of daphnane-type diterpene gnidimacrin isolated from Stellerachamaejasme L. Int. J. Cancer, 1996, 66, 268-273.
[125]
Feng, W.; Tetsuro, I.; Mitsuzi, Y. The antitumor activities of gnidimacrin isolated from Stellerachamaejasme L. Chung Hua Chung Liu Tsa Chih, 1995, 17, 24-26.
[126]
Mockute, D.; Judzentiene, A. Composition of the essential oils of Tanacetum vulgare L. Growing wild in vilnius district (Lithuania). J. Essent. Oil Res., 2004, 16, 550-553.
[127]
Ovadje, P.; Chatterjee, S.; Griffin, C.; Tran, C.; Hamm, C.; Pandey, S. Selective induction of apoptosis through activation of caspase-8 in human leukemia cells (Jurkat) by dandelion root extract. J. Ethnopharmacol., 2011, 133, 86-91.
[128]
Sophia, C.S.; Carla, J.H.; Manika, C.C.; Aaron, R.J.; Anntherese, E.R.; Michael, J.P.; Alexander, K.; Timothy, K.L.; Severine, V.S.; Wim, F.A.S. Evaluation of aqueous extracts of Taraxacumofficinale on growth and invasion of breast and prostate cancer cells. Int. J. Oncol., 2008, 32, 1085-1090.
[129]
Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant anti-tumor agents. VI. The isolation and structure of taxol, a novel anti-leukemic and anti-tumor agent from Taxus brevifolia. J. Am. Chem. Soc., 1971, 93, 2325-2327.
[130]
Rowinsky, E.K.; Onetto, N.; Canetta, R.M.; Arbuck, S.G. Taxol-the 1st of the texanes, an important new class of anti-tumor agents. Semin. Oncol., 1992, 19, 646-662.
[131]
Murphy, B.T.; MacKinnon, S.L.; Yan, X.; Hammond, G.B.; Vaisberg, A.J.; Neto, C.C. Identification of triterpene hydroxycinnamates with in vitro antitumor activity from whole cranberry fruit (Vacciniummacrocarpon). J. Agric. Food Chem., 2003, 51, 3541-3545.
[132]
Man, S.; Gao, W.; Zhang, Y.; Huang, L.; Liu, C. Chemical study and medical application of saponins as anti-cancer agents. Fitoterapia, 2010, 81, 703-714.
[133]
Cheung, J.Y.; Ong, R.C.; Suen, Y.K.; Ooi, V.; Wong, H.N.; Mak, T.C.; Fung, K.P.; Yu, B.; Kong, S.K. Polyphyllin D is a potent apoptosis inducer in drug-resistant HepG2 cells. Cancer Lett., 2005, 217, 203-211.
[134]
Zhang, Y.; Li, H.Z.; Zhang, Y.J.; Jacob, M.R.; Khan, S.I.; Li, X.C.; Yang, C.R. Atropurosides A-G, new steroidal saponins from Smilacinaatropurpurea. Steroids, 2006, 71, 712-719.
[135]
Lee, S.R.; Han, J.Y.; Kang, H.R.; Lee, H.L.; Noh, H.J.; Cha, J.S.; Kang, K.S.; Lee, C.J.; Kim, K.H. A new steroidal saponin from the tubers of Ophiopogon japonicus and its protective effect against Cisplatin-induced renal cell toxicity. J. Braz. Chem. Soc., 2016, 27, 706-711.
[136]
Hu, K.; Dong, A.; Yao, X.; Kobayashi, H.; Iwasaki, S. Antineoplastic agents. II. Four furostanol glycosides from rhizomes of Dioscoreacollettii var. hypoglauca. Planta Med., 1997, 63, 161-165.
[137]
Wang, J.; Li, Q.; Ivanochko, G.; Huang, Y. Anticancer effect of extracts from a North American medicinal plant- Wild Sarsaparilla. Anticancer Res., 2006, 26, 2157-2164.
[138]
Haridas, V.; Higuchi, M.; Jayatilake, G.S.; Bailey, D.; Mujoo, K.; Blake, M.E.; Arntzen, C.J. Gutterman, J.U. Avicins: Triterpenoidsaponins from Acacia victoriae(Bentham) induce apoptosis by mitochondrial perturbation. Proc. Natl. Acad. Sci. USA, 2001, 98, 5821-5826.
[139]
Bianchi, E.; Cole, J.R. Antitumor agents from Agave scottie (amaryllidaceae). J. Pharm. Sci., 1969, 58, 589-591.
