CT-707 Overcomes Resistance of Crizotinib through Activating PDPK1- AKT1 Pathway by Targeting FAK

Author(s): Caixia Liang , Ningning Zhang , Qiaoyun Tan , Shuxia Liu , Rongrong Luo , Yanrong Wang , Yuankai Shi* , Xiaohong Han* .

Journal Name: Current Cancer Drug Targets

Volume 19 , Issue 8 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Crizotinib established the position of anaplastic lymphoma kinase-tyrosine kinase inhibitors (ALK-TKI) in the treatment of non-small cell lung cancer (NSCLC) while the therapy- resistance hindered those patients from benefitting continuously from the treatment. CT-707 is an inhibitor of ALK/focal adhesion kinase (FAK) and IGFR-1. H2228CR (crizotinib resistance, CR) and H3122CR NSCLC cell lines were generated from the parental cell line H2228 (EML4-ALK, E6a/b:A20, variant 3) and H3122(EML4-ALK, E13:A20, variant 1), respectively.

Methods: We investigated the antitumor effects CT-707 exerted against H3122CR in vitro /vivo.

Results: Importantly, our study provided evidence that CT-707 overcomes resistance to crizotinib through activating PDPK1-AKT1 pathway by targeting FAK. Meanwhile, by using an in-vivo H3122CR xenograft model, we found CT-707 inhibited tumor growth significantly without obvious side effects.

Conclusion: These findings indicate that CT-707 may be a promising therapeutic agent against crizotinib- resistance in NSCLC.

Keywords: Anaplastic lymphoma kinase, CT-707, crizotinib resistance, non-small cell lung cancer, xenograft model, therapeutic agent.

