Polyethylenimine-based Formulations for Delivery of Oligonucleotides

Author(s): Fei Hao, Yuhuan Li, Jing Zhu, Jingyao Sun, Brian Marshall, Robert J. Lee, Lesheng Teng, Zhaogang Yang*, Jing Xie*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 13 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer


Polyethyleneimine (PEI) is well-known as a non-viral gene delivery vector, especially for oligonucleotide delivery. However, its clinical applications are significantly limited due to its high cationic charge, lack of specificity, and interaction with the proteins and nontarget cells in the biological fluids, resulting in high cytotoxicity, poor stability and low transfection efficiency for oligonucleotides transporting. It has been shown that the molecular weight (MW) of PEI, degree of branching, N/P ratio, buffer capacity, oligonucleotide structure, culture medium pH, serum, presence or absence of and method of preparation make a significant difference in the cytoxicity, stability, and transfection efficiency for the PEI-based oligonucleotides delivery systems. Ligands, hydrophobic, hydrophilic, and amphiphilic modification of PEI have been investigated to reduce the cytoxicity and improve the stability, the transfection efficiency, and therapeutic effect. Moreover, various intelligent modifications of PEI, such as pH-responsive (hydrazone bond) and redox sensitive linkers (disulfide bond) can control oligonucleotides release and have attracted much attention. In general, more efficient oligonucleotide delivery can be achieved by the introduction of modifications to PEI and by optimization of parameters of PEI or PEI-based formulations.

Keywords: Polyethylenimine, oligonucleotide delivery, drug, targeting, PEG modification, pH-sensitive linker, oligonucleotide delivery carrier.

Lehrman, S. Virus treatment questioned after gene therapy death. Nature, 1999, 401(6753), 517-518. [http://dx.doi.org/10.1038/43977]. [PMID: 10524611].
Liu, Q.; Muruve, D.A. Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther., 2003, 10(11), 935-940. [http://dx.doi.org/10.1038/sj.gt.3302036]. [PMID: 12756413].
Yang, Z.; Chang, L.; Li, W.; Xie, J. Novel biomaterials and biotechnology for nanomedicine. Eu. J. Biomed. Res., 2015, 1(3), 1-2. [http://dx.doi.org/10.18088/ejbmr.1.3.2015.pp1-2].
Sun, J.Y.; Anand-Jawa, V.; Chatterjee, S.; Wong, K.K. Immune responses to adeno-associated virus and its recombinant vectors. Gene Ther., 2003, 10(11), 964-976. [http://dx.doi.org/10.1038/sj.gt.3302039]. [PMID: 12756417].
Donahue, R.E.; Kessler, S.W.; Bodine, D.; McDonagh, K.; Dunbar, C.; Goodman, S.; Agricola, B.; Byrne, E.; Raffeld, M.; Moen, R. Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J. Exp. Med., 1992, 176(4), 1125-1135. [http://dx.doi.org/10.1084/jem.176.4.1125]. [PMID: 1383375].
Gore, M.E. Adverse effects of gene therapy: Gene therapy can cause leukaemia: No shock, mild horror but a probe. Gene Ther., 2003, 10(1), 4-4. [http://dx.doi.org/10.1038/sj.gt.3301946].
Glover, D.J.; Lipps, H.J.; Jans, D.A. Towards safe, non-viral therapeutic gene expression in humans. Nat. Rev. Genet., 2005, 6(4), 299-310. [http://dx.doi.org/10.1038/nrg1577]. [PMID: 15761468].
Yang, Z.; Xie, J.; Zhu, J.; Kang, C.; Chiang, C.; Wang, X.; Wang, X.; Kuang, T.; Chen, F.; Chen, Z.; Zhang, A.; Yu, B.; Lee, R.J.; Teng, L.; Lee, L.J. Functional exosome-mimic for delivery of siRNA to cancer: In vitro and in vivo evaluation. J. Control. Release, 2016, 243, 160-171. [http://dx.doi.org/10.1016/j.jconrel.2016.10.008].
Yang, Z.; Yu, B.; Zhu, J.; Huang, X.; Xie, J.; Xu, S.; Yang, X.; Wang, X.; Yung, B.C.; Lee, L.J.; Lee, R.J.; Teng, L. A microfluidic method to synthesize transferrin-lipid nanoparticles loaded with siRNA LOR-1284 for therapy of acute myeloid leukemia. Nanoscale, 2014, 6(16), 9742-9751. [http://dx.doi.org/10.1039/C4NR01510J]. [PMID: 25003978].
Zhou, C.; Yang, Z.; Teng, L. Nanomedicine based on nucleic acids: Pharmacokinetic and pharmacodynamic perspectives. Curr. Pharm. Biotechnol., 2014, 15(9), 829-838. [http://dx.doi.org/10.2174/1389201015666141020155620]. [PMID: 25335533].
Yu, B.; Wang, X.; Zhou, C.; Teng, L.; Ren, W.; Yang, Z.; Shih, C.H.; Wang, T.; Lee, R.J.; Tang, S.; Lee, L.J. Insight into mechanisms of cellular uptake of lipid nanoparticles and intracellular release of small RNAs. Pharm. Res., 2014, 31(10), 2685-2695. [http://dx.doi.org/10.1007/s11095-014-1366-7]. [PMID: 24740244].
Chen, Z.; Zhang, A.; Wang, X.; Zhu, J.; Fan, Y.; Yu, H.; Yang, Z. The advances of carbon nanotubes in cancer diagnostics and therapeutics. J. Nanomater., 2017, 2017, 1-13.
Kuang, T.; Fu, D.; Chang, L.; Yang, Z.; Chen, Z.; Jin, L.; Chen, F.; Peng, X. Recent progress in dendrimer-based gene delivery systems. Curr. Org. Chem., 2016, 20(17), 1820-1826. [http://dx.doi.org/10.2174/1385272820666151123235059].
Lee, L.J.; Yang, Z.; Rahman, M.; Ma, J.; Kwak, K.J.; McElroy, J.; Shilo, K.; Goparaju, C.; Yu, L.; Rom, W.; Kim, T.K.; Wu, X.; He, Y.; Wang, K.; Pass, H.I.; Nana-Sinkam, S.P. Extracellular mRNA detected by tethered lipoplex nanoparticle biochip for lung adenocarcinoma detection. Am. J. Respir. Crit. Care Med., 2016, 193(12), 1431-1433. [http://dx.doi.org/10.1164/rccm.201511-2129LE]. [PMID: 27304243].