[140]
Park, J.H.; Kwak, J.H.; Khoo, J.H.; Park, S.H.; Kim, D.U.; Ha, D.M.; Choi, S.U.; Kang, S.C.; Zee, O.P. Cytotoxic effects oftriterpenoid saponins from Androsace umbellate against Multidrug Resistance (MDR) andnon-MDR cells. Arch. Pharm. Res., 2010, 33, 1175-1180.
[141]
Zhang, D.M.; Wang, Y.; Tang, M.K.; Chan, Y.W.; Lam, H.M.; Ye, W.C.; Fung, K.P. Saxifragifolin B from Androsaceumbellata induced apoptosis on human hepatoma cells. Biochem. Biophys. Res. Commun., 2007, 362, 759-765.
[142]
Zhang, Y.; Ma, Z.; Hu, C.; Wang, L.; Li, L.; Song, S. Cytotoxic triterpene saponins from theleaves of Aralia elata. Fitoterapia, 2012, 83, 806-811.
[143]
Tomatsu, M.; Ohnishi-Kameyama, M.; Shibamoto, N. Aralin, a new cytotoxic protein from Aralia elata, inducing apoptosis in human cancer cells. Cancer Lett., 2003, 199, 19-25.
[144]
Beit-Yannai, E.; Ben-Shabat, S.; Goldschmidt, N.; Chapagain, B.P.; Liu, R.H.; Wiesman, Z. Antiproliferative activity of steroidal saponins from Balanitesaegyptiaca: An in vitro study. Phytochem. Lett., 2011, 4, 43-47.
[145]
Sivaramakrishna, C.; Rao, C.V.; Trimurtulu, G.; Vanisree, M.; Subbaraju, G.V. Triterpenoid glycosides from Bacopa monnieri. Phytochemistry, 2005, 66, 2719-2728.
[146]
Tabatadze, N.; Elias, R.; Faure, R.; Gerkens, P.; De-Pauw-Gillet, M.C.; Kemertelidze, E.; Chea, A.; Ollivier, E. Cytotoxic triterpenoid saponins from the roots of Cephalariagigantea. Chem. Pharm. Bull. (Tokyo), 2007, 55, 102-105.
[147]
Gerkens, P.C.; Dobson, R.; Tabatadze, N.; Mshviladzade, V.; Elias, R.; Peulen, O.J.; Jolois, O.M.; De Pauw-Gillet, M.C. Apoptosis and cytolysis induced by giganteosides and hederacolchisides in HL-60 cells. Anticancer Res., 2007, 27, 2529-2534.
[148]
Ahmed, W.S.; Mohamed, M.A.; El-Dib, R.A.; Hamed, M.M. New triterpene saponins from Durantarepens Linn. and their cytotoxic activity. Molecules, 2009, 14, 1952-1965.
[149]
Tong, Q.Y.; He, Y.; Zhao, Q.B.; Qing, Y.; Huang, W.; Wu, X.H. Cytotoxicity and apoptosis inducing effect of steroidal saponins from Dioscoreazingiberensiswright against cancer cells. Steroids, 2012, 77, 1219-1227.
[150]
Khanna, V.G.; Kannabiran, K. Anticancer-cytotoxicactivity of saponins isolated from the leaves of Gymnemasylvestre and Ecliptaprostrata on HeLa cells. Int. J. Green Pharm, 2009, 3, 227-229.
[151]
Hamed, A.I.; Piacente, S.; Autore, G.; Marzocco, S.; Pizza, C.; Oleszek, W. Antiproliferative hopane and oleanane glycosides from the roots of Glinuslotoides. Planta Med., 2005, 71, 554-560.
[152]
Xu, M.Y.; Lee, D.H.; Joo, E.J.; Son, K.H.; Kim, Y.S. Akebiasaponin PA induces autophagic and apoptotic cell death in AGS human gastric cancer cells. Food Chem. Toxicol., 2013, 59, 703-708.
[153]
Ma, Y.X.; Fu, H.Z.; Li, M.; Sun, W.; Xu, B.; Cui, J.R. An anticancer effect of a new saponin component from GymnocladuschinensisBaillon through inactivation of nuclear factor-κB. Anticancer Drugs, 2007, 18, 41-46.
[154]
Li, W.; Bi, X.; Wang, K.; Li, D.; Satou, T.; Koike, K. Triterpenoid saponins from Impatiens siculifer. Phytochemistry, 2009, 70, 816-821.
[155]
Wang, J.; Zhao, X.Z.; Qi, Q.; Tao, L.; Zhao, Q.; Mu, R.; Gu, H.Y.; Wang, M.; Feng, X.; Guo, Q.L. Macranthoside B, a hederageninsaponin extracted from Loniceramacranthoides and its anti-tumor activities in vitro and in vivo. Food Chem. Toxicol., 2009, 47, 1716-1721.
[156]
Tian, Z.; Liu, Y.M.; Chen, S.B.; Yang, J.S.; Xiao, P.G.; Wang, L.; Wu, E. Cytotoxicity of two triterpenoids from Nigellaglandulifera. Molecules, 2006, 11, 693-699.
[157]
Xiaoguang, C.; Hongyan, L.; Xiaohong, L.; Zhaodi, F.; Yan, L.; Lihua, T.; Rui, H. Cancer chemopreventive and therapeutic activities of red ginseng. J. Ethnopharmacol., 1998, 60, 71-78.
[158]
Liu, Q.; Chen, W.; Jiao, Y.; Hou, J.; Wu, O.; Liu, Y.; Qi, X. Pulsatilla saponin A, an active molecule from Pulsatillachinensis, induces cancer cell death and inhibits tumor growth inmouse xenograft models. J. Surg. Res., 2014, 188, 387-395.
[159]
Bang, S.C.; Lee, J.H.; Song, G.Y.; Kim, D.H.; Yoon, M.Y.; Ahn, B.Z. Antitumor activity of Pulsatillakoreana saponins and their structure-activity relationship. Chem. Pharm. Bull., 2005, 53, 1451-1454.
[160]
Akhov, L.S.; Shyshova, Y.V. Antitumor activity of furostanolsaponinsfrom Quillajasaponaria and Yucca schidigera. Dopovidi Natsional’noi Akademii Nauk Ukraini, 2002, 5, 182-184.
[161]
Kanchana, A.M.; Balakrishna, M. Anti-cancer effect of saponins isolated from Solanumtrilobatum leaf extract and induction of apoptosis in human larynx cancer cell lines. Int. J. Pharm. Pharm. Sci., 2011, 3, 356-364.
[162]
Lili, Y.; Xiaobing, W.; Xingchuan, W.; Miaomiao, W.; Lixia, C.; Shijie, C.; Ning, K.; Feng, Q. Triterpenoid saponins from Xanthocerassorbifolia Bunge and their inhibitory activity on human cancer cell lines. Bioorg. Med. Chem. Lett., 2011, 22, 5232-5238.
[163]
Spatafora, C.; Tringali, C. Natural-derived polyphenols as potential anticancer agents. Anticancer. Agents Med. Chem., 2012, 12, 902-918.
[164]
Rusin, A.; Zawisza-Puchałka, J.; Kujawa, K.; Gogler-Pigłowska, A.; Wietrzyk, J.; Switalska, M.; Głowala-Kosinska, M.; Gruca, A.; Szeja, W.; Krawczyk, Z.; Grynkiewicz, G. Synthetic conjugates of genistein affecting proliferation and mitosis of cancer cells. Bioorg. Med. Chem., 2011, 19, 295-305.
[165]
Srinivas, K.V.; Koteswara, R.Y.; Mahender, I.; Das, B.; Rama Krishna, K.V.S. Hara, Kishore K.; Murty, U.S.N. Flavonoids from Caesalpiniapulcherrima. Phytochemistry, 2003, 63, 789-793.
[166]
Chen, L.; Zhang, H.Y. Cancer preventive mechanisms of the green tea polyphenol (-)-epigallocatechin-3-gallate. Molecules, 2007, 12, 946-957.
[167]
Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov., 2006, 5, 493-506.
[168]
Varoni, E.M.; Lo Faro, A.F.; Sharifi-Rad, J.; Iriti, M. Anticancer molecular mechanisms of resveratrol. Front. Nutr., 2016, 3, 8.
[169]
Lacy, A.; O’Kennedy, R. Studies on coumarins and coumarinrelated compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des., 2004, 10, 3797-3811.
[170]
Park, C.; Jin, C.Y.; Kim, G.Y.; Choi, I.W.; Kwon, T.K.; Choi, B.T.; Lee, W.H.; Choi, Y.H. Induction of apoptosis by esculetin in human leukemia U937 cells through activation of JNK and ERK. Toxicol. Appl. Pharmacol., 2008, 227, 219-228.
