Can We Extrapolate Data from One Immune-Mediated Inflammatory Disease to Another One?

Author(s): Fernando Magro* , Rosa Coelho , Armando Peixoto .

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 2 , 2019

  Journal Home
Translate in Chinese

Abstract:

Immune-mediated inflammatory diseases share several pathogenic pathways and this pushes sometimes to extrapolate from one disease or indication to others. A biosimilar can be defined as a biotherapeutic product which is similar in terms of quality, safety, and efficacy to an already licensed reference biotherapeutic product. We review the substrate for extrapolation, the current approval process for biosimilars and the pioneering studies on biosimilars performed in rheumatoid arthritis patients. A biosimilar has the same amino acid sequence as its innovator product. However, post-translational modifications can occur and the current analytical techniques do not allow the final structure. To test the efficacy in one indication, a homogeneous population should be chosen and immunogenicity features are essential in switching and interchangeability. CT-P13 (Remsima™; Inflectra™) is a biosimilar of reference infliximab (Remicade®). It meets most of the requirements for extrapolation. Nevertheless, in inflammatory bowel diseases (IBD) we need more studies to confirm the postulates of extrapolation from rheumatoid arthritis and ankylosing spondylitis to IBD. Furthermore, an effective pharmacovigilance schedule is mandatory to look for immunogenicity and side effects.

Keywords: Biosimilars, inflammatory bowel diseases, Crohn's disease, ulcerative colitis, biologics, infliximab.

[1]
World Health Organization, Expert Committee on Biological Standardization. Guidelines on Evaluation of Similar Bio- Therapeutic Products (SBPs)., 2009.
[2]
Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: Non-clinical and clinical issues, December. 2014.
[3]
Camacho, L.H.; Frost, C.P.; Abella, E.; Morrow, P.K.; Whittaker, S. Biosimilars 101: Considerations for U.S. oncologists in clinical practice. Cancer Med., 2014, 3(4), 889-899.
[4]
Tkaczuk, K.H.R.; Jacobs, I.A. Seminars in oncology. Semin. Oncol., 2014, 41, S3-S12.
[5]
Heinemann, L.; Hompesch, M. Biosimilar insulins: How similar is similar? J. Diabetes Sci. Technol., 2011, 5(3), 741-754.
[6]
Loftus, E.V., Jr Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology, 2004, 126(6), 1504-1517.
[7]
Sartor, R.; Rath, H.; Lichtman, S.; Van Tol, E. Baillieres Clin. Rheumatol., 1996, 10, 55-76.
[8]
Ebbers, H.C.; Chamberlain, P. Controversies in establishing biosimilarity: Extrapolation of indications and global labeling practices. BioDrugs, 2016, 30(1), 1-8.
[9]
Powrie, F. Immune regulation in the intestine: A balancing act between effector and regulatory T cell responses. Ann. N. Y. Acad. Sci., 2004, 1029, 132-141.
[10]
Elson, C.O.; Konrad, A.; Cong, Y.; Weaver, C.T. Gene disruption and immunity in experimental colitis. Inflamm. Bowel Dis., 2004, 10(Suppl. 1), S25-S28.
[11]
Bouma, G.; Strober, W. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol., 2003, 3(7), 521-533.
[12]
Peluso, I.; Pallone, F.; Monteleone, G. Interleukin-12 and Th1 immune response in Crohn’s dis-ease: Pathogenetic relevance and therapeutic implication. World J. Gastroenterol., 2006, 21(35), 5606-5610.
[13]
Fiocchi, C. Inflammatory bowel disease: Etiology and pathogenesis. Gastroenterology, 1998, 115(1), 182-205.
[14]
Sartor, R.B. Cytokines in intestinal inflammation: Pathophysiological and clinical considerations. Gastroenterology, 1994, 106(2), 533-539.
[15]
Papadakis, K.A.; Targan, S.R. Role of cytokines in the pathogenesis of inflammatory bowel disease. Annu. Rev. Med., 2000, 51, 289-298.