Kang, C.; Sun, Y.; Zhu, J.; Li, W.; Zhang, A.; Kuang, T.; Xie, J.; Yang, Z. Delivery of nanoparticles for treatment of brain tumor. Curr. Drug Metab., 2016, 17(8), 745-754. [http://dx.doi.org/10.2174/1389200217666160728152939]. [PMID: 27469219].
Xie, J.; Yang, Z.; Zhou, C.; Zhu, J.; Lee, R.J.; Teng, L. Nanotechnology for the delivery of phytochemicals in cancer therapy. Biotechnol. Adv., 2016, 34(4), 343-353. [http://dx.doi.org/10.1016/j.biotechadv.2016.04.002]. [PMID: 27071534].
Chen, Z.; Chen, Z.; Zhang, A.; Hu, J.; Wang, X.; Yang, Z. Electrospun nanofibers for cancer diagnosis and therapy. Biomater. Sci., 2016, 4(6), 922-932. [http://dx.doi.org/10.1039/C6BM00070C]. [PMID: 27048889].
Yang, X.; Yang, S.; Chai, H.; Yang, Z.; Lee, R.J.; Liao, W.; Teng, L. A novel isoquinoline derivative anticancer agent and its targeted delivery to tumor cells using transferrin-conjugated liposomes. PLoS One, 2015, 10(8)e0136649 [http://dx.doi.org/10.1371/journal.pone.0136649]. [PMID: 26309138].
Sha, L.L.; Chen, Z.F.; Chen, Z.; Zhang, A.L.; Yang, Z.G. Polylactic acid based nanocomposites: Promising safe and biodegradable materials in biomedical field. Int. J. Polym. Sci., 2016.article ID 6869154 [http://dx.doi.org/10.1155/2016/6869154].
Chen, Z.; Zhang, A.L.; Yang, Z.G.; Wang, X.M.; Chang, L.Q.; Chen, Z.F.; Lee, L.J. Application of DODMA and derivatives in cationic nanocarriers for gene delivery. Curr. Org. Chem., 2016, 20(17), 1813-1819. [http://dx.doi.org/10.2174/1385272820666160202004348].
Chen, Z.; Cong, M.Q.; Hu, J.M.; Yang, Z.G.; Chen, Z.F. Preparation of functionalized TiO2 nanotube arrays and their applications. Sci. Adv. Mater., 2016, 8(6), 1231-1241. [http://dx.doi.org/10.1166/sam.2016.2719].
Chen, Z.; Wu, C.; Yang, Y.; Shi, J.; Hu, J.; Yang, Z.; Chen, Z. Synthesis and drug delivery of mesoporous silica nanoparticles for cancer therapy. Eur. J. Biomed. Res., 2015, 1(3), 30-36. [http://dx.doi.org/10.18088/ejbmr.1.3.2015.pp30-36].
Remaut, K.; Sanders, N.N.; De Geest, B.G.; Braeckmans, K.; Demeester, J.; De Smedt, S.C. Nucleic acid delivery: Where material sciences and bio-sciences meet. Mater. Sci. Eng. Rep., 2007, 58(3-5), 117-161. [http://dx.doi.org/10.1016/j.mser.2007.06.001].
Sun, J.; Shen, J.; Chen, S.; Cooper, M.; Fu, H.; Wu, D.; Yang, Z. Nanofiller reinforced biodegradable PLA/PHA composites: Current status and future trends. Polymers (Basel), 2018, 10(5), 505. [http://dx.doi.org/10.3390/polym10050505].
Yang, Z.; Wang, X.; Huang, X.; Xie, J.; Zhou, C. Nanotechnology in gene delivery: Pharmacokinetic and pharmacodynamic perspectives. The World Scientific Encyclopedia of Nanomedicine and Bioengineering I. Front. Nanobiomed. Res., , 2016; 5, p. (295)326.
Huang, H.; Yu, H.; Tang, G.; Wang, Q.; Li, J. Low molecular weight polyethylenimine cross-linked by 2-hydroxypropyl-gamma-cyclodextrin coupled to peptide targeting HER2 as a gene delivery vector. Biomaterials, 2010, 31(7), 1830-1838. [http://dx.doi.org/10.1016/j.biomaterials.2009.11.012]. [PMID: 19942284].
von Harpe, A.; Petersen, H.; Li, Y.; Kissel, T. Characterization of commercially available and synthesized polyethylenimines for gene delivery. J. Control. Release, 2000, 69(2), 309-322. [http://dx.doi.org/10.1016/S0168-3659(00)00317-5]. [PMID: 11064137].
Monnery, B.D.; Shaunak, S.; Thanou, M.; Steinke, J.H.G. Improved synthesis of linear poly(ethylenimine) via low-temperature polymerization of 2-isopropyl-2-oxazoline in chlorobenzene. Macromolecules, 2015, 48(10), 3197-3206. [http://dx.doi.org/10.1021/acs.macromol.5b00437].
Kircheis, R.; Wightman, L.; Wagner, E. Design and gene delivery activity of modified polyethylenimines. Adv. Drug Deliv. Rev., 2001, 53(3), 341-358. [http://dx.doi.org/10.1016/S0169-409X(01)00202-2]. [PMID: 11744176].
Boussif, O.; Lezoualc’h, F.; Zanta, M.A.; Mergny, M.D.; Scherman, D.; Demeneix, B.; Behr, J.P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA, 1995, 92(16), 7297-7301. [http://dx.doi.org/10.1073/pnas.92.16.7297]. [PMID: 7638184].
Oh, Y.K.; Suh, D.; Kim, J.M.; Choi, H.G.; Shin, K.; Ko, J.J. Polyethylenimine-mediated cellular uptake, nucleus trafficking and expression of cytokine plasmid DNA. Gene Ther., 2002, 9(23), 1627-1632. [http://dx.doi.org/10.1038/sj.gt.3301735]. [PMID: 12424615].
Suh, J.; Paik, H.J.; Hwang, B.K. Ionization of poly(ethylenimine) and poly(allylamine) at various pH′s. Bioorg. Chem., 1994, 22(3), 318-327. [http://dx.doi.org/10.1006/bioo.1994.1025].
Friend, D.S.; Papahadjopoulos, D.; Debs, R.J. Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim. Biophys. Acta, 1996, 1278(1), 41-50. [http://dx.doi.org/10.1016/0005-2736(95)00219-7]. [PMID: 8611605].
Labat-Moleur, F.; Steffan, A.M.; Brisson, C.; Perron, H.; Feugeas, O.; Furstenberger, P.; Oberling, F.; Brambilla, E.; Behr, J.P. An electron microscopy study into the mechanism of gene transfer with lipopolyamines. Gene Ther., 1996, 3(11), 1010-1017. [PMID: 9044741].
