Research Progress of Diphenyl Urea Derivatives as Anticancer Agents and Synthetic Methodologies

Author(s): Yi-Cong Wu, Xin-Yue Ren, Guo-Wu Rao*.

Journal Name: Mini-Reviews in Organic Chemistry

Volume 16 , Issue 7 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The malignant neoplasm, which is recognized as cancer, is a serious threat to human health and frequently-occurring disease. Diphenylurea, an important link structure in the design of active substance for treating cancer due to its near-perfect binding with certain acceptors, has demonstrated many activities against several human cancer cell lines. Various novel compounds with diphenyl urea as anticancer agents were constructed with the successful development of sorafenib. Diphenylurea is utilized to treat cancer by inhibiting cell signaling transduction, such as RAS-RAFMEK- ERK signaling pathway and PI3K-Akt-mTOR pathway. In addition, this structure inhibits tumor cell growth by inhibiting receptor tyrosine kinases multiply, such as Vascular Endothelial Growth Factor Receptors (VEGFRs), Platelet-Derived Growth Factor Receptors (PDGFRs), Epidermal Growth Factor Receptors (EGFRs). It regulates the pH value in cells by inhibiting CAIX/XII and to achieve cancer therapeutic effect. Besides, the diphenyl urea structure is applied to the synthesis of reagents like Aurora kinases inhibitors and HDAC inhibitors that affect cell division and differentiation to treat cancer. To reach the goal of treating tumor, this structure is also used as a DNA-directed alkylating agent by affecting the expression of genes. An application of the most representative diphenyl urea derivatives as antitumor agents is summarized in this review, focusing on their mechanisms bound to the targets. Meanwhile, the progress of researches on methods of synthesizing diphenyl urea derivatives is provided.

Keywords: HDAC inhibitors, DNA-directed alkylating agent, antitumor, diphenyl urea derivatives, cell signaling transduction, sorafenib.

[1]
Wellbrock, C.; Karasarides, M.; Marais, R. The RAF proteