Review on Targeted Drug Delivery Carriers Used in Nanobiomedical Applications

Author(s): Shashiprabha Punyakantha Dunuweera, Rajapakse Mudiyanselage Shashanka Indeevara Rajapakse, Rajapakshe Babilage Sanjitha Dilan Rajapakshe, Sudu Hakuruge Dilan Priyankara Wijekoon, Mallika Gedara Gayan Sasanka Nirodha Thilakarathna, Rajapakse Mudiyanselage Gamini Rajapakse*.

Journal Name: Current Nanoscience

Volume 15 , Issue 4 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Targeted drug delivery (TDD) is an advanced and smart method of delivering drugs to the patients in a targeted sequence that increases the concentration of delivered drug only at the targeted body part of interest (organs/tissues/cells). This will in turn enhance efficacy of treatment by reducing side effects and the required dose of the drug. TDD ensures a certain defined minimally required constant amount of a therapeutic agent for a prolonged period of time to a targeted diseased area within the body. This helps maintain the required plasma and tissue drug levels in the body thereby avoiding any damage to the healthy tissue via the drug. Various drug carriers that are envisaged in advanced delivery systems are soluble polymers, inorganic nanoparticles, magnetic nanoparticles, biodegradable microsphere polymers (synthetic and natural), neutrophils, fibroblasts, artificial cells, lipoproteins, liposomes, micelles and immune micelle. In selecting such a vehicle, important factors to consider are chemical and physical properties drugs, side effects or cytotoxicity to healthy cells, route to be taken for the delivery of the drug, the targeted site, and the disease. As such, TDD formulations are prepared by considering the specific properties of target cells, nature of markers or transport carriers or vehicles, which convey drug to specific receptors, and ligands and physically modulated components.

Keywords: Targeted drug delivery, nanoscience and nanotechnology, strategies of drug targeting, drug delivery carriers, nanomedicine, nanobiomedicine application.

Lees, P.; Cunningham, F.; Elliott, J. Principles of pharmacodynamics and their applications in veterinary pharmacology. J. Vet. Pharmacol. Ther., 2004, 27, 397-414.
Moolenaar, F.; Bakker, S.; Visser, J.; Huizinga, T. Biopharmaceutics of rectal administration of drugs in man IX. Comparative biopharmaceutics of Diazepam after single rectal, oral, intramuscular and intravenous administration in man. Int. J. Pharm., 1980, 5, 127-137.
Cheng, Y.; Xu, Z.; Ma, M.; Xu, T. Dendrimers as drug carriers: Applications in different routes of drug administration. J. Pharm. Sci., 2008, 97, 123-143.
Berlin, C.M.; May-McCarver, D.G.; Notterman, D.A.; Ward, R.M.; Weismann, D.N.; Wilson, G.S.; Cote, C.J. Alternative routes of drug administration - Advantages and disadvantages (subject review). Pediatrics, 1997, 100, 143-152.
Redding, J.S.; Asunlcion, J.S.; Pearson, J.W. Effective routes of drug administration during cardiac arrest. Anesth. Analg., 1967, 46, 253-258.
Prausnitz, M.; Langer, R. Transdermal drug delivery. Nat. Biotechnol., 2018, 26, 1261-1268.
Gibaldi, M.; Boyes, R.; Feldman, S. Influence of first-pass effect on availability of drugs on oral administration. J. Pharm. Sci., 1971, 60, 1338-1340.
Hoffken, G.; Lode, H.; Prinzing, C.; Borner, K.; Koeppe, P. Pharmacokinetics of ciprofloxacin after oral and parenteral administration. Antimicrob. Agents Chemother., 2018, 27, 375-379.
Orlowski, J. Comparison study of intraosseous, central intravenous, and peripheral intravenous infusions of emergency drugs. Am. J. Dis. Child., 1990, 144(1), 112-117.
Hughes, M.; Glass, P.; Jacobs, J. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology, 1992, 76, 334-341.
Bruera, E.; Brenneis, C.; Michaud, M.; Bacovsky, R.; Chadwick, S.; Emeno, A.; Macdonald, N. Use of the subcutaneous route for the administration of narcotics in patients with cancer pain. Cancer, 1988, 62(02), 407-411.
de Boer, A.; Moolenaar, F.; de Leede, L.; Breimer, D. Rectal drug administration: Clinical pharmacokinetic considerations. Clin. Pharmacokinet., 1982, 7(4), 285-311.
Thrimawithana, T.; Young, S.; Bunt, C.; Green, C.; Alany, R. Drug delivery to the posterior segment of the eye. Drug Discov. Today, 2011, 16(5-6), 270-277.
Türker, S.; Onur, E.; Ózer, Y. Nasal route and drug delivery systems. Pharm. World Sci., 2014, 26, 137.
Illum, L. Nasal drug delivery—possibilities, problems and solutions. J. Control. Release, 2003, 87(1-3), 187-198.
Illum, L. Nasal drug delivery: New developments and strategies. Drug Discov. Today, 2002, 7(23), 1184-1189.
Tanner, T.; Marks, R. Delivering drugs by the transdermal route: Review and comment. Skin Res. Technol., 2008, 14, 249-260.
Rowland, M. Influence of route of administration on drug availability. J. Pharm. Sci., 1972, 61, 70-74.
Sinha, R. Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther., 2006, 5(8), 1909-1917.
Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev., 2011, 63, 136-151.
Chidambaram, M.; Manavalan, R.; Kathiresan, K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J. Pharm. Pharm. Sci., 2011, 14, 67-77.
Cho, K.; Wang, X.; Nie, S.; Chen, Z.; Shin, D. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res., 2008, 14, 1310-1316.
Jong, W.H.D.; Borm, P.J.A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3, 133-149.
Bertrand, N.; Leroux, J. The journey of a drug-carrier in the body: An anatomo-physiological perspective. J. Control. Release, 2012, 161, 152-163.
Bae, Y.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release, 2011, 153, 198-205.
Sagnella, S.; Drummond, C. Drug delivery: A nanomedicine approach. Australian Biochemist, 2012, 43, 5-20.
Greish, K. Enhanced Permeability and Retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol., 2010, 624, 25-37.
Mishra, N.; Pant, P.; Porwal, A.; Jaiswal, J.; Samad, A.M.; Tiwari, S. Targeted drug delivery: A review. Am. J. PharmTech Res., 2016, 6(1), 1-24.
Chen, C.; Ke, J.; Zhou, X.E.; Yi, W.; Brunzelle, J.S.; Li, J.; Yong, E.L.; Xu, H.E.; Melcher, K. Structural basis for molecular recognition of folic acid by folate receptors. Nature, 2013, 500, 486-489.
Kelemen, L.E. The role of folate receptor α in cancer development, progression and treatment: Cause, consequence or innocent bystander? Int. J. Cancer, 2016, 119, 243-250.
Leamon, C.P.; Reddy, J.A.; Vlahov, I.R.; Westrick, E.; Dawson, A.; Dorton, R.; Vetzel, M.; Santhapuram, H.K.; Wang, Y. Preclinical antitumor activity of a novel folate-targeted dual drug conjugate. Mol. Pharm., 2007, 4, 659-667.
Matsue, H.; Rothberg, K.G.; Takashima, A.; Kamen, B.A.; Anderson, R.G.; Lacey, S.W. Folate receptor allows cells to grow in low concentrations of 5-methyltetrahydrofolate. Proc. Natl. Acad. Sci. USA, 1992, 89(13), 6006-6009.
McGuire, J.J. Anticancer antifolates: Current status and future directions. Curr. Pharm. Des., 2003, 9, 2593-2613.
Reddy, J.A.; Dorton, R.; Westrick, E.; Dawson, A.; Smith, T.; Xu, L.C.; Vetzel, M.; Kleindl, P.; Vlahov, I.R.; Leamon, C.P. Preclinical evaluation of EC145, a folate-vinca alkaloid conjugate. Cancer Res., 2007, 67, 4434-4442.
Leamon, C.P.; Reddy, J.A. Folate-targeted chemotherapy. Adv. Drug Deliv. Rev., 2004, 56, 1127-1141.
Kane, M.A.; Elwood, P.C.; Portillo, R.M.; Antony, A.C.; Najfeld, V.; Finley, A.; Waxman, S.; Kolhouse, J.F. Influence on immunoreactive folate-binding proteins of extracellular folate concentration in cultured human-cells. J. Clin. Invest., 1988, 81, 1398-1406.
Deng, Y.; Zhou, X.; Desmoulin, S.K.; Wu, J.; Cherian, C.; Hou, Z.; Gangjee, A. Synthesis and biological activity of a novel series of 6-substituted thieno[2,3-d]pyrimidine antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors over the reduced folate carrier and proton-coupled folate transporter for cellular entry. J. Med. Chem., 2009, 52(9), 2940-2951.
Melgert, B.N.; Olinga, P.; Van Der Laan, J.M.S.; Weert, B.; Cho, J.; Schuppan, D.; Groothuis, G.M.M.; Meijer, K.F.; Poelstra, K. Targeting dexamethasone to Kupffer cells: Effects on liver inflammation and fibrosis in rats. Hepatology, 2011, 34(04), 719-728.
Balthasar, J.P.; Fung, H.L. Inverse targeting of peritoneal tumors: Selective alteration of the disposition of methotrexate through the use of anti-methotrexate antibodies and antibody fragments. J. Pharm. Sci., 1996, 85, 1035-1043.
Morachis, J.M.; Mahmoud, E.A.; Almutairi, A. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacol. Rev., 2012, 64(3), 505-519.
Noimark, S.; Weiner, J.; Noor, N.; Allan, E.; Williams, C.K.; Shaffer, M.S.P.; Parkin, I.P. Dual-mechanism antimicrobial polymer–ZnO nanoparticle and crystal violet-encapsulated silicone. Adv. Funct. Mater., 2015, 25, 1367-1373.
Sun, Z.; Yan, X.; Liu, Y.; Huang, L.; Kong, C.; Qu, X.; Qin, H. Application of dual targeting drug delivery system for the improvement of anti-glioma efficacy of doxorubicin. Oncotarget, 2017, 8(35), 58823-58834.
Singh, R.; Lillard, J.W. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
Win, K.Y.; Feng, S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 2005, 26(15), 2713-2722.
Patil, S.; Sandberg, A.; Heckert, E.; Self, W.; Seal, S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials, 2007, 28(31), 4600-4607.
Gupta, A.K.; Gupta, M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials, 2005, 26(13), 1565-1573.
Bruno, B.J.; Miller, G.D.; Lim, C.S. Basics and recent advances in peptide and protein drug delivery. Ther. Deliv., 2013, 4(11), 1443-1467.
Sattar, M.; Sayed, O.; Lane, M. Oral transmucosal drug delivery – Current status and future prospects. Int. J. Pharm., 2018, 471(1-2), 498-506.
Goebel, F.D.; Goldstein, D.; Goos, M.; Jablonowski, H.; Stewart, J.S. Efficacy and safety of stealth liposomal doxorubicin in AIDS-related Kaposi’s sarcoma. Br. J. Cancer, 1996, 73, 989-994.
Simpson, J.K.; Miller, R.F.; Spittle, M.F. Liposomal doxorubicin for treatment of AIDS-related Kaposi’s sarcoma. Clin. Oncol., 1993, 5(6), 372-374.
Sharma, A.; Sharma, U.S. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm., 1997, 154(2), 123-140.
Sharma, A.; Kakkar, A. Designing dendrimer and miktoarm polymer based multi-tasking nanocarriers for efficient medical therapy. Molecules, 2015, 20, 16987-17015.
Liberman, A.; Mendez, N.; Trogler, W.C.; Kummel, A.C. Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf. Sci. Rep., 2014, 69(2-3), 132-158.
Zong, H.; Thomas, T.; Lee, K.; Desai, A.; Li, M.; Kotlyar, A.; Zhang, Y.; Leroueil, P.; Gam, J.; Banaszak Holl, M.; Baker, J. Bifunctional PAMAM dendrimer conjugates of folic acid and methotrexate with defined ratio. Biomacromolecules, 2018, 13(4), 982-991.
Ciolkowski, M.; Rozanek, M.; Bryszewska, M.; Klajnert, B. The influence of PAMAM dendrimers surface groups on their interaction with porcine pepsin. Biochim. Biophys. Acta, 2018, 1834(10), 1982-1987.
Jain, S.K.; Jain, A.; Gupta, Y.; Ahirwar, M. Design and development of hydrogel beads for targeted drug delivery to the colon. AAPS PharmSciTech, 2007, 8(3), 34-41.
Gopi, S.; Amalraj, A.; Thomas, S. Effective drug delivery system of biopolymers based on nanomaterials and hydrogels - A review. Drug Des., 2016, 5, 129.
Nakanishi, T.; Aoki, D.; Watanabe, Y.; Ando, Y.; Tomotsugu, N.; Sato, Y.; Saito, T. A phase II clinical trial of pegylated liposomal doxorubicin and carboplatin in Japanese patients with platinum-sensitive recurrent ovarian, fallopian tube or primary peritoneal cancer. Jpn. J. Clin. Oncol., 2015, 45, 422-426.
Pasut, G.; Paolino, D.; Celia, C.; Mero, A.; Joseph, A.S.; Wolfram, J.; Cosco, D.; Schiavon, O.; Shen, H.; Fresta, M. Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy. J. Control. Release, 2003, 199, 106-113.
Mohanty, A.K.; Dilnawaz, F.; Mohanta, G.P.; Sahoo, S.K. Polymer– Drug Conjugates for Targeted Drug Delivery. In: Devarajan, P.; Jain, S. (eds). Targeted Drug Delivery: Concepts and Design. Advances in Delivery Science and Technology. Springer, Cham, 2015.
Nan, A.; Nanayakkara, N.P.D.; Walker, L.A.; Yardley, V.; Croft, S.L.; Ghandehari, H.N. -(2-hydroxypropyl)methacrylamide (HPMA) copolymers for targeted delivery of 8-aminoquinoline antileishmanial drugs. J. Control. Release, 2001, 3(13), 233-243.
Macosko, C.W. "Polymer Nanoparticles Improve Delivery of Compounds” University of Minnesota Office for Technology Commercialization."Nanodelivery".
Yu, Y.C.; Cho, H.S.; Yu, W.R.; Youk, J.H. One-step synthesis of poly(2-oxazoline)-based amphiphilic block copolymers using a dual initiator for RAFT polymerization and CROP. Polymer, 2014, 55, 5986-5990.
Barz, M.; Arminan, A.; Canal, F.; Wolf, F.; Koynov, K.; Frey, H.; Zentel, R.; Vicent, M.J.P. (HPMA)-block-P(LA) copolymers in paclitaxel formulations: Polylactide stereochemistry controls micellization, cellular uptake kinetics, intracellular localization and drug efficiency. J. Control. Release, 2012, 163, 63-74.
Yang, X.; Grailer, J.J.; Rowland, I.J.; Javadi, A.; Hurley, S.A.; Matson, V.Z.; Steeber, D.A.; Gong, S. Multifunctional stable and pH-responsive polymer vesicles formed by Heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. ACS Nano, 2010, 4, 6805-6817.
Sun, C.; Lee, J.S.H.; Zhang, M.Q. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev., 2008, 60, 1252-1265.
Subramani, K.; Hosseinkhani, H.; Khraisat, A.; Hosseinkhani, M.; Pathak, Y. Targeting nanoparticles as drug delivery systems for cancer treatment. Curr. Nanosci., 2009, 5, 135-140.
Lübbe, A.S.; Bergemann, C.; Riess, H.; Schriever, F.; Reichardt, P.; Possinger, K.; Matthias, M.; Dorken, B.; Herrmann, F.; Gurtler, R.; Hohenberger, P.; Haas, N.; Sohr, R.; Sander, B.; Lemke, A-J.; Ohlendorf, D.; Huhnt, W.; Huhn, D. Clinical experiences with magnetic drug targeting: A Phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res., 1996, 56, 4686-4693.
Arruebo, M.; Fernandez-Pacheco, R.; Ibarra, M.R.; Santamaria, J. Magnetic nanoparticles for drug delivery. Nano Today, 2007, 2, 22-32.
Zboril, R.; Mashlan, M.; Petridis, D. Iron (III) oxides from thermal processes synthesis, structural and magnetic properties, Mossbauer spectroscopy characterization, and applications. Chem. Mater., 2002, 14, 969-982.
Pouponneau, P.; Leroux, J.C.; Martel, S. Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization. Biomaterials, 2009, 30, 6327-6332.
Parvin, S.; Matsui, J.; Sato, E.; Miyashita, T. Side-chain effect on Langmuir and Langmuir–Blodgett film properties of poly(n-alkylmethacrylamide)-coated magnetic nanoparticle. J. Colloid Interface Sci., 2007, 313, 128-134.
Rahisuddin; Sharma, P.K.; Salim, M.; Garg, G. Application of ferrofluid: As a targeted drug delivery system in nanotechnology. Int. J. Pharm. Sci. Rev. Res., 2010, 5, 115-119.
Zhao, M.X.; Zhu, B.J. The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Res. Lett., 2016, 11, 207.
Matea, C.T.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Mocan, L. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomedicine, 2017, 12, 5421-5431.
Torchilin, V.P.; Omelyanenko, V.G.; Papisov, M.I.; Bogdanov, A.A. Jr.; Trubetskoy, V.S.; Herron, J.N.; Gentry, C.A. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim. Biophys. Acta, 1994, 1195, 11-20.
Uchiyama, K.; Nagayasu, A.; Yamagiwa, Y.; Nishida, T.; Harashima, H.; Kiwada, H. Effects of the size and fluidity of liposomes on their accumulation in tumors: A presumption of their interaction with tumors. Int. J. Pharm., 1995, 121, 195-203.
Galvin, P.; Thompson, D.; Ryan, K.B.; Mccarthy, A.; Moore, A.C.; Burke, C.S.; Dyson, M.; Maccraith, B.D. Gun’Ko, Y.K.; Byrne, M.T.; Volkov, Y.; Keely, C.; Keehan, E.; Howe, M.; Duffy, C.; Macloughlin, R. Nanoparticle-based drug delivery: Case studies for cancer and cardiovascular applications. Cell. Mol. Life Sci., 2011, 69, 389-404.
Lee, J.H.; Yeo, Y. Controlled drug release from pharmaceutical nanocarriers. Chem. Eng. Sci., 2005, 125, 75-84.
Weerasuriya, D.R.K.; Wijesinghe, W.P.S.L.; Rajapakse, R.M.G. Encapsulation of anticancer drug copper bis(8-hydroxyquinoline) in hydroxyapatite for pH-sensitive targeted delivery and slow release. Mater. Sci. Eng. C, 2017, 71, 206-213.
Rajapakse, R.M.G.; Dunuweera, S.P. Discovery, chemistry, anticancer action and targeting of Cisplatin. Int. J. Clin. Oncol. Cancer Res., 2017, 2(3), 65-74.
Dunuweera, S.P.; Rajapakse, R.M.G. Synthesis of unstable vaterite polymorph of porous calcium carbonate nanoparticles, encapsulation of anticancer drug Cisplatin, studying release kinetics for safe, targeted delivery and slow release. J. Nanomedine Biotherapeutic Discov., 2017, 7, 150.
McNaught, A.D.; Wilkinson, A. IUPAC. Compendium of Chemical Terminology. (The "Gold Book"), 2nd ed Oxford,; Blackwell Scientific Publications, 1997.
Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des., 2013, 81, 136-147.
Biron, E.; Chatterjee, J.; Ovadia, O.; Langenegger, D.; Brueggen, J.; Hoyer, D.; Schmid, H.A.; Jelinek, R.; Gilon, C.; Hoffman, A.; Kessler, H. Improving oral bioavailability of peptides by multiple N-methyla tion: somatostatin analogues. Angew. Chem. Int. Ed. Engl., 2008, 47, 2595-2599.
Brown, M.B.; Martin, G.P.; Jones, S.A.; Akomeah, K. Dermal and transdermal drug delivery systems. Drug Deliv., 2006, 13(3), 175-187.
Palmer, B.C.; DeLouise, L.A. Nanoparticle enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules, 2016, 21(12), E1719.
Guy, R.; Hadgraft, J. Transdermal drug delivery: The ground rules are emerging. Pharm. Int., 1985, 6, 112-116.
Sachan, R.; Bajpai, M. Transdermal drug delivery system: A review. IJRDPL, 2013, 3(1), 748-765.
Mali, A.D.; Bathi, R.; Patil, M. An updated review on transdermal drug delivery systems. IJASR, 2015, 1(6), 244-254.
Leamon, C.P.; Low, P.S. Delivery of macromolecules into living cells: A method that exploits folate receptor endocytosis. Proc. Natl. Acad. Sci., 1991, 88(13), 5572-5576.
Czogalla, A.; Kauert, D.J.; Franquelim, H.G.; Uzunova, V.; Zhang, Y.; Seidel, R.; Schwille, P. Amphipathic DNA origami nanoparticles to scaffold and deform lipid membrane vesicles. Angew. Chem. Int. Ed., 2015, 54, 6501-6505.
Spiegelstein, O.; Eudy, J.D.; Finnell, R.H. Identification of two putative novel folate receptor genes in humans and mouse. Gene, 2000, 258(1-2), 117-125.
Low, P.S.; Kularatne, S.A. Folate-targeted therapeutic and imaging agents for cancer. Curr. Opin. Chem. Biol., 2009, 13(3), 256-562.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [382 - 397]
Pages: 16
DOI: 10.2174/1573413714666181106114247
Price: $58

Article Metrics

PDF: 58
PRC: 1