Zuhorn, I.S.; Kalicharan, R.; Hoekstra, D. Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis. J. Biol. Chem., 2002, 277(20), 18021-18028. [http://dx.doi.org/10.1074/jbc.M111257200]. [PMID: 11875062].
Kircheis, R.; Wightman, L.; Wagner, E. Design and gene delivery activity of modified polyethylenimines. Adv. Drug Deliv. Rev., 2001, 53(3), 341-358. [http://dx.doi.org/10.1016/S0169-409X(01)00202-2]. [PMID: 11744176].
Neu, M.; Fischer, D.; Kissel, T. Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J. Gene Med., 2005, 7(8), 992-1009. [http://dx.doi.org/10.1002/jgm.773]. [PMID: 15920783].
Godbey, W.T.; Wu, K.K.; Mikos, A.G. Size matters: Molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J. Biomed. Mater. Res., 1999, 45(3), 268-275. [http://dx.doi.org/10.1002/(SICI)1097-4636(19990605)45:3<268:AID-JBM15>3.0.CO;2-Q]. [PMID: 10397985].
Israel, L.L.; Lellouche, E.; Ostrovsky, S.; Yarmiayev, V.; Bechor, M.; Michaeli, S.; Lellouche, J.P. Acute in vivo toxicity mitigation of PEI-coated maghemite nanoparticles using controlled oxidation and surface modifications toward siRNA delivery. ACS Appl. Mater. Interfaces, 2015, 7(28), 15240-15255. [http://dx.doi.org/10.1021/acsami.5b02743]. [PMID: 26120905].
Yang, S.; Lee, R.J.; Yang, X.; Zheng, B.; Xie, J.; Meng, L.; Liu, Y.; Teng, L. A novel reduction-sensitive modified polyethylenimine oligonucleotide vector. Int. J. Pharm., 2015, 484(1-2), 44-50. [http://dx.doi.org/10.1016/j.ijpharm.2015.02.036]. [PMID: 25698089].
Werth, S.; Urban-Klein, B.; Dai, L.; Hobel, S.; Grzelinski, M.; Bakowsky, U.; Czubayko, F.; Aigner, A. A low molecular weight fraction of polyethylenimine (PEI) displays increased transfection efficiency of DNA and siRNA in fresh or lyophilized complexes. J. Control. Rel. Soc., 2006, 112(2), 257-270.
Höbel, S.; Koburger, I.; John, M.; Czubayko, F.; Hadwiger, P.; Vornlocher, H.P.; Aigner, A. Polyethylenimine/small interfering RNA-mediated knockdown of vascular endothelial growth factor in vivo exerts anti-tumor effects synergistically with Bevacizumab. J. Gene Med., 2010, 12(3), 287-300. [PMID: 20052738].
Xie, J.; Teng, L.; Yang, Z.; Zhou, C.; Liu, Y.; Yung, B.C.; Lee, R.J. A polyethylenimine-linoleic acid conjugate for antisense oligonucleotide delivery. BioMed Res. Int., 2013, 2013710502 [http://dx.doi.org/10.1155/2013/710502]. [PMID: 23862153].
Zhong, Z.; Song, Y.; Engbersen, J.F.; Lok, M.C.; Hennink, W.E.; Feijen, J. A versatile family of degradable non-viral gene carriers based on hyperbranched poly(ester amine)s. J. Control. Rel. Soc., 2005, 109(1-3), 317-329.
Sun, C.; Tang, T.; Uludağ, H.; Cuervo, J.E. Molecular dynamics simulations of DNA/PEI complexes: Effect of PEI branching and protonation state. Biophys. J., 2011, 100(11), 2754-2763. [http://dx.doi.org/10.1016/j.bpj.2011.04.045]. [PMID: 21641321].
Chitkara, D.; Mittal, A.; Mahato, R.I. miRNAs in pancreatic cancer: therapeutic potential, delivery challenges and strategies. Adv. Drug Deliv. Rev., 2015, 81, 34-52. [http://dx.doi.org/10.1016/j.addr.2014.09.006]. [PMID: 25252098].
Kim, T.H.; Cook, S.E.; Arote, R.B.; Cho, M.H.; Nah, J.W.; Choi, Y.J.; Cho, C.S. A degradable hyperbranched poly(ester amine) based on poloxamer diacrylate and polyethylenimine as a gene carrier. Macromol. Biosci., 2007, 7(5), 611-619. [http://dx.doi.org/10.1002/mabi.200600245]. [PMID: 17457939].
Arote, R.; Kim, T.H.; Kim, Y.K.; Hwang, S.K.; Jiang, H.L.; Song, H.H.; Nah, J.W.; Cho, M.H.; Cho, C.S. A biodegradable poly(ester amine) based on polycaprolactone and polyethylenimine as a gene carrier. Biomaterials, 2007, 28(4), 735-744. [http://dx.doi.org/10.1016/j.biomaterials.2006.09.028]. [PMID: 17034844].
Fischer, D.; Li, Y.; Ahlemeyer, B.; Krieglstein, J.; Kissel, T. In vitro cytotoxicity testing of polycations: Influence of polymer structure on cell viability and hemolysis. Biomaterials, 2003, 24(7), 1121-1131. [http://dx.doi.org/10.1016/S0142-9612(02)00445-3]. [PMID: 12527253].
Shen, J.; Zhao, D.J.; Li, W.; Hu, Q.L.; Wang, Q.W.; Xu, F.J.; Tang, G.P. A polyethylenimine-mimetic biodegradable polycation gene vector and the effect of amine composition in transfection efficiency. Biomaterials, 2013, 34(18), 4520-4531. [http://dx.doi.org/10.1016/j.biomaterials.2013.02.068]. [PMID: 23518402].
Bonner, D.K.; Zhao, X.; Buss, H.; Langer, R.; Hammond, P.T. Crosslinked linear polyethylenimine enhances delivery of DNA to the cytoplasm. J. Control. Rel. Soc., 2013, 167(1), 101-107. [http://dx.doi.org/10.1016/j.jconrel.2012.09.004].
Han So, Mahato, R.I.; Kim, S.W. Water-soluble lipopolymer for gene delivery. Bioconjug. Chem., 2001, 12(3), 337-345. [http://dx.doi.org/10.1021/bc000120w]. [PMID: 11353530].
Forrest, M.L.; Koerber, J.T.; Pack, D.W. A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconjug. Chem., 2003, 14(5), 934-940. [http://dx.doi.org/10.1021/bc034014g]. [PMID: 13129396].
