Study of Antihyperglycemic, Antihyperlipidemic and Antioxidant Activities of Tannins Extracted from Warionia saharae Benth. & Coss

Author(s): Mohammed Ajebli, Fadwa El Ouady, Mohamed Eddouks*.

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets
(Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders)

Volume 19 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background and Objective: Warionia saharae Benth & Coss, a plant belonging to Asteraceae family, is used for its anti-diabetic properties in Morocco. The objective of this study was to evaluate the effect of tannins extracted from Warionia saharae (W. saharae) on blood glucose levels and lipid profile in normal and streptozotocin(STZ)-induced diabetic rats.

Methods: Tannins (TE) were extracted from W. saharae using Soxhlet apparatus and different organic solvents. Single and once daily repeated oral administration of TE (10 mg/kg) for 15 days were used to evaluate the glucose and lipid-lowering activity in normal and diabetic rats. Furthermore, glucose test tolerance, liver histopathological examination and in vitro antioxidant activity of TE were carried out in this study.

Results: The results showed that TE was able to exert antihyperglycemic and lowering total cholesterol effects as well as improvement of the high-density lipoprotein (HDL)-cholesterol serum level after 15 days of treatment. Furthermore, TE improved glucose tolerance, histopathological status of liver in diabetic rats and demonstrated interesting antioxidant activity.

Conclusion: In conclusion, the present investigation revealed that TE possesses potent antidiabetic and antihyperlipidemic activities as claimed in different ethnopharmacological practices.

Keywords: Tannins, Warionia saharae, diabetes, lipid profile, histopathology, antioxidant.