[1]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66, 115-132.
[2]
Gridelli, C.; Peters, S.; Sgambato, A.; Casaluce, F.; Adjei, A.A.; Ciardiello, F. ALK inhibitors in the treatment of advanced NSCLC. Cancer Treat. Rev., 2014, 40, 300-306.
[3]
Soda, M.; Choi, Y.L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; Bando, M.; Ohno, S.; Ishikawa, Y.; Aburatani, H.; Niki, T.; Sohara, Y.; Sugiyama, Y.; Mano, H. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature, 2007, 448, 561-566.
[4]
Solomon, B.J.; Mok, T.; Kim, D.W. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med., 2015, 373, 1582.
[5]
Kwak, E.L.; Bang, Y.J.; Camidge, D.R.; Shaw, A.T.; Solomon, B.; Maki, R.G.; Ou, S.H.; Dezube, B.J.; Janne, P.A.; Costa, D.B.; Varella-Garcia, M.; Kim, W.H.; Lynch, T.J.; Fidias, P.; Stubbs, H.; Engelman, J.A.; Sequist, L.V.; Tan, W.; Gandhi, L.; Mino-Kenudson, M.; Wei, G.C.; Shreeve, S.M.; Ratain, M.J.; Settleman, J.; Christensen, J.G.; Haber, D.A.; Wilner, K.; Salgia, R.; Shapiro, G.I.; Clark, J.W.; Iafrate, A.J. Anaplastic lymphoma kinase inhibition in non–small-cell lung cancer. N. Engl. J. Med., 2010, 363, 1693-1703.
[6]
Shaw, A.T.; Kim, D.W.; Nakagawa, K.; Seto, T.; Crino, L.; Ahn, M.J.; De Pas, T.; Besse, B.; Solomon, B.J.; Blackhall, F.; Wu, Y.L.; Thomas, M.; O’Byrne, K.J.; Moro-Sibilot, D.; Camidge, D.R.; Mok, T.; Hirsh, V.; Riely, G.J.; Iyer, S.; Tassell, V.; Polli, A.; Wilner, K.D.; Janne, P.A. Anaplastic lymphoma kinase inhibition in non–small-cell lung cancer. N. Engl. J. Med., 2013, 368, 2385-2394.
[7]
Lu, S.; Mok, T.; Lu, Y.; Zhou, Y.; Shi, Y.; Sriuranpong, V.; Ho, J.; Ong, C.; Tsai, C.; Chung, C. Phase 3 study of first-line crizotinib vs Pemetrexed-cisplatin/carboplatin in East Asian patients with ALK+ advanced non-squamous non-small cell lung cancer. 2016.
[8]
Katayama, R. Therapeutic strategies and mechanisms of drug resistance in anaplastic lymphoma kinase (ALK)-rearranged lung cancer. Pharmacol. Ther., 2017, 177, 1-8.
[9]
Katayama, R. Drug resistance in anaplastic lymphoma kinase-rearranged lung cancer. Cancer Sci., 2018, 109, 572-580.
[10]
McLean, G.W.; Carragher, N.O.; Avizienyte, E.; Evans, J.; Brunton, V.G.; Frame, M.C. The role of focal-adhesion kinase in cancer-A new therapeutic opportunity. Nat. Rev. Cancer, 2005, 5, 505-515.
[11]
Moffat, J.; Grueneberg, D.A.; Yang, X.; Kim, S.Y.; Kloepfer, A.M.; Hinkle, G.; Piqani, B.; Eisenhaure, T.M.; Luo, B.; Grenier, J.K. A Lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell, 2006, 124, 1283-1298.
[12]
Tibaldi, C. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small-cell lung cancer. Pharmacogenomics, 2014, 15, 133-135.
[13]
Doebele, R.C.; Pilling, A.B.; Aisner, D.L.; Kutateladze, T.G.; Le, A.T.; Weickhardt, A.J.; Kondo, K.L.; Linderman, D.J.; Heasley, L.E.; Franklin, W.A.; Varella-Garcia, M.; Camidge, D.R. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non–small cell lung cancer. Clin. Cancer Res., 2012, 18, 1472-1482.
[14]
Lovly, C.M.; McDonald, N.T.; Chen, H.; Ortiz-Cuaran, S.; Heukamp, L.C.; Yan, Y.; Florin, A.; Ozretic, L.; Lim, D.; Wang, L.; Chen, Z.; Chen, X.; Lu, P.; Paik, P.K.; Shen, R.; Jin, H.; Buettner, R.; Ansen, S.; Perner, S.; Brockmann, M.; Bos, M.; Wolf, J.; Gardizi, M.; Wright, G.M.; Solomon, B.; Russell, P.A.; Rogers, T.M.; Suehara, Y.; Red-Brewer, M.; Tieu, R.; de Stanchina, E.; Wang, Q.; Zhao, Z.; Johnson, D.H.; Horn, L.; Wong, K.K.; Thomas, R.K.; Ladanyi, M.; Pao, W. Rationale for co-targeting IGF-1R and ALK in ALK fusion–positive lung cancer. Nat. Med., 2014, 20, 1027-1034.
[15]
Sasaki, T.; Koivunen, J.; Ogino, A.; Yanagita, M.; Nikiforow, S.; Zheng, W.; Lathan, C.; Marcoux, J.P.; Du, J.; Okuda, K.; Capelletti, M.; Shimamura, T.; Ercan, D.; Stumpfova, M.; Xiao, Y.; Weremowicz, S.; Butaney, M.; Heon, S.; Wilner, K.; Christensen, J.G.; Eck, M.J.; Wong, K.K.; Lindeman, N.; Gray, N.S.; Rodig, S.J.; Janne, P.A. A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res., 2011, 71, 6051-6060.
[16]
Isozaki, H.; Takigawa, N.; Kiura, K. Mechanisms of acquired resistance to ALK inhibitors and the rationale for treating ALK-positive lung cancer. Cancers (Basel), 2015, 7, 763-783.
[17]