Park, M.R.; Kim, H.W.; Hwang, C.S.; Han, K.O.; Choi, Y.J.; Song, S.C.; Cho, M.H.; Cho, C.S. Highly efficient gene transfer with degradable poly(ester amine) based on poly(ethylene glycol) diacrylate and polyethylenimine in vitro and in vivo. J. Gene Med., 2008, 10(2), 198-207. [http://dx.doi.org/10.1002/jgm.1139]. [PMID: 18064729].
Park, M.R.; Han, K.O.; Han, I.K.; Cho, M.H.; Nah, J.W.; Choi, Y.J.; Cho, C.S. Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers. J. Control. Rel. Soc., 2005, 105(3), 367-380.
Green, J.J.; Langer, R.; Anderson, D.G. A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc. Chem. Res., 2008, 41(6), 749-759. [http://dx.doi.org/10.1021/ar7002336]. [PMID: 18507402].
Zhang, H.; Vinogradov, S.V. Short biodegradable polyamines for gene delivery and transfection of brain capillary endothelial cells. J. Control. Rel. Soc., 2010, 143(3), 359-366. [http://dx.doi.org/10.1016/j.jconrel.2010.01.020].
Malek, A.; Czubayko, F.; Aigner, A. PEG grafting of polyethylenimine (PEI) exerts different effects on DNA transfection and siRNA-induced gene targeting efficacy. J. Drug Target., 2008, 16(2), 124-139. [http://dx.doi.org/10.1080/10611860701849058]. [PMID: 18274933].
Rejman, J.; Oberle, V.; Zuhorn, I.S.; Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J., 2004, 377(Pt 1), 159-169. [http://dx.doi.org/10.1042/bj20031253]. [PMID: 14505488].
Zhang, X.; Pan, S.R.; Hu, H.M.; Wu, G.F.; Feng, M.; Zhang, W.; Luo, X. Poly(ethylene glycol)-block-polyethylenimine copolymers as carriers for gene delivery: effects of PEG molecular weight and PEGylation degree. J. Biomed. Mater. Res. A, 2008, 84(3), 795-804. [http://dx.doi.org/10.1002/jbm.a.31343]. [PMID: 17635020].
Kleemann, E.; Neu, M.; Jekel, N.; Fink, L.; Schmehl, T.; Gessler, T.; Seeger, W.; Kissel, T. Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG-PEI. J. Control. Rel. Soc., 2005, 109(1-3), 299-316.
Grayson, A.C.; Doody, A.M.; Putnam, D. Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm. Res., 2006, 23(8), 1868-1876. [http://dx.doi.org/10.1007/s11095-006-9009-2]. [PMID: 16845585].
Choosakoonkriang, S.; Lobo, B.A.; Koe, G.S.; Koe, J.G.; Middaugh, C.R. Biophysical characterization of PEI/DNA complexes. J. Pharm. Sci., 2003, 92(8), 1710-1722. [http://dx.doi.org/10.1002/jps.10437]. [PMID: 12884257].
Gao, B.; Lei, H.; Jiang, L.; Zhu, Y. Studies on preparing and adsorption property of grafting terpolymer microbeads of PEI-GMA/AM/MBA for bilirubin. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 853(1-2), 62-69. [http://dx.doi.org/10.1016/j.jchromb.2007.02.055]. [PMID: 17400038].
Finsinger, D.; Remy, J.S.; Erbacher, P.; Koch, C.; Plank, C. Protective copolymers for nonviral gene vectors: Synthesis, vector characterization and application in gene delivery. Gene Ther., 2000, 7(14), 1183-1192. [http://dx.doi.org/10.1038/sj.gt.3301227]. [PMID: 10918486].
Oupicky, D.; Ogris, M.; Howard, K.A.; Dash, P.R.; Ulbrich, K.; Seymour, L.W. Importance of lateral and steric stabilization of polyelectrolyte gene delivery vectors for extended systemic circulation. Mol. Ther., 2002, 5(4), 463-472. [http://dx.doi.org/10.1006/mthe.2002.0568].
Rudolph, C.; Schillinger, U.; Ortiz, A.; Plank, C.; Golas, M.M.; Sander, B.; Stark, H.; Rosenecker, J. Aerosolized nanogram quantities of plasmid DNA mediate highly efficient gene delivery to mouse airway epithelium. Mol. Ther., 2005, 12(3), 493-501. [http://dx.doi.org/10.1016/j.ymthe.2005.03.002].
Wightman, L.; Kircheis, R.; Rössler, V.; Carotta, S.; Ruzicka, R.; Kursa, M.; Wagner, E. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med., 2001, 3(4), 362-372. [http://dx.doi.org/10.1002/jgm.187]. [PMID: 11529666].
Rudolph, C.; Lausier, J.; Naundorf, S.; Müller, R.H.; Rosenecker, J. In vivo gene delivery to the lung using polyethylenimine and fractured polyamidoamine dendrimers. J. Gene Med., 2000, 2(4), 269-278. [http://dx.doi.org/10.1002/1521-2254(200007/08)2:4<269:AID-JGM112>3.0.CO;2-F]. [PMID: 10953918].
Islam, M.A.; Yun, C.H.; Choi, Y.J.; Shin, J.Y.; Arote, R.; Jiang, H.L.; Kang, S.K.; Nah, J.W.; Park, I.K.; Cho, M.H.; Cho, C.S. Accelerated gene transfer through a polysorbitol-based transporter mechanism. Biomaterials, 2011, 32(36), 9908-9924. [http://dx.doi.org/10.1016/j.biomaterials.2011.09.013]. [PMID: 21959011].
Sato, T.; Ishii, T.; Okahata, Y. In vitro gene delivery mediated by chitosan. effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials, 2001, 22(15), 2075-2080. [http://dx.doi.org/10.1016/S0142-9612(00)00385-9]. [PMID: 11432586].
Liu, Y.; Yang, X.; Lei, Q.; Li, Z.; Hu, J.; Wen, X.; Wang, H.; Liu, Z. PEG-PEI/siROCK2 protects against Aβ42-induced neurotoxicity in primary neuron cells for Alzheimer Disease. Cell. Mol. Neurobiol., 2015, 35(6), 841-848. [http://dx.doi.org/10.1007/s10571-015-0178-6]. [PMID: 25776136].
Pojják, K.; Mészáros, R. Association between branched poly(ethyleneimine) and sodium dodecyl sulfate in the presence of neutral polymers. J. Colloid Interface Sci., 2011, 355(2), 410-416. [http://dx.doi.org/10.1016/j.jcis.2010.12.051]. [PMID: 21227445].