[1]
Goutam, B. Bioactive natural products: Opportunities and challenges in medicinal chemistry; Goutam, Brahmachari, ed.; World Scientific Publishing Co. Pte. Ltd, 2012; pp. 519-599.
[2]
Bailey, C.J.; Day, C. Traditional plant medicines as treatments for diabetes. Diabetes Care, 1989, 12, 553-564.
[3]
Day, C. Traditional plant treatments for diabetes mellitus: Pharmaceutical foods. Br. J. Nutr., 1998, 80, 5-6.
[4]
Swanston-Flatt, S.K.; Day, C.; Bailey, C.J.; Flatt, P.R. Traditional plant treatments for diabetes. Studies in normal and streptozotocin diabetic mice. Diabetologia, 1990, 33, 462-464.
[5]
Swanston-Flatt, S.K.; Day, C.; Flatt, P.R.; Bailey, C.J. Evaluation of the antihyperglycaemic properties of traditional plant treatments for diabetes in streptozotocin-diabetic and db/db mice. In Sha fir E (Ed), Frontiers in Diabetes Research. Lessons from Animal Diabetes III, London, Smith-Gordon, 1990, 286-293.
[6]
Rizvi, N.B.; Nagra, S.A. Minerals and lipids profiles in cardiovascular disorders in south asia. springer-verlag berlin heidelberg, 2014.
[7]
Sobeh, M.; Mahmoud, M.F.; Abdelfattah, M.A.O.; El-Beshbishy, H.A.; El-ShazlyAssem, M.; Michael, W. Hepatoprotective and hypoglycemic effects of a tannin rich extract from Ximeniaamericana var. caffra root. Phytomedicine, 2017, 33, 36-42.
[8]
Eddouks, M.; Ajebli, M.; Hebi, M. Ethnopharmacological survey of medicinal plants used in Daraa-Tafilalet region (Province of Errachidia), Morocco. J. Ethnopharmacol., 2017, 198, 516-530.
[9]
Louli, V.; Ragoussis, N.; Magoulas, K. Recovery of phenolic antioxidants from wine industry by-products. Bioresour. Technol., 2004, 92, 201.
[10]
Ajebli, M.; Eddouks, M. Buxus sempervirens L. Improves streptozotocin-induced diabetes mellitus in rats. Cardiovasc. Hematol. Disord. Drug Targets, 2017, 17(2), 142-152.
[11]
Sabin, M.A.; Cameron, F.J.; Werther, G.A. Type 1 diabetes--still the commonest form of diabetes in children. Aust. Fam. Phys., 2009, 38(9), 695-697.
[12]
Gilman, A.G.; Goodman, H. The pharmacological basis of therapeutics 8th eds; Gilman, A.G.; Rall, T.W.; Nies, A.S.; Tayer, P.,Ed; Pergman Press, New York, 1990, pp. 1317-1322.
[13]
Elsner, M.; Guldbakke, B.; Tiedge, M. Relative importance of transport and alkylation for pancreatic beta cells toxicity of streptozotocin. Diabetologia, 2000, 43, 1528-1533.
[14]
Andrade, C.A.; Wiedenfeld, H.; Revilla, M.C.; Sergio, I.A. Hypoglycemic effect of Equisetum myriochaetum aerial parts on Streptozotocin diabetic rats. J. Ethnopharmacol., 2000, 72, 129-133.
[15]
Martin, S.H.; Kolb, J.; Beuth, R.; van Leendert, B.; Schneider, W.A. Change in patients’ body weight after 12 months of treatment with glimepiride or glibenclamide in Type 2 diabetes: A multicentre retrolective cohort study. Diabetologia, 2003, 46, 1611-1617.
[16]
Das, A.V.; Padayatti, P.S.; Paulose, C.S. Effect of leaf extract of Aegle Marmelose (L.) Correa ex Roxb. On histological and ultrastructural changes in tissues of Streptozotocin induced diabetic rats. Indian J. Exp. Biol., 1996, 34(4), 341-345.
[17]
Grover, J.K.; Yadav, S.; Vats, V. Medicinal plants of India with anti-diabetic potential. J. Ethnopharmacol., 2002, 81, 81-100.
[18]
Sobeh, M.; Mahmoud, M.F.; Abdelfattah, M.A.O. Hepatoprotective and hypoglycemic effects of a tannin rich extract from Ximenia americana var. caffra root. Phytomedicine, 2017, 33, 36-42.
[19]
Ananthan, R.; Latha, M.; Ramkumar, K.M. Effect of gymnema montanum leaves on serum and tissue lipids in alloxan diabetic rats. Exp. Diabesity Res., 2003, 4, 183-189.
[20]
Khan, B.A.; Abraham, A.; Leelamma, S. Hypoglycemic action of Murray Koenigii (curry leaf), Brassica juncea (mustard); Mechanism of action. Indian J. Biochem. Biophys., 1995, 32, 106-108.
[21]
