Hydroxyl Group Difference between Anthraquinone Derivatives Regulate Different Cell Death Pathways via Nucleo-Cytoplasmic Shuttling of p53

Author(s): Mohd Kamil, Ejazul Haque, Snober S. Mir*, Safia Irfan, Adria Hasan, Saba Sheikh, Shamshad Alam, Kausar M. Ansari, Aamir Nazir.

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 19 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Despite a number of measures having been taken for cancer management, it is still the second leading cause of death worldwide. p53 is the protein principally being targeted for cancer treatment. Targeting p53 localization may be an effective strategy in chemotherapy as it controls major cell death pathways based on its cellular localization. Anthraquinones are bioactive compounds widely being considered as potential anticancer agents but their mechanism of action is yet to be explored. It has been shown that the number and position of hydroxyl groups within the different anthraquinones like Emodin and Chrysophanol reflects the number of intermolecular hydrogen bonds which affect its activity. Emodin contains an additional OH group at C-3, in comparison to Chrysophanol and may differentially regulate different cell death pathways in cancer cell.

Objective: The present study was aimed to investigate the effect of two anthraquinones Emodin and Chrysophanol on induction of different cell death pathways in human lung cancer cells (A549 cell line) and whether single OH group difference between these compounds differentially regulate cell death pathways.

Methods: The cytotoxic effect of Emodin and Chrysophanol was determined by the MTT assay. The expression of autophagy and apoptosis marker genes at mRNA and protein level after treatment was checked by the RT-PCR and Western Blot, respectively. For cellular localization of p53 after treatment, we performed immunofluorescence microscopy.

Results: We observed that both compounds depicted a dose-dependent cytotoxic response in A549 cells which was in concurrence with the markers associated with oxidative stress such as an increase in ROS generation, decrease in MMP and DNA damage. We also observed that both compounds up-regulated the p53 expression where Emodin causes nuclear p53 localization, which leads to down-regulation in mTOR expression and induces autophagy while Chrysophanol inhibits p53 translocation into nucleus, up-regulates mTOR expression and inhibits autophagy.

Conclusion: From this study, it may be concluded that the structural difference of single hydroxyl group may switch the mechanism from one pathway to another which could be useful in the future to improve anticancer treatment and help in the development of new selective therapies.

Keywords: Emodin, chrysophanol, hydroxyl group, p53 localization, cell death pathway, selective therapies, A549 cell line.