[171]
Manuele, G.M.; Ferraro, G.; Arcos, M.L.B.; Lopez, P.; Cremaschi, G.; Anesini, C. Comparative immunomodulatory effect of scopoletin on tumoral and normal lymphocytes. Life Sci., 2006, 79, 2043-2048.
[172]
Yang, E.B.; Zhao, Y.N.; Zhang, K.; Mack, P. Daphnetin, one of coumarin derivatives, is a protein kinase inhibitor. Biochem. Biophys. Res. Commun., 1999, 260, 682-685.
[173]
Yildirım, I.; Kutlu, T. Anticancer agents: Saponin and tannin. I. J. Biol. Chem., 2015, 9, 332-340.
[174]
Kuo, M.L.; Wu, W.S.; Lee, C.; Lin, J.K. Effects of tannic acid on 12-Otetradecanoylphorbol-13-acetate-induced protein kinase C activation in the NIH 3T3 cells. Biochem. Pharmacol., 1993, 46, 1327-1332.
[175]
Joshi, Y.; Goyal, B. Anthocyanins: A lead for anticancer drugs. IJRPC, 2011, 1, 1119-1126.
[176]
Funayama, S.; Cordell, G.A. Chemistry of acronycine IV. Minor constituents of acronine and the phytochemistry of the genus Acronychia. J. Nat. Prod., 1984, 47, 285-291.
[177]
Hayashi, K.; Nakanishi, Y.; Bastow, K.F.; Cragg, G.; Nozaki, H.; Lee, K.H. Antitumor agents. Part 212. Bucidarasins A-C, three new cytotoxic clerodane diterpenes from Bucidabuceras. Bioorg. Med. Chem. Lett., 2002, 12, 345-348.
[178]
Katiyar, S.K.; Agarwal, R.; Wang, Z.Y.; Bhatia, A.K.; Mukhtar, H. 1992 (−)-Epigallocatechin-3-gallate in Camellia sinensisleaves from Himalayan region of Sikkim: Inhibitory effects against biochemical events and tumor initiation in Sencar mouse skin. Nutr. Cancer, 1992, 18, 73-83.
[179]
Arora, S.; Gonzalez, A.F.; Solanki, K. Combretastatin A-4 and its analogs in cancer therapy. Int. J. Pharm. Sci. Rev. Res., 2013, 22, 168-174.
[180]
Priyadarsini, K.I. The chemistry of curcumin: From extraction to therapeutic agent. Molecules, 2014, 19, 20091-20112.
[181]
Motoo, Y.; Sawabu, N. Antitumor effects of saikosaponins, baicalin and baicalein on human hepatoma cell lines. Cancer Lett., 1994, 86, 91-95.
[182]
Grynberg, N.F.; Carvalho, M.G.; Velandia, J.R.; Oliveira, M.C.; Moreira, I.C.; Braz-Filho, R.; Echevarria, A. DNA topoisomerase inhibitors: Biflavonoids from ouratea species. Braz. J. Med. Biol. Res., 2002, 35, 819-822.
[183]
Samejkal, K.; Babula, P.; Slapetová, T.; Brognara, E.; Dall’acqua, S.; Zemlicka, M.; Innocenti, G.; Cvacka, J. Cytotoxic activity of C-geranyl compounds from Paulownia tomentosa Fruits. Planta Med., 74, 1488-1491.
[184]
Jonathan, H.L.; Schrecker, A.W. Components of podophyllin. V. The constitution of podophyllotoxin. J. Am. Chem. Soc., 1951, 73, 2909-2916.
[185]
Shi, Q.; Chen, K.; Fujioka, T.; Kashiwada, Y.; Chang, J.J.; Kozuka, M.; Estes, J.R.; McPhail, A.T.; McPhail, D.R.; Lee, K.H. Antitumor agents, structure and stereochemistry of polacandrin, a new cytotoxic triterpene from Polanisiadodecandra. J. Nat. Prod., 1992, 55, 1488-1497.
[186]
Kimura, Y.; Okuda, H. Resveratrol isolated from Polygonum cuspidatumroot prevents tumor growth and metastasis to lung and tumor-induced neovascularization in lewis lung carcinoma-bearing mice. J. Nutr., 2001, 131, 1844-1849.
[187]
Boyer, J.; Liu, R.H. Apple phytochemicals and their health benefits. Nutr. J., 2004, 3, 5.
[188]
Parajuli, P.; Joshee, N.; Rimando, A.M.; Mittal, S.; Yadav, A.K. In vitro antitumor mechanisms of various Scutellaria extracts and constituent flavonoids. Planta Med., 2009, 75, 41-48.
[189]
Ono, M.; Yanaka, T.; Yamamoto, M.; Ito, Y.; Nohara, T. New diterpenes and norditerpenes from the fruits of Vitex rotundifolia. J. Nat. Prod., 2002, 65, 537-541.
[190]
Gonzalez-Sarria, A.; Yuan, T.; Seeram, N.P. Cytotoxicity and structure activity relationship studies of maplexins A-I, gallotannins from red maple (Acer rubrum). Food Chem. Toxicol., 2012, 50, 1369-1376.
[191]
Kishi, N.; Koshiura, R.; Miyamoto, K. Antitumor effect of agrimoniin, a tannin of Agrimoniapilosa LEDEB on transplantable rodent tumors. Jpn. J. Pharmacol., 1987, 43, 185-119.
[192]
Barrajon-Catalan, E.; Fernandez-Arroyo, S.; Saura, D.; Guillen, E.; Fernandez-Gutierrez, A.; Segura-Carretero, A.; Micol, V. Cistaceae aqueous extracts containing ellagitannins show antioxidant and antimicrobial capacity and cytotoxic activity against human cancer cells. Food Chem. Toxicol., 2010, 48, 2273-2282.
[193]
Yang, L.L.; Lee, C.Y.; Yen, K.Y. Induction of apoptosis by hydrolyzable tannins from Eugenia jambos L. on human leukemia cells. J. Cancer Lett, 2000, 157, 65-75.
[194]
Li, P.; Zhao, L.; Du, Y.; Feng, Y.; Li, Y. Hydrolysable tannins and related compound having cytotoxic activity of Geranium wilfordii maxim. Adv. J. Food Sci. Technol, 2013, 5, 255-257.
[195]
Ahmed, K.M.; Kandil, F.E.; Mabry, T.J. An anticancer tannin and other phenolics from Limoniumaxaillare (Fam. Plumbaginaceae). Asian J. Chem., 1999, 11, 261-263.
[196]
Seeram, N.P.; Adams, L.S.; Henning, S.M.; Niu, Y.; Zhang, Y.; Nair, M.G.; Heber, D. In-vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J. Nutr. Biochem., 2005, 16, 360-367.
[197]
Marzouk, M.S.; Moharram, F.A.; Mohamed, M.A.; Gamal-Eldeen, A.M.; Aboutabl, E.A. Anticancer and antioxidant tannins from Pimentadioica leaves. Z. Naturforsch. C, 2007, 62, 526-536.
[198]
Jia, L.; Jin, H.; Zhou, J.; Chen, L.; Lu, Y.; Ming, Y.; Yu, Y. A potential anti-tumor herbal medicine, corilagin, inhibits ovarian cancer cell growth through blocking the TGF-β signaling pathways. BMC Complement. Altern. Med., 2005, 15, 13-33.
[199]
Planche, S.A.; Cordeiro, M.N.D.S. Speeding up the Virtual Design and Screening of Therapeutic Peptides: Simultaneous Prediction of Anticancer Activity and Cytotoxicity. In. Multi-Scale Approaches in Drug Discovery: From Empirical Knowledge to in Silico Experiments and Back, 1st ed.; Speck-Planche, A., Ed. Elsevier: Oxford, UK. 2017, pp. 127-147.
[200]
Speck-Planche, A.; Cordeiro, M.N.D.S. Multi-tasking Chemoinformatic Model for the Efficient Discovery of Potent and Safer Anti-Bladder Cancer Agents.Bladder cancer: Risk factors, Emerging Treatment Strategies and Challenges; Haggerty, S., Ed.; Nova Science Publishers, Inc.: New York, 2014, pp. 71-93.
[201]
Speck-Planche, A.; Cordeiro, M.N.D.S. Multitasking models for quantitative structure-biological effect relationships: Current status and future perspectives to speed up drug discovery. Expert Opin. Drug Discov., 2015, 10, 245-256.
[202]
Speck-Planche, A.; Cordeiro, M.N.D.S. Fragment-based in silico modeling of multi-target inhibitors against breast cancer-related proteins. Mol. Divers., 2017, 21, 511-523.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 19
ISSUE: 2
Year: 2019
Page: [172 - 183]
Pages: 12
DOI: 10.2174/1871520618666181106115802
Price: $58

Article Metrics

PDF: 26
HTML: 1