[16]
Skroza, N.; Proietti, I.; Pampena, R.; La Viola, G.; Bernardini, N.; Nicolucci, F.; Tolino, E.; Zuber, S.; Soccodato, V.; Potenza, C. Correlations between psoriasis and inflammatory bowel diseases. BioMed Res. Int., 2013, 2013, 983902.
[17]
Stockinger, B.; Veldhoen, M. Differentiation and function of Th17 T cells. Curr. Opin. Immunol., 2007, 19(3), 281-286.
[18]
Steinman, L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat. Med., 2007, 13(2), 139-145.
[19]
Manel, N.; Unutmaz, D.; Littman, D.R. The differentiation of human T(H)-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORgammat. Nat. Immunol., 2008, 9(6), 641-649.
[20]
Ouyang, W.; Kolls, J.K.; Zheng, Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity, 2008, 28(4), 454-467.
[21]
Oukka, M. Interplay between pathogenic Th17 and regulatory T cells. Ann. Rheum. Dis., 2007, 66(Suppl. 3), iii87-iii90.
[22]
European Medicines Agency. Guideline on Similar Biological Medicine Products., 2013.
[23]
Fujino, S.; Andoh, A.; Bamba, S.; Ogawa, A.; Hata, K.; Araki, Y.; Bamba, T.; Fujiyama, Y. Increased expression of interleukin 17 in inflammatory bowel disease. Gut, 2003, 52(1), 65-70.
[24]
Lee, E.; Trepicchio, W.L.; Oestreicher, J.L.; Pittman, D.; Wang, F.; Chamian, F.; Dhodapkar, M.; Krueger, J.G. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J. Exp. Med., 2004, 199(1), 125-130.
[25]
McInnes, I.B.; Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol., 2007, 7(6), 429-442.
[26]
Schulze-Koops, H.; Kalden, J.R. The balance of Th1/Th2 cytokines in rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol., 2001, 15(5), 677-691.
[27]
Mateen, S.; Zafar, A.; Moin, S.; Khan, A.Q.; Zubair, S. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin. Chim. Acta, 2016, 455, 161-171.
[28]
Viatte, S.; Plant, D.; Raychaudhuri, S. Genetics and epigenetics of rheumatoid arthritis. Nat. Rev. Rheumatol., 2013, 9(3), 141-153.
[29]
Wan, Y.Y.; Flavell, R.A. TGF-beta and regulatory T cell in immunity and autoimmunity. J. Clin. Immunol., 2008, 28(6), 647-659.
[30]
Bettelli, E.; Carrier, Y.; Gao, W.; Korn, T.; Strom, T.B.; Oukka, M.; Weiner, H.L.; Kuchroo, V.K. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature, 2006, 441(7090), 235-238.
[31]
Zhou, L.; Lopes, J.E.; Chong, M.M.; Ivanov, I.I.; Min, R.; Victora, G.D.; Shen, Y.; Du, J.; Rubtsov, Y.P.; Rudensky, A.Y.; Ziegler, S.F.; Littman, D.R. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature, 2008, 453(7192), 236-240.
[32]
Moreland, L.W.; Baumgartner, S.W.; Schiff, M.H.; Tindall, E.A.; Fleischmann, R.M.; Weaver, A.L.; Ettlinger, R.E.; Cohen, S.; Koopman, W.J.; Mohler, K.; Widmer, M.B.; Blosch, C.M. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N. Engl. J. Med., 1997, 337(3), 141-147.
[33]
Moreland, L.W.; Schiff, M.H.; Baumgartner, S.W. Phase III trial of DMARD failing rheumatoid arthritis patients with TNF receptor p75 Fc fusion protein (TNFR: Fc, ENBREL). J. Investig. Med., 1998, 46, 228A.
[34]
Weinblatt, M.E.; Kremer, J.M.; Bankhurst, A.D.; Bulpitt, K.J.; Fleischmann, R.M.; Fox, R.I.; Jackson, C.G.; Lange, M.; Burge, D.J. A trial of etanercept, a recombinant tumor necrosis factor receptor: Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N. Engl. J. Med., 1999, 28(4), 253-259.
[35]
Leonardi, C.L.; Powers, J.L.; Matheson, R.T.; Goffe, B.S.; Zitnik, R.; Wang, A.; Gottlieb, A.B. Etanercept as monotherapy in patients with psoriasis. N. Engl. J. Med., 2003, 349(21), 2014-2022.
[36]
Mease, P.J.; Goffe, B.S.; Metz, J.; VanderStoep, A.; Finck, B.; Burge, D.J. Etanercept in the treatment of psoriatic arthritis and psoriasis: A randomised trial. Lancet, 2000, 356(9227), 385-390.
[37]
Gorman, J.D.; Sack, K.E.; Davis, J.C., Jr Treatment of ankylosing spondylitis by inhibition of tumor necrosis factor alpha. N. Engl. J. Med., 2002, 346(18), 1349-1356.
[38]
Sandborn, W.J.; Hanauer, S.B.; Katz, S.; Safdi, M.; Wolf, D.G.; Baerg, R.D.; Tremaine, W.J.; Johnson, T.; Diehl, N.N.; Zinsmeister, A.R. Etanercept for active Crohn’s disease: A randomized, double-blind, placebo-controlled trial. Gastroenterology, 2001, 121(5), 1088-1094.
[39]
Yen, D.; Cheung, J.; Cheung, J.; Scheerens, H.; Poulet, F.; McClanahan, T.; McKenzie, B.; Kleinschek, M.A.; Owyang, A.; Mattson, J.; Blumenschein, W.; Murphy, E.; Sathe, M.; Cua, D.J.; Kastelein, R.A.; Rennick, D. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest, 2006. 116, 1310e16.
[40]
Fujino, S.; Andoh, A.; Bamba, S.; Ogawa, A.; Hata, K.; Araki, Y.; Bamba, T.; Fujiyama, Y. Increased expression of interleukin 17 in inflammatory bowel disease. Gut, 2003, 52, 65-70.
[41]
Parkes, M.; Barrett, J.C.; Prescott, N.J.; Tremelling, M.; Anderson, C.A.; Fisher, S.A.; Roberts, R.G.; Nimmo, E.R.; Cummings, F.R.; Soars, D.; Drummond, H.; Lees, C.W.; Khawaja, S.A.; Bagnall, R.; Burke, D.A.; Todhunter, C.E.; Ahmad, T.; Onnie, C.M.; McArdle, W.; Strachan, D.; Bethel, G.; Bryan, C.; Lewis, C.M.; Deloukas, P.; Forbes, A.; Sanderson, J.; Jewell, D.P.; Satsangi, J.; Mansfield, J.C. Wellcome Trust Case Control Consortium, Cardon L, Mathew CG. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat. Genet., 2007, 39, 830-832.
[42]
Barrett, J.C.; Hansoul, S.; Nicolae, D.L.; Cho, J.H.; Duerr, R.H.; Rioux, J.D.; Brant, S.R.; Silverberg, M.S.; Taylor, K.D.; Barmada, M.M.; Bitton, A.; Dassopoulos, T.; Datta, L.W.; Green, T.; Griffiths, A.M.; Kistner, E.O.; Murtha, M.T.; Regueiro, M.D.; Rotter, J.I.; Schumm, L.P.; Steinhart, A.H.; Targan, S.R.; Xavier, R.J. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat. Genet., 2008, 40, 955-962.
[43]
Hueber, W.; Patel, D.D.; Dryja, T.; Wright, A.M.; Koroleva, I.; Bruin, G.; Antoni, C.; Draelos, Z.; Gold, M.H. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci. Transl. Med., 2010, 2, 52-72.
[44]
Hueber, W.; Sands, B.E.; Lewitzky, S.; Vandemeulebroecke, M.; Reinisch, W.; Higgins, P.D.; Wehkamp, J.; Feagan, B.G.; Yao, M.D.; Karczewski, M.; Karczewski, J.; Pezous, N.; Bek, S.; Bruin, G.; Mellgard, B.; Berger, C.; Londei, M.; Bertolino, A.P.; Tougas, G.; Travis, S.P. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: Unexpected results of a randomised, double-blind placebo-controlled trial. Gut, 2012, 61(12), 1693-1700.
[45]
Daller, J. Biosimilars: A consideration of the regulations in the United States and European union. Regul. Toxicol. Pharmacol., 2015, 28. [Abstract].
[46]
Dranitsaris, G.; Amir, E.; Dorward, K. Biosimilars of biological drug therapies: Regulatory, clinical and commercial considerations. Drugs, 2011, 71(12), 1527-1536.
[47]
Zelenetz, A.D.; Ahmed, I.; Braud, E.L.; Cross, J.D.; Davenport-Ennis, N.; Dickinson, B.D.; Goldberg, S.E.; Gottlieb, S.; Johnson, P.E.; Lyman, G.H.; Markus, R.; Matulonis, U.A.; Reinke, D.; Li, E.C.; DeMartino, J.; Larsen, J.K.; Hoffman, J.M. NCCN Biosimilars White Paper: Regulatory, scientific, and patient safety perspectives. J. Natl. Compr. Canc. Netw., 2011, 9(Suppl. 4), S1-S22.
[48]
Lucio, S.D.; Stevenson, J.G.; Hoffman, J.M. Biosimilars: Implications for health-system pharmacists. Am. J. Health Syst. Pharm., 2013, 15(22), 2004-2017.
[49]
Stevenson, J.G. Clinical data and regulatory issues of biosimilar products. Am. J. Manag. Care, 2015, 21(16)(Suppl.), s320-s330.
[50]
Mellstedt, H. Clinical considerations for biosimilar antibodies. EJC Suppl., 2013, 11(3), 1-11.
[51]
Sundaram, S.; Matathia, A.; Qian, J.; Zhang, J.; Hsieh, M.C.; Liu, T.; Crowley, R.; Parekh, B.; Zhou, Q. An innovative approach for the characterization of the isoforms of a monoclonal antibody product. MAbs, 2011, 3(6), 505-512.
[53]
Park, W.; Hrycaj, P.; Jeka, S.; Kovalenko, V.; Lysenko, G.; Miranda, P.; Mikazane, H.; Gutierrez-Ureña, S.; Lim, M.; Lee, Y.A.; Lee, S.J.; Kim, H.; Yoo, D.H.; Braun, J. A randomised, double-blind, multicentre, parallel-group, prospective study comparing the pharmacokinetics, safety, and efficacy of CT-P13 and innovator infliximab in patients with ankylosing spondylitis: The PLANETAS study. Ann. Rheum. Dis., 2013, 72(10), 1605-1612.
[54]
Yoo, D.H.; Hrycaj, P.; Miranda, P.; Ramiterre, E.; Piotrowski, M.; Shevchuk, S.; Kovalenko, V.; Prodanovic, N.; Abello-Banfi, M.; Gutierrez-Ureña, S.; Morales-Olazabal, L.; Tee, M.; Jimenez, R.; Zamani, O.; Lee, S.J.; Kim, H.; Park, W.; Müller-Ladner, U. A randomised, double-blind, parallel-group study to demonstrate equivalence in efficacy and safety of CT-P13 compared with innovator infliximab when coadministered with methotrexate in patients with active rheumatoid arthritis: The PLANETRA study. Ann. Rheum. Dis., 2013, 72(10), 1613-1620.
[55]
Papamichael, K.; Van Stappen, T.; Jairath, V.; Gecse, K.; Khanna, R.; D’Haens, G.; Vermeire, S.; Gils, A.; Feagan, B.G.; Levesque, B.G.; Vande Casteele, N. Review article: Pharmacological aspects of anti-TNF biosimilars in inflammatory bowel diseases. Aliment. Pharmacol. Ther., 2015, 42(10), 1158-1169.