[1]
Reed, J.C. Apoptosis-targeted therapies for cancer. Cancer Cell, 2003, 3, 17-22.
[2]
Maiuri, M.C.; Zalckvar, E.; Kimchi, A.; Kroemer, G. Selfeating and self-killing: Crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol., 2007, 8, 741-752.
[3]
Green, D.R.; Kroemer, G. Cytoplasmic functions of the tumour suppressor p53. Nature, 2009, 458, 1127-1130.
[4]
Fei, P.; El-Deiry, W.S. p53 and radiation responses. Oncogene, 2003, 22, 5774-5783.
[5]
Vaseva, A.V.; Moll, U.M. The mitochondrial p53 pathway. Biochim. Biophys. Acta, 2009, 1787, 414-420.
[6]
Tasdemir, E.; Maiuri, M.C.; Galluzzi, L.; Vitale, I.; Djavaheri-Mergny, M.; D’Amelio, A.; Criollo, A.; Morselli, E.; Zhu, C.; Harper, F.; Nannmark, U.; Samara, C.; Pinton, P.; Vicencio, J.M.; Carnuccio, R.; Moll, U.M.; Madeo, F.; Paterlini-Brechot, P.; Rizzuto, R.; Szabadkai, G.; Pierron, G.; Blomgren, K.; Tavernarakis, N.; Codogno, P.; Cecconi, F.; Kroemer, G. Regulation of autophagy by cytoplasmic p53. Nat. Cell Biol., 2008, 10, 676-687.
[7]
Feng, Z.; Zhang, H.; Levine, A.J.; Jin, S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl. Acad. Sci. USA, 2005, 102, 8204-8209.
[8]
Mizushima, N.; Levine, B. Autophagy in mammalian development and differentiation. Nat. Cell Biol., 2010, 12, 823-830.
[9]
Abe, A.; Kokuba, H. Harmol induces autophagy and subsequent apoptosis in U251MG human glioma cells through the downregulation of surviving. Oncol. Rep., 2013, 29, 1333-1342.
[10]
Eisenberg-Lerner, A.; Bialik, S.; Simon, H.U.; Kimchi, A. Life and death partners: Apoptosis, autophagy and the cross-talk between them. Cell Death Differ., 2009, 16, 966-975.
[11]
Ma, Y.S.; Weng, S.W.; Lin, M.W.; Lu, C.C.; Chiang, J.H.; Yang, J.S.; Lai, K.C.; Lin, J.P.; Tang, N.Y.; Lin, J.G.; Chung, J.G. Antitumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: Roles of apoptotic cell death and LS1034 tumor xenografts model. Food Chem. Toxicol., 2012, 50, 1271-1278.
[12]
Dong, X.; Fu, J.; Yin, X.; Qu, C.; Yang, C.; He, H.; Ni, J. Induction of apoptosis in HepaRG cell line by aloe-emodin through generation of reactive oxygen species and the mitochondrial pathway. Cell. Physiol. Biochem., 2017, 42(2), 685-696.
[13]
Lu, C.C.; Yang, J.S.; Huang, A.C.; Hsia, T.C.; Chou, S.T.; Kuo, C.L.; Lu, H.F.; Lee, T.S.; Wood, W.G.; Chung, J.G. Chrysophanol induces necrosis through the production of ROS and alteration of ATP levels in J5 human liver cancer cells. Mol. Nutr. Food Res., 2010, 54, 967-976.
[14]
Zhang, Z.; Cao, X.; Xiong, N.; Wang, H.; Huang, J.; Sun, S.; Liang, Z.; Wang, T. DNA polymerase-beta is required for 1-methyl-4-phenylpyridinium-induced apoptotic death in neurons. Apoptosis, 2010, 15, 105-115.
[15]
Kamil, S.M.; Jadiya, P.; Sheikh, S.; Haque, E.; Nazir, A.; Lakshmi, V.; Mir, S.S. The chromone alkaloid, rohitukine, affords anti-cancer activity via modulating apoptosis pathways in a549 cell line and yeast mitogen activated protein kinase (mapk) pathway. PLoS One, 2015, 10, e0137991.
[16]
Zhang, Y.; Jiang, L.; Jiang, L.; Geng, C.; Li, L.; Shao, J.; Zhong, L. Possible involvement of oxidative stress in potassium bromated induced genotoxicity in human HepG2 cells. Chem. Biol. Interact., 2011, 189, 186-191.
[17]
Ansil, P.N.; Wills, P.J.; Varun, R.; Latha, M.S. Cytotoxic and apoptotic activities of amorphophallus campanulatus tuber extracts against human hepatoma cell line. Res. Pharm. Sci., 2014, 9, 269-277.
[18]
Kamil, M.; Haque, E.; Irfan, S.; Sheikh, S.; Hasan, A.; Nazir, A.; Lohani, M.; Mir, S.S. ER chaperone GRP78 regulates autophagy by modulation of p53 localization. Front. Biosci. (Elite Ed.), 2017, 1, 54-66.
[19]
Liu, K.; Park, C.; Li, S.; Lee, K.W.; Liu, H.; He, L.; Soung, N.K.; Ahn, J.S.; Bode, A.M.; Dong, Z.; Kim, B.Y.; Dong, Z. Aloe-emodin suppresses prostate cancer by targeting the mTOR complex 2. Carcinogenesis, 2012, 33, 1406-1411.
[20]
Castino, R.; Bellio, N.; Follo, C.; Murphy, D.; Isidoro, C. Inhibition of pi3k class iii-dependent autophagy prevents apoptosis and necrosis by oxidative stress in dopaminergic neuroblastoma cells. Toxicol. Sci., 2010, 117, 152-162.
[21]
Shrivastava, A.; Kuzontkoski, P.M.; Groopman, J.E.; Prasad, A. cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy. Mol. Cancer Ther., 2011, 10, 1161-1172.
[22]
Scherz-Shouval, R.; Shvets, E.; Fas, E.; Shorer, H.; Gil, L.; Elazar, Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J., 2007, 26, 1749-1760.
[23]
Xu, Y.; Ruan, S.; Wu, X.; Chen, H.; Zheng, K.; Fu, B. Autophagy and apoptosis in tubular cells following unilateral ureteral obstruction are associated with mitochondrial oxidative stress. Int. J. Mol. Med., 2013, 31, 628-636.
[24]
Chang, Y.C.; Lai, T.Y.; Yu, C.S.; Chen, H.Y.; Yang, J.S.; Chueh, F.S.; Lu, C.C.; Chiang, J.H.; Huang, W.W.; Ma, C.Y.; Chung, J.G. Emodin induces apoptotic death in murine myelomonocytic leukemia WEHI-3 cells in vitro and enhances phagocytosis in leukemia mice in vivo. Evid. Based Complement. Alternat. Med., 2011, 2011, 523596.
[25]
Kim, I.; Rodriguez-Enriquez, S.; Lemasters, J.J. Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys., 2007, 462, 245-253.
[26]
Rodriguez-Enriquez, S.; Kai, Y.; Maldonado, E.; Currin, R.T.; Lemasters, J.J. Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes. Autophagy, 2009, 5, 1099-1106.
[27]
McCarthy, N.J.; Evan, G.I. Methods for detecting and quantifying apoptosis. Curr. Top. Dev. Biol., 1998, 36, 259-278.
[28]
Rikiishi, H. Novel insights into the interplay between apoptosis and autophagy. Int. J. Cell Biol., 2012, 2012, 1-14.
[29]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8, 579-591.
[30]
Marnett, L.J. Oxyradicals and DNA damage. Carcinogenesis, 2000, 21, 361-370.
[31]
Efeyan, A.; Serrano, M. p53: Guardian of the genome and policeman of the oncogenes. Cell Cycle, 2007, 6, 1006-1010.
[32]
Rieber, M.; Rieber, M.S. Sensitization to radiation-induced DNA damage accelerates loss of Bcl-2 and increases apoptosis and autophagy. Cancer Biol. Ther., 2008, 7, 1561-1566.
[33]
Czarny, P.; Pawlowska, E.; Bialkowska-Warzecha, J.; Kaarnirantaand, K.; Blasiak, J. Autophagy in DNA Damage Response. Int. J. Mol. Sci., 2015, 16, 2641-2662.
[34]
Hsu, K.F.; Wu, C.L.; Huang, S.C.; Wu, C.M.; Hsiao, J.R.; Yo, Y.T.; Chen, Y.H.; Shiau, A.L.; Chou, C.Y. Cathepsin L mediates resveratrol-induced autophagy and apoptotic cell death in cervical cancer cells. Autophagy, 2009, 5, 451-460.
[35]
Wang, Y.; Yu, H.; Zhang, J.; Ge, X.; Gao, J.; Zhang, Y.; Lou, G. Anti-tumor effect of Emodin on gynecological cancer cells. Cell Oncol. (Dordr.), 2015, 38, 353-363.
[36]
Brady, C.A.; Jiang, D.; Mello, S.S.; Johnson, T.M.; Jarvis, L.A.; Kozak, M.M.; Kenzelmann Broz, D.; Basak, S.; Park, E.J.; McLaughlin, M.E.; Karnezis, A.N.; Attardi, L.D. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell, 2011, 145, 571-583.
[37]
Feng, Z.; Zhang, H.; Levine, A.J.; Jin, S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl. Acad. Sci. USA, 2005, 102, 8204-8209.
[38]
Crighton, D.; Wilkinson, S.; O’Prey, J.; Syed, N.; Smith, P.; Harrison, P.R.; Gasco, M.; Garrone, O.; Crook, T.; Ryan, K.M. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 2006, 126, 121-134.
[39]
Tu, H.C.; Ren, D.; Wang, G.X.; Chen, D.Y.; Westergard, T.D.; Kim, H.; Sasagawa, S.; Hsieh, J.J.; Cheng, E.H. The p53-cathepsin axis cooperates with ROS to activate programmed necrotic death upon DNA damage. Proc. Natl. Acad. Sci. USA, 2009, 106, 1093-1098.
[40]
Pattingre, S.; Tassa, A.; Qu, X.; Garuti, R.; Liang, X.H.; Mizushima, N.; Packer, M.; Schneider, M.D.; Levine, B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 2005, 122, 927-939.
[41]
Bach, J.F. Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr. Rev., 1994, 15, 516-542.
[42]
Castedo, M.; Ferri, K.F.; Kroemer, G. Mammalian target of rapamycin (mTOR): Pro- and anti-apoptotic. Cell Death Differ., 2002, 9, 99-100.
[43]
Thedieck, K.; Polak, P.; Kim, M.L.; Molle, K.D.; Cohen, A.; Jeno, P.; Arrieumerlou, C.; Hall, M.N. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS One, 2007, 2, e1217.
[44]
Periyasamy-Thandavan, S.; Jiang, M.; Schoenlein, P.; Dong, Z. Autophagy: Molecular machinery, regulation, and implications for renal pathophysiology. Am. J. Physiol. Renal Physiol., 2009, 297, F244-F256.
[45]
Ryan, K.M.; Phillips, A.C.; Vousden, K.H. Regulation and function of the p53 tumor suppressor protein. Curr. Opin. Cell Biol., 2001, 13, 332-337.
[46]
Alexander, A.; Cai, S.L.; Kim, J.; Nanez, A.; Sahin, M.; MacLean, K.H.; Inoki, K.; Guan, K.L.; Shen, J.; Person, M.D.; Kusewitt, D.; Mills, G.B.; Kastan, M.B.; Walker, C.L. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl. Acad. Sci. USA, 2010, 107, 4153-4158.
[47]
Livesey, K.M.; Kang, R.; Vernon, P.; Buchser, W.; Loughran, P.; Simon, C.; Watkins, S.C.; Zhang, L.; Manfredi, J.J.; Zeh, H.J.; Li, L.; Lotze, M.T.; Tang, D. p53/HMGB1 Complexes regulate autophagy and apoptosis. Cancer Res., 2012, 72, 1996-2005.
[48]
Morselli, E.; Tasdemir, E.; Maiuri, M.C.; Galluzzi, L.; Kepp, O.; Criollo, A.; Vicencio, J.M.; Soussi, T.; Kroemer, G. Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle, 2008, 7, 3056-3061.
[49]
Speidel, D.; Helmbold, H.; Deppert, W. Dissection of transcriptional and nontranscriptional p53 activities in the response to genotoxic stress. Oncogene, 2006, 25, 940-953.
[50]
You, H.; Yamamoto, K.; Mak, T.W. Regulation of transactivation-independent proapoptotic activity of p53 by FOXO3a. Proc. Natl. Acad. Sci. USA, 2006, 103, 9051-9056.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 2
Year: 2019
Page: [184 - 193]
Pages: 10
DOI: 10.2174/1871520618666181029133041
Price: $58

Article Metrics

PDF: 42
HTML: 2