Crystal, A.S.; Shaw, A.T.; Sequist, L.V.; Friboulet, L.; Niederst, M.J.; Lockerman, E.L.; Frias, R.L.; Gainor, J.F.; Amzallag, A.; Greninger, P.; Lee, D.; Kalsy, A.; Gomez-Caraballo, M.; Elamine, L.; Howe, E.; Hur, W.; Lifshits, E.; Robinson, H.E.; Katayama, R.; Faber, A.C.; Awad, M.M.; Ramaswamy, S.; Mino-Kenudson, M.; Iafrate, A.J.; Benes, C.H.; Engelman, J.A. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science, 2014, 346, 1480-1486.
[18]
Camidge, D.R.; Pao, W.; Sequist, L.V. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat. Rev. Clin. Oncol., 2014, 11, 473-481.
[19]
Ou, S.H.; Bartlett, C.H.; Mino-Kenudson, M.; Cui, J.; Iafrate, A.J. Crizotinib for the treatment of ALK-rearranged non-small cell lung cancer: A success story to usher in the second decade of molecular targeted therapy in oncology. Oncologist, 2012, 17, 1351-1375.
[20]
Wang, Y.; McKay, J.D.; Rafnar, T.; Wang, Z.; Timofeeva, M.N.; Broderick, P.; Zong, X.; Laplana, M.; Wei, Y.; Han, Y.; Lloyd, A.; Delahaye-Sourdeix, M.; Chubb, D.; Gaborieau, V.; Wheeler, W.; Chatterjee, N.; Thorleifsson, G.; Sulem, P.; Liu, G.; Kaaks, R.; Henrion, M.; Kinnersley, B.; Vallee, M.; LeCalvez-Kelm, F.; Stevens, V.L.; Gapstur, S.M.; Chen, W.V.; Zaridze, D.; Szeszenia-Dabrowska, N.; Lissowska, J.; Rudnai, P.; Fabianova, E.; Mates, D.; Bencko, V.; Foretova, L.; Janout, V.; Krokan, H.E.; Gabrielsen, M.E.; Skorpen, F.; Vatten, L.; Njolstad, I.; Chen, C.; Goodman, G.; Benhamou, S.; Vooder, T.; Valk, K.; Nelis, M.; Metspalu, A.; Lener, M.; Lubinski, J.; Johansson, M.; Vineis, P.; Agudo, A.; Clavel-Chapelon, F.; Bueno-de-Mesquita, H.B.; Trichopoulos, D.; Khaw, K.T.; Johansson, M.; Weiderpass, E.; Tjonneland, A.; Riboli, E.; Lathrop, M.; Scelo, G.; Albanes, D.; Caporaso, N.E.; Ye, Y.; Gu, J.; Wu, X.; Spitz, M.R.; Dienemann, H.; Rosenberger, A.; Su, L.; Matakidou, A.; Eisen, T.; Stefansson, K.; Risch, A.; Chanock, S.J.; Christiani, D.C.; Hung, R.J.; Brennan, P.; Landi, M.T.; Houlston, R.S.; Amos, C.I. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat. Genet., 2014, 46, 736-741.
[21]
Gainor, J.F.; Dardaei, L.; Yoda, S.; Friboulet, L.; Leshchiner, I.; Katayama, R.; Dagogo-Jack, I.; Gadgeel, S.; Schultz, K.; Singh, M.; Chin, E.; Parks, M.; Lee, D.; DiCecca, R.H.; Lockerman, E.; Huynh, T.; Logan, J.; Ritterhouse, L.L.; Le, L.P.; Muniappan, A.; Digumarthy, S.; Channick, C.; Keyes, C.; Getz, G.; Dias-santagata, D.; Heist, R.S.; Lennerz, J.; Sequist, L.V.; Benes, C.H.; Iafrate, A.J.; Mino-Kenudson, M.; Engelman, J.A.; Shaw, A.T. Molecular mechanisms of resistance to first-and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov., 2016, 6, 1118-1133.
[22]
Shaw, A.T.; Felip, E.; Bauer, T.M.; Besse, B.; Navarro, A.; Postel-Vinay, S.; Gainor, J.F.; Johnson, M.; Dietrich, J.; James, L.P.; Clancy, J.S.; Chen, J.; Martini, J.F.; Abbattista, A.; Solomon, B.J. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: An international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol., 2017, 18, 1590-1599.
[23]
Wang, D.D.; Chen, Y.; Chen, Z.B.; Yan, F.J.; Dai, X.Y.; Ying, M.D.; Cao, J.; Ma, J.; Luo, P.H.; Han, Y.X.; Peng, Y.; Sun, Y.H.; Zhang, H.; He, Q.J.; Yang, B.; Zhu, H. Mol. Cancer Ther., 2016, 15, 2916-2925.
[24]
Zhu, H.; Wang, D.D.; Yuan, T.; Yan, F.J.; Zeng, C.M.; Dai, X.Y.; Chen, Z.B.; Chen, Y.; Zhou, T.; Fan, G.H.; Ying, M.; Cao, J.; Luo, P.; Liu, X.J.; Hu, Y.; Peng, Y.; He, Q.; Yang, B. Cancer Res., 2018.
[25]
Zhou, J.; Yun, E.J.; Chen, W.; Ding, Y.; Wu, K.; Wang, B.; Ding, C.; Hernandez, E.; Santoyo, J.; Pong, R.C.; Chen, H.; He, D.; Zhou, J.; Hsieh, J.T. Targeting 3-phosphoinositide-dependent protein kinase 1 associated with drug-resistant renal cell carcinoma using new oridonin analogs. Cell Death Dis., 2017, 8, e2701.
[26]
Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov., 2009, 8, 627-644.
[27]
Hennessy, B.T.; Smith, D.L.; Ram, P.T.; Lu, Y.; Mills, G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov., 2005, 4, 988-1004.
[28]
Maemets-Allas, K.; Viil, J.; Jaks, V. A novel inhibitor of AKT1-PDPK1 interaction efficiently suppresses the activity of AKT pathway and restricts tumor growth In Vivo. Mol. Cancer Ther., 2015, 14, 2486-2496.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 8
Year: 2019
Page: [655 - 665]
Pages: 11
DOI: 10.2174/1568009618666181031152140
Price: $58

Article Metrics

PDF: 32
HTML: 4