[56]
Gecse, K.B.; Lovász, B.D.; Farkas, K.; Banai, J.; Bene, L.; Gasztonyi, B.; Golovics, P.A.; Kristóf, T.; Lakatos, L.; Csontos, Á.A.; Juhász, M.; Nagy, F.; Palatka, K.; Papp, M.; Patai, Á.; Lakner, L.; Salamon, Á.; Szamosi, T.; Szepes, Z.; Tóth, G.T.; Vincze, Á.; Szalay, B.; Molnár, T.; Lakatos, P.L. Biosimilar infliximab in inflammatory bowel diseases: First interim results from a prospective nationwide observational cohort. Gastroenterology, 2015, 148, S-865-S-866.
[57]
De Groot, A.S.; Scott, D.W. Immunogenicity of protein therapeutics. Trends Immunol., 2007, 28(11), 482-490.
[58]
Jung, S.K.; Lee, K.H.; Jeon, J.W.; Lee, J.W.; Kwon, B.O.; Kim, Y.J.; Bae, J.S.; Kim, D.I.; Lee, S.Y.; Chang, S.J. Physicochemical characterization of Remsima. MAbs, 2014, 6(5), 1163-1177.
[59]
Ben-Horin, S.; Heap, G.A.; Ahmad, T.; Kim, H.; Kwon, T.; Chowers, Y. The immunogenicity of biosimilar infliximab: Can we extrapolate the data across indications? Expert Rev. Gastroenterol. Hepatol., 2015, 9(Suppl. 1), 27-34.
[60]
Feagan, B.G.; Choquette, D.; Ghosh, S.; Gladman, D.D.; Ho, V.; Meibohm, B.; Zou, G.; Xu, Z.; Shankar, G.; Sealey, D.C.; Russell, A.S. The challenge of indication extrapolation for infliximab biosimilars. Biologicals, 2014, 42(4), 177-183.
[61]
Lee, H. Is extrapolation of the safety and efficacy data in one indication to another appropriate for biosimilars? AAPS J., 2014, 16(1), 22-26.
[62]
Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Non-inferiority Clinical Trials to Establish Effectiveness. Guidance for Industry., 2016. November, 56.
[63]
Lipsky, P.E.; van der Heijde, D.M.; St Clair, E.W.; Furst, D.E.; Breedveld, F.C.; Kalden, J.R.; Smolen, J.S.; Weisman, M.; Emery, P.; Feldmann, M.; Harriman, G.R.; Maini, R.N. Infliximab and methotrexate in the treatment of rheumatoid arthritis. N. Engl. J. Med., 2000, 343(22), 1594-1602.
[64]
St Clair, E.W.; van der Heijde, D.M.; Smolen, J.S.; Maini, R.N.; Bathon, J.M.; Emery, P.; Keystone, E.; Schiff, M.; Kalden, J.R.; Wang, B.; Dewoody, K.; Weiss, R.; Baker, D. Combination of infliximab and methotrexate therapy for early rheumatoid arthritis: A randomized, controlled trial. Arthritis Rheum., 2004, 50(11), 3432-3443.
[65]
van der Heijde, D.; Dijkmans, B.; Geusens, P.; Sieper, J.; DeWoody, K.; Williamson, P.; Braun, J. Efficacy and safety of infliximab in patients with ankylosing spondylitis: Results of a randomized, placebo-controlled trial (ASSERT). Arthritis Rheum., 2005, 52(2), 582-591.
[66]
Antoni, C.E.; Kavanaugh, A.; Kirkham, B.; Tutuncu, Z.; Burmester, G.R.; Schneider, U.; Furst, D.E.; Molitor, J.; Keystone, E.; Gladman, D.; Manger, B.; Wassenberg, S.; Weier, R.; Wallace, D.J.; Weisman, M.H.; Kalden, J.R.; Smolen, J. Sustained benefits of infliximab therapy for dermatologic and articular manifestations of psoriatic arthritis: Results from the infliximab multinational psoriatic arthritis controlled trial (IMPACT). Arthritis Rheum., 2005, 52(4), 1227-1236.
[67]
Antoni, C.; Krueger, G.G.; de Vlam, K.; Birbara, C.; Beutler, A.; Guzzo, C.; Zhou, B.; Dooley, L.T.; Kavanaugh, A. Infliximab improves signs and symptoms of psoriatic arthritis: Results of the IMPACT 2 trial. Ann. Rheum. Dis., 2005, 64(8), 1150-1157.
[68]
Reich, K.; Nestle, F.O.; Papp, K.; Ortonne, J.P.; Evans, R.; Guzzo, C.; Li, S.; Dooley, L.T.; Griffiths, C.E. Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: A phase III, multicentre, double-blind trial. Lancet, 2005, 366(9494), 1367-1374.
[69]
Menter, A.; Feldman, S.R.; Weinstein, G.D.; Papp, K.; Evans, R.; Guzzo, C.; Li, S.; Dooley, L.T.; Arnold, C.; Gottlieb, A.B. A randomized comparison of continuous vs. intermittent infliximab maintenance regimens over 1 year in the treatment of moderate-to-severe plaque psoriasis. J. Am. Acad. Dermatol., 2007, 56(1), 31.e1-31.e15.
[70]
Gottlieb, A.B.; Evans, R.; Li, S.; Dooley, L.T.; Guzzo, C.A.; Baker, D.; Bala, M.; Marano, C.W.; Menter, A. Infliximab induction therapy for patients with severe plaque-type psoriasis: A randomized, double-blind, placebo-controlled trial. J. Am. Acad. Dermatol., 2004, 51(4), 534-542.
[71]
Targan, S.R.; Hanauer, S.B.; van Deventer, S.J.; Mayer, L.; Present, D.H.; Braakman, T.; DeWoody, K.L.; Schaible, T.F.; Rutgeerts, P.J. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease cA2 Study Group. N. Engl. J. Med., 1997, 337(15), 1029-1035.
[72]
Hanauer, S.B.; Feagan, B.G.; Lichtenstein, G.R.; Mayer, L.F.; Schreiber, S.; Colombel, J.F.; Rachmilewitz, D.; Wolf, D.C.; Olson, A.; Bao, W.; Rutgeerts, P. Maintenance infliximab for Crohn’s disease: The ACCENT I randomised trial. Lancet, 2002, 359(9317), 1541-1549.
[73]
Present, D.H.; Rutgeerts, P.; Targan, S.; Hanauer, S.B.; Mayer, L.; van Hogezand, R.A.; Podolsky, D.K.; Sands, B.E.; Braakman, T.; DeWoody, K.L.; Schaible, T.F.; van Deventer, S.J. Infliximab for the treatment of fistulas in patients with Crohn’s disease. N. Engl. J. Med., 1999, 340(18), 1398-1405.
[74]
Sands, B.E.; Blank, M.A.; Patel, K.; van Deventer, S.J. Long-term treatment of rectovaginal fistulas in Crohn’s disease: Response to infliximab in the ACCENT II study. Clin. Gastroenterol. Hepatol., 2004, 2(10), 912-920.
[75]
Rutgeerts, P.; Sandborn, W.J.; Feagan, B.G.; Reinisch, W.; Olson, A.; Johanns, J.; Travers, S.; Rachmilewitz, D.; Hanauer, S.B.; Lichtenstein, G.R.; de Villiers, W.J.; Present, D.; Sands, B.E.; Colombel, J.F. Infliximab for induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med., 2005, 8(23), 2462-2476.
[76]
Gecse, K.B.; Khanna, R.; van den Brink, G.R.; Ponsioen, C.Y.; Löwenberg, M.; Jairath, V.; Travis, S.P.; Sandborn, W.J.; Feagan, B.G.; D’Haens, G.R. Biosimilars in IBD: Hope or expectation? Gut, 2013, 62(6), 803-807.
[77]
Danese, S.; Gomollon, F. ECCO position statement: The use of biosimilar medicines in the treatment of inflammatory bowel disease (IBD). J. Crohn’s Colitis, 2013, 7(7), 586-589.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 2
Year: 2019
Page: [248 - 258]
Pages: 11
DOI: 10.2174/0929867325666181101114937
Price: $58

Article Metrics

PDF: 44
HTML: 6
EPUB: 2
PRC: 1