Wang, B.; Liu, P.; Shi, B.; Gao, J.; Gong, P. Preparation of pH-sensitive dextran nanoparticle for doxorubicin delivery. J. Nanosci. Nanotechnol., 2015, 15(4), 2613-2618. [http://dx.doi.org/10.1166/jnn.2015.9243]. [PMID: 26353472].
de Bruin, K.G.; Fella, C.; Ogris, M.; Wagner, E.; Ruthardt, N.; Brauchle, C. Dynamics of photoinduced endosomal release of polyplexes. J. Control. Release, 2008, 130(2), 175-182. [http://dx.doi.org/10.1016/j.jconrel.2008.06.001].
Rezvani Amin, Z.; Rahimizadeh, M.; Eshghi, H.; Dehshahri, A.; Ramezani, M. The effect of cationic charge density change on transfection efficiency of polyethylenimine. Iran. J. Basic Med. Sci., 2013, 16(2), 150-156. [PMID: 24298383].
Akinc, A.; Thomas, M.; Klibanov, A.M.; Langer, R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med., 2005, 7(5), 657-663. [http://dx.doi.org/10.1002/jgm.696]. [PMID: 15543529].
Singh, B.; Maharjan, S.; Park, T.E.; Jiang, T.; Kang, S.K.; Choi, Y.J.; Cho, C.S. Tuning the buffering capacity of polyethylenimine with glycerol molecules for efficient gene delivery: Staying in or out of the endosomes. Macromol. Biosci., 2015, 15(5), 622-635. [http://dx.doi.org/10.1002/mabi.201400463]. [PMID: 25581293].
Osada, K. Development of functional polyplex micelles for systemic gene therapy. Polym. J., 2014, 46(8), 469-475. [http://dx.doi.org/10.1038/pj.2014.49].
Ren, Y.; Jiang, X.; Pan, D.; Mao, H.Q. Charge density and molecular weight of polyphosphoramidate gene carrier are key parameters influencing its DNA compaction ability and transfection efficiency. Biomacromolecules, 2010, 11(12), 3432-3439. [http://dx.doi.org/10.1021/bm1009574]. [PMID: 21067136].
Abebe, D.G.; Kandil, R.; Kraus, T.; Elsayed, M.; Merkel, O.M.; Fujiwara, T. Three-Layered Biodegradable Micelles Prepared by Two-Step Self-Assembly of PLA-PEI-PLA and PLA-PEG-PLA triblock copolymers as efficient gene delivery system. Macromol. Biosci., 2015, 15(5), 698-711. [http://dx.doi.org/10.1002/mabi.201400488]. [PMID: 25644720].
Chen, J.L.; Wang, H.; Gao, J.Q.; Chen, H.L.; Liang, W.Q. Liposomes modified with polycation used for gene delivery: Preparation, characterization and transfection in vitro. Int. J. Pharm., 2007, 343(1-2), 255-261. [http://dx.doi.org/10.1016/j.ijpharm.2007.05.045]. [PMID: 17624698].
Kim, S.H.; Jeong, J.H.; Lee, S.H.; Kim, S.W.; Park, T.G. LHRH receptor-mediated delivery of siRNA using polyelectrolyte complex micelles self-assembled from siRNA-PEG-LHRH conjugate and PEI. Bioconjug. Chem., 2008, 19(11), 2156-2162. [http://dx.doi.org/10.1021/bc800249n]. [PMID: 18850733].
Lim, H.J.; Kim, J.K.; Park, J.S. Complexation of apoptotic genes with polyethyleneimine (PEI)-Coated Poly-(DL)-lactic-co-glycolic acid nanoparticles for cancer cell apoptosis. J. Biomed. Nanotechnol., 2015, 11(2), 211-225. [http://dx.doi.org/10.1166/jbn.2015.1880]. [PMID: 26349297].
Nguyen, H.K.; Lemieux, P.; Vinogradov, S.V.; Gebhart, C.L.; Guérin, N.; Paradis, G.; Bronich, T.K.; Alakhov, V.Y.; Kabanov, A.V. Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents. Gene Ther., 2000, 7(2), 126-138. [http://dx.doi.org/10.1038/sj.gt.3301052]. [PMID: 10673718].
Regnström, K.; Ragnarsson, E.G.; Köping-Höggård, M.; Torstensson, E.; Nyblom, H.; Artursson, P. PEI - a potent, but not harmless, mucosal immuno-stimulator of mixed T-helper cell response and FasL-mediated cell death in mice. Gene Ther., 2003, 10(18), 1575-1583. [http://dx.doi.org/10.1038/sj.gt.3302054]. [PMID: 12907949].
Ryan, S.M.; Mantovani, G.; Wang, X.; Haddleton, D.M.; Brayden, D.J. Advances in PEGylation of important biotech molecules: Delivery aspects. Expert Opin. Drug Deliv., 2008, 5(4), 371-383. [http://dx.doi.org/10.1517/17425247.5.4.371]. [PMID: 18426380].
Tian, H.Y.; Deng, C.; Lin, H.; Sun, J.; Deng, M.; Chen, X.; Jing, X. Biodegradable cationic PEG-PEI-PBLG hyperbranched block copolymer: Synthesis and micelle characterization. Biomaterials, 2005, 26(20), 4209-4217. [http://dx.doi.org/10.1016/j.biomaterials.2004.11.002]. [PMID: 15683643].
Petersen, H.; Fechner, P.M.; Martin, A.L.; Kunath, K.; Stolnik, S.; Roberts, C.J.; Fischer, D.; Davies, M.C.; Kissel, T. Polyethylenimine-graft-poly(ethylene glycol) copolymers: Influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjug. Chem., 2002, 13(4), 845-854. [http://dx.doi.org/10.1021/bc025529v]. [PMID: 12121141].
Merdan, T.; Kunath, K.; Petersen, H.; Bakowsky, U.; Voigt, K.H.; Kopecek, J.; Kissel, T. PEGylation of poly(ethylene imine) affects stability of complexes with plasmid DNA under in vivo conditions in a dose-dependent manner after intravenous injection into mice. Bioconjug. Chem., 2005, 16(4), 785-792. [http://dx.doi.org/10.1021/bc049743q]. [PMID: 16029019].
Mao, S.; Neu, M.; Germershaus, O.; Merkel, O.; Sitterberg, J.; Bakowsky, U.; Kissel, T. Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes. Bioconjug. Chem., 2006, 17(5), 1209-1218. [http://dx.doi.org/10.1021/bc060129j]. [PMID: 16984130].