Mitra, S.K.; Gopumadhavan, S.; Muralidhar, T.S.; Anturlikar, S.D.; Sujatha, M.B. Effect of D-400, A herbomineralpreperation on lipid profile, glycated haemoglobin and glucose tolerance in streptozotocin induced diabetes in rats. Indian J. Exp. Biol., 1995, 33, 798-800.
[22]
Matsumoto, K.; Yokoyama, S. Induction of uncoupling protein-1 and -3 in brown adipose tissue by kaki-tannin in type 2 diabetic NSY/Hos mice. Food Chem. Toxicol., 2012, 50, 184-190.
[23]
Gato, N.; Kadowaki, A.; Hashimoto, N.; Yokoyama, S.; Matsumoto, K. Persimmon fruit tannin-rich fiber reduces cholesterol levels in humans. Ann. Nutr. Metab., 2013, 62, 1-6.
[24]
Amezouar, F.; Badri, W.; Hsaine, M.; Bourhim, N.; Fougrach, H. Chemical composition, antioxidant and antibacterial activities of leaves essential oil and ethanolic extract of moroccan warionia saharae benth. & coss. J. Appl. Pharm. Sci., 2012, 2, 212-217.
[25]
Amezouar, F.; Badri, W.; Hsain, M.; Aksim, M.; Bourhim, N.; Fougrach, H. Subacute toxicity, Anti-inflammatory & antioxidant activities ethanolic extract of Moroccan Warioniasaharae from Tata region. Int. J. Pharma Sci., 2012, 4(5), 528-533.
[26]
Sepici-Dincel, A.; Kgoz, A.; Evik, C.; Sengelen, C.; Yesilada, M.E. Effects of in vivo antioxidant enzyme activities of myrtle oil in normoglycaemic and alloxan diabetic rabbits. J. Ethnopharmacol., 2007, 110, 498-503.
[27]
Lenzen, S. The mechanisms of alloxan and streptozotocininduced diabetes. Diabetologia, 2008, 51(2), 216-226.
[28]
Szkudelski, T. The mechanism of alloxan and streptozotocin action in β-cells of the rat pancreas. Physiol. Res., 2001, 50, 537-546.
[29]
Siddhuraju, P.; Mohan, P.S.; Becker, K. Studies on the antioxidant activity of Indian laburnum (cassia fistula L.): A preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp. Food Chem., 2002, 79, 61-67.
[30]
Ceriello, A. Postprandial hyperglycemia and diabetes complications: is it time to treat diabetes; Wiley & Sons: New York, 2005.
[31]
Ajebli, M.; Eddouks, M. Pharmacological and phytochemical study of Mentha suaveolens ehrh in normal and streptozotocin-induced diabetic rats. Nat. Prod. J., 2018, 8, 1-15.
[32]
Sieniawska, E.; Baj, T. Pharmacognosy fundamentals, applications and strategies; Simone Badal, M. and Rupika D., Ed.; Elsevier Inc., 2017, 214-236.
[33]
Serrano, J.; Puupponen-Pimi, R.; Dauer, A.; Aura, A.M.; Saura-Calixto, F. Tannins: Current knowledge of food sources, intake, bioavailability and biological effects. Mol. Nutr. Food Res., 2009, 53, 31029.
[34]
Okuda, T. Systematics and health effects of chemically distinct tannins in medicinal plants. Phytochemistry, 2005, 66, 201-231.
[35]
Ravichandiran, V.; Sankaradoss, N.; Nazeer, K.F.H. Protective effect of tannins from Ficus racemosa in hypercholesterolemia and diabetes induced vascular tissue damage in rats. Asian Pac. J. Trop. Biomed., 2012, 367-373.
[36]
Vasconcelos, C.F.B.; Maranhão, H.M.L.; Batista, T.M. Hypoglycaemic activity and molecular mechanisms of Caesalpinia ferrea Martius bark extract on streptozotocin-induced diabetes in Wistar rats. J. Ethnopharmacol., 2011, 137, 1533-1541.
[37]
Liu, X.; Wei, J.; Tan, F. Antidiabetic effect of pycnogenol french maritime pine bark extract in patients with diabetes type II. Life Sci., 2004, 75, 2505-2513.
[38]
Da Silva, J.M.; Rigaud, J.; Ceynier, V.; Cheminat, V.; Moutounet, M. Procyanidin dimers and trimers from gape seeds. Phytochemistry, 1990, 30(4), 1259-1264.
[39]
Atta-ur-Rahman. E.; Asif, D.; Ahmed, B.; Sener, S. New alkaloids from Buxus sempervirens L. J. Nat. Prod., 1989, 52, 1319-1322.
[40]
Atta-ur-Rahman. S.; Parveen, A.; Khalid, A.; Farooq, M.I. Choudhary. Acetyl and butyrylcholinesterase-inhibiting triterpenoid alkaloids from Buxus papillosa. Phytochemistry, 2001, 58, 963-968.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 2
Year: 2019
Page: [189 - 198]
Pages: 10
DOI: 10.2174/1871530318666181029160539
Price: $58

Article Metrics

PDF: 20
HTML: 1