Meade, B.R.; Dowdy, S.F. Enhancing the cellular uptake of siRNA duplexes following noncovalent packaging with protein transduction domain peptides. Adv. Drug Deliv. Rev., 2008, 60(4-5), 530-536. [http://dx.doi.org/10.1016/j.addr.2007.10.004]. [PMID: 18155315].
Malek, A.; Merkel, O.; Fink, L.; Czubayko, F.; Kissel, T.; Aigner, A. In vivo pharmacokinetics, tissue distribution and underlying mechanisms of various PEI(-PEG)/siRNA complexes. Toxicol. Appl. Pharmacol., 2009, 236(1), 97-108. [http://dx.doi.org/10.1016/j.taap.2009.01.014]. [PMID: 19371615].
Ito, T.; Yoshihara, C.; Hamada, K.; Koyama, Y. DNA/polyethyleneimine/hyaluronic acid small complex particles and tumor suppression in mice. Biomaterials, 2010, 31(10), 2912-2918. [http://dx.doi.org/10.1016/j.biomaterials.2009.12.032]. [PMID: 20047759].
Song, H.; Wang, G.; He, B.; Li, L.; Li, C.; Lai, Y.; Xu, X.; Gu, Z. Cationic lipid-coated PEI/DNA polyplexes with improved efficiency and reduced cytotoxicity for gene delivery into mesenchymal stem cells. Int. J. Nanomedicine, 2012, 7, 4637-4648. [PMID: 22942645].
Xun, M.M.; Zhang, X.C.; Zhang, J.; Jiang, Q.Q.; Yi, W.J.; Zhu, W.; Yu, X.Q. Low molecular weight PEI-based biodegradable lipopolymers as gene delivery vectors. Org. Biomol. Chem., 2013, 11(7), 1242-1250. [http://dx.doi.org/10.1039/c2ob27211c]. [PMID: 23318505].
De Rosa, G.; Quaglia, F.; La Rotonda, M.I.; Appel, M.; Alphandary, H.; Fattal, E. Poly(lactide-co-glycolide) microspheres for the controlled release of oligonucleotide/polyethylenimine complexes. J. Pharm. Sci., 2002, 91(3), 790-799. [http://dx.doi.org/10.1002/jps.10063]. [PMID: 11920765].
Ganas, C.; Weiss, A.; Nazarenus, M.; Rosler, S.; Kissel, T.; Rivera Gil, P.; Parak, W.J. Biodegradable capsules as non-viral vectors for in vitro delivery of PEI/siRNA polyplexes for efficient gene silencing. J. Control. Release, 2014, 196, 132-138.
Fattal, E.; De Rosa, G.; Bochot, A. Gel and solid matrix systems for the controlled delivery of drug carrier-associated nucleic acids. Int. J. Pharm., 2004, 277(1-2), 25-30. [http://dx.doi.org/10.1016/j.ijpharm.2003.01.002]. [PMID: 15158966].
De Rosa, G.; Quaglia, F.; Bochot, A.; Ungaro, F.; Fattal, E. Long-term release and improved intracellular penetration of oligonucleotide-polyethylenimine complexes entrapped in biodegradable microspheres. Biomacromolecules, 2003, 4(3), 529-536. [http://dx.doi.org/10.1021/bm025684c]. [PMID: 12741766].
Liang, B.; He, M.L.; Xiao, Z.P.; Li, Y.; Chan, C.Y.; Kung, H.F.; Shuai, X.T.; Peng, Y. Synthesis and characterization of folate-PEG-grafted-hyperbranched-PEI for tumor-targeted gene delivery. Biochem. Biophys. Res. Commun., 2008, 367(4), 874-880. [http://dx.doi.org/10.1016/j.bbrc.2008.01.024]. [PMID: 18201560].
Mi Bae, Y.; Choi, H.; Lee, S.; Ho Kang, S.; Tae Kim, Y.; Nam, K.; Sang Park, J.; Lee, M.; Sig Choi, J. Dexamethasone-conjugated low molecular weight polyethylenimine as a nucleus-targeting lipopolymer gene carrier. Bioconjug. Chem., 2007, 18(6), 2029-2036. [http://dx.doi.org/10.1021/bc070012a]. [PMID: 17850108].
Hildebrandt, I.J.; Iyer, M.; Wagner, E.; Gambhir, S.S. Optical imaging of transferrin targeted PEI/DNA complexes in living subjects. Gene Ther., 2003, 10(9), 758-764. [http://dx.doi.org/10.1038/sj.gt.3301939]. [PMID: 12704414].
Zeng, J.; Wang, X.; Wang, S. Self-assembled ternary complexes of plasmid DNA, low molecular weight polyethylenimine and targeting peptide for nonviral gene delivery into neurons. Biomaterials, 2007, 28(7), 1443-1451. [http://dx.doi.org/10.1016/j.biomaterials.2006.11.015]. [PMID: 17156837].
Rudolph, C.; Sieverling, N.; Schillinger, U.; Lesina, E.; Plank, C.; Thünemann, A.F.; Schönberger, H.; Rosenecker, J. Thyroid hormone (T3)-modification of polyethyleneglycol (PEG)-polyethyleneimine (PEI) graft copolymers for improved gene delivery to hepatocytes. Biomaterials, 2007, 28(10), 1900-1911. [http://dx.doi.org/10.1016/j.biomaterials.2006.12.011]. [PMID: 17196251].
Weiss, S.I.; Sieverling, N.; Niclasen, M.; Maucksch, C.; Thünemann, A.F.; Möhwald, H.; Reinhardt, D.; Rosenecker, J.; Rudolph, C. Uronic acids functionalized polyethyleneimine (PEI)-polyethyleneglycol (PEG)-graft-copolymers as novel synthetic gene carriers. Biomaterials, 2006, 27(10), 2302-2312. [http://dx.doi.org/10.1016/j.biomaterials.2005.11.011]. [PMID: 16337267].
Liu, L.; Zheng, M.; Renette, T.; Kissel, T. Modular synthesis of folate conjugated ternary copolymers: polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate for targeted gene delivery. Bioconjug. Chem., 2012, 23(6), 1211-1220. [http://dx.doi.org/10.1021/bc300025d]. [PMID: 22548308].
Yang, S.; Yang, X.; Liu, Y.; Zheng, B.; Meng, L.; Lee, R.J.; Xie, J.; Teng, L. Non-covalent complexes of folic acid and oleic acid conjugated polyethylenimine: An efficient vehicle for antisense oligonucleotide delivery. Colloids Surf. B Biointerfaces, 2015, 135, 274-282. [http://dx.doi.org/10.1016/j.colsurfb.2015.07.047]. [PMID: 26263216].
Sun, Y.X.; Zeng, X.; Meng, Q.F.; Zhang, X.Z.; Cheng, S.X.; Zhuo, R.X. The influence of RGD addition on the gene transfer characteristics of disulfide-containing polyethyleneimine/DNA complexes. Biomaterials, 2008, 29(32), 4356-4365. [http://dx.doi.org/10.1016/j.biomaterials.2008.07.045]. [PMID: 18718656].
Tian, H.; Lin, L.; Chen, J.; Chen, X.; Park, T.G.; Maruyama, A. RGD targeting hyaluronic acid coating system for PEI-PBLG polycation gene carriers. J. Control. Release, 2011, 155(1), 47-53. [http://dx.doi.org/10.1016/j.jconrel.2011.01.025].
Lu, Z.X.; Liu, L.T.; Qi, X.R. Development of small interfering RNA delivery system using PEI-PEG-APRPG polymer for antiangiogenic vascular endothelial growth factor tumor-targeted therapy. Int. J. Nanomedicine, 2011, 6, 1661-1673. [PMID: 21904456].
Park, T.E.; Singh, B.; Li, H.; Lee, J.Y.; Kang, S.K.; Choi, Y.J.; Cho, C.S. Enhanced BBB permeability of osmotically active poly(mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer’s disease. Biomaterials, 2015, 38, 61-71. [http://dx.doi.org/10.1016/j.biomaterials.2014.10.068]. [PMID: 25457984].
Choi, S.; Lee, K.D. Enhanced gene delivery using disulfide-crosslinked low molecular weight polyethylenimine with listeriolysin o-polyethylenimine disulfide conjugate. J. Control. Release, 2008, 131(1), 70-76. [http://dx.doi.org/10.1016/j.jconrel.2008.07.007].
Son, S.; Singha, K.; Kim, W.J. Bioreducible BPEI-SS-PEG-cNGR polymer as a tumor targeted nonviral gene carrier. Biomaterials, 2010, 31(24), 6344-6354. [http://dx.doi.org/10.1016/j.biomaterials.2010.04.047]. [PMID: 20537703].
Yu, J.H.; Quan, J.S.; Huang, J.; Wang, C.Y.; Sun, B.; Nah, J.W.; Cho, M.H.; Cho, C.S. Alpha,beta-poly(L-aspartate-graft-PEI): A pseudo-branched PEI as a gene carrier with low toxicity and high transfection efficiency. Acta Biomater., 2009, 5(7), 2485-2494. [http://dx.doi.org/10.1016/j.actbio.2009.03.012]. [PMID: 19357003].
Li, W.; Yang, L.; Wang, Y. Modification of PEI with cyclodextrin as a tool for better understanding the major barriers for DNA delivery. J. Control. Release, 2013, 172(1)e117 [http://dx.doi.org/10.1016/j.jconrel.2013.08.280].
Ihm, J.E.; Krier, I.; Lim, J.M.; Shim, S.; Han, D.K.; Hubbell, J.A. Improved biocompatibility of polyethylenimine (PEI) as a gene carrier by conjugating urocanic acid: In vitro and in vivo. Macromol. Res., 2015, 23(4), 387-395. [http://dx.doi.org/10.1007/s13233-015-3047-8].
Cho, W.Y.; Hong, S.H.; Singh, B.; Islam, M.A.; Lee, S.; Lee, A.Y.; Gankhuyag, N.; Kim, J.E.; Yu, K.N.; Kim, K.H.; Park, Y.C.; Cho, C.S.; Cho, M.H. Suppression of tumor growth in lung cancer xenograft model mice by poly(sorbitol-co-PEI)-mediated delivery of osteopontin siRNA. Eur. J. Pharm. Biopharm., 2015, 94, 450-462.
Lu, S.; Morris, V.B.; Labhasetwar, V. Codelivery of DNA and siRNA via arginine-rich PEI-based polyplexes. Mol. Pharm., 2015, 12(2), 621-629. [http://dx.doi.org/10.1021/mp5006883]. [PMID: 25591125].
Sun, Y.X.; Xiao, W.; Cheng, S.X.; Zhang, X.Z.; Zhuo, R.X. Synthesis of (Dex-HMDI)-g-PEIs as effective and low cytotoxic nonviral gene vectors. J. Control. Release, 2008, 128(2), 171-178.
Ping, Y.; Liu, C.; Zhang, Z.; Liu, K.L.; Chen, J.; Li, J. Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery. Biomaterials, 2011, 32(32), 8328-8341. [http://dx.doi.org/10.1016/j.biomaterials.2011.07.038]. [PMID: 21840593].
Wu, M.; Liu, X.; Jin, W.; Li, Y.; Li, Y.; Hu, Q.; Chu, P.K.; Tang, G.; Ping, Y. Targeting ETS1 with RNAi-based supramolecular nanoassemblies for multidrug-resistant breast cancer therapy. J. Control. Release, 2017, 253, 110-121. [http://dx.doi.org/10.1016/j.jconrel.2017.03.011].
Alshamsan, A.; Haddadi, A.; Incani, V.; Samuel, J.; Lavasanifar, A.; Uludağ, H. Formulation and delivery of siRNA by oleic acid and stearic acid modified polyethylenimine. Mol. Pharm., 2009, 6(1), 121-133. [http://dx.doi.org/10.1021/mp8000815]. [PMID: 19053537].
Yang, S.; Guo, Z.; Yang, X.; Xie, J.; Lee, R.J.; Jiang, D.; Teng, L. Enhanced survivin siRNA delivery using cationic liposome incorporating fatty acid-modified polyethylenimine. Chem. Res. Chin. Univ., 2015, 31(3), 401-405. [http://dx.doi.org/10.1007/s40242-015-5060-z].
Zintchenko, A.; Philipp, A.; Dehshahri, A.; Wagner, E. Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug. Chem., 2008, 19(7), 1448-1455. [http://dx.doi.org/10.1021/bc800065f]. [PMID: 18553894].
Aravindan, L.; Bicknell, K.A.; Brooks, G.; Khutoryanskiy, V.V.; Williams, A.C. Effect of acyl chain length on transfection efficiency and toxicity of polyethylenimine. Int. J. Pharm., 2009, 378(1-2), 201-210. [http://dx.doi.org/10.1016/j.ijpharm.2009.05.052]. [PMID: 19501146].
Gref, R.; Lück, M.; Quellec, P.; Marchand, M.; Dellacherie, E.; Harnisch, S.; Blunk, T.; Müller, R.H. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf. B Biointerfaces, 2000, 18(3-4), 301-313. [http://dx.doi.org/10.1016/S0927-7765(99)00156-3]. [PMID: 10915952].
Beyerle, A.; Braun, A.; Banerjee, A.; Ercal, N.; Eickelberg, O.; Kissel, T.H.; Stoeger, T. Inflammatory responses to pulmonary application of PEI-based siRNA nanocarriers in mice. Biomaterials, 2011, 32(33), 8694-8701. [http://dx.doi.org/10.1016/j.biomaterials.2011.07.082]. [PMID: 21855131].
Endres, T.; Zheng, M.; Kılıç, A.; Turowska, A.; Beck-Broichsitter, M.; Renz, H.; Merkel, O.M.; Kissel, T. Amphiphilic biodegradable PEG-PCL-PEI triblock copolymers for FRET-capable in vitro and in vivo delivery of siRNA and quantum dots. Mol. Pharm., 2014, 11(4), 1273-1281. [http://dx.doi.org/10.1021/mp400744a]. [PMID: 24592902].
Shi, S.; Shi, K.; Tan, L.; Qu, Y.; Shen, G.; Chu, B.; Zhang, S.; Su, X.; Li, X.; Wei, Y.; Qian, Z. The use of cationic MPEG-PCL-g-PEI micelles for co-delivery of Msurvivin T34A gene and doxorubicin. Biomaterials, 2014, 35(15), 4536-4547. [http://dx.doi.org/10.1016/j.biomaterials.2014.02.010]. [PMID: 24582554].
Gaspar, V.M.; Baril, P.; Costa, E.C.; de Melo-Diogo, D.; Foucher, F.; Queiroz, J.A.; Sousa, F.; Pichon, C.; Correia, I.J. Bioreducible poly(2-ethyl-2-oxazoline)-PLA-PEI-SS triblock copolymer micelles for co-delivery of DNA minicircles and doxorubicin. J. Control. Release, 2015, 213, 175-191.
Beyerle, A.; Braun, A.; Merkel, O.; Koch, F.; Kissel, T.; Stoeger, T. Comparative in vivo study of poly(ethylene imine)/siRNA complexes for pulmonary delivery in mice. J. Control. Release, 2011, 151(1), 51-56.
Fang, G.; Zeng, F.; Yu, C.; Wu, S. Low molecular weight PEIs modified by hydrazone-based crosslinker and betaine as improved gene carriers. Colloids Surf. B Biointerfaces, 2014, 122, 472-481. [http://dx.doi.org/10.1016/j.colsurfb.2014.07.007]. [PMID: 25092585].
Wang, M.; Liu, T.; Han, L.; Gao, W.; Yang, S.; Zhang, N. Functionalized O-carboxymethyl-chitosan/polyethylenimine based novel dual pH-responsive nanocarriers for controlled co-delivery of DOX and genes. Polym. Chem., 2015, 6(17), 3324-3335. [http://dx.doi.org/10.1039/C5PY00013K].
Dong, D.W.; Xiang, B.; Gao, W.; Yang, Z.Z.; Li, J.Q.; Qi, X.R. pH-responsive complexes using prefunctionalized polymers for synchronous delivery of doxorubicin and siRNA to cancer cells. Biomaterials, 2013, 34(20), 4849-4859. [http://dx.doi.org/10.1016/j.biomaterials.2013.03.018]. [PMID: 23541420].
Yan, Y.; Li, J.; Zheng, J.; Pan, Y.; Wang, J.; He, X.; Zhang, L.; Liu, D. Poly(L-lysine)-based star-block copolymers as pH-responsive nanocarriers for anionic drugs. Colloids Surf. B Biointerfaces, 2012, 95, 137-143. [http://dx.doi.org/10.1016/j.colsurfb.2012.02.034]. [PMID: 22424829].
Hu, J.; Miura, S.; Na, K.; Bae, Y.H. pH-responsive and charge shielded cationic micelle of poly(L-histidine)-block-short branched PEI for acidic cancer treatment. J. Control. Release, 2013, 172(1), 69-76.
Xu, M.; Qian, J.; Suo, A.; Liu, T.; Liu, X.; Wang, H. A reduction-dissociable PEG-b-PGAH-b-PEI triblock copolymer as a vehicle for targeted co-delivery of doxorubicin and P-gp siRNA. Polym. Chem., 2015, 6(13), 2445-2456. [http://dx.doi.org/10.1039/C5PY00034C].
Li, H.; Qian, Z.M. Transferrin/transferrin receptor-mediated drug delivery. Med. Res. Rev., 2002, 22(3), 225-250. [http://dx.doi.org/10.1002/med.10008]. [PMID: 11933019].
Bao, X.; Wang, W.; Wang, C.; Wang, Y.; Zhou, J.; Ding, Y.; Wang, X.; Jin, Y. A chitosan-graft-PEI-candesartan conjugate for targeted co-delivery of drug and gene in anti-angiogenesis cancer therapy. Biomaterials, 2014, 35(29), 8450-8466. [http://dx.doi.org/10.1016/j.biomaterials.2014.06.025]. [PMID: 24997481].
Teng, L.; Xie, J.; Teng, L.; Lee, R.J. Enhanced siRNA delivery using oleic acid derivative of polyethylenimine. Anticancer Res., 2012, 32(4), 1267-1271. [PMID: 22493358].
Xun, M.M.; Liu, Y.H.; Guo, Q.; Zhang, J.; Zhang, Q.F.; Wu, W.X.; Yu, X.Q. Low molecular weight PEI-appended polyesters as non-viral gene delivery vectors. Eur. J. Med. Chem., 2014, 78, 118-125. [http://dx.doi.org/10.1016/j.ejmech.2014.03.050]. [PMID: 24681389].
Dong, D.; Gao, W.; Liu, Y.; Qi, X.R. Therapeutic potential of targeted multifunctional nanocomplex co-delivery of siRNA and low-dose doxorubicin in breast cancer. Cancer Lett., 2015, 359(2), 178-186. [http://dx.doi.org/10.1016/j.canlet.2015.01.011]. [PMID: 25592040].
Fang, G.; Zeng, F.; Yu, C.; Wu, S. Low molecular weight PEIs modified by hydrazone-based crosslinker and betaine as improved gene carriers. Colloids Surf. B Biointerfaces, 2014, 122, 472-481. [http://dx.doi.org/10.1016/j.colsurfb.2014.07.007]. [PMID: 25092585].

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [2264 - 2284]
Pages: 21
DOI: 10.2174/0929867325666181031094759
Price: $58

Article Metrics

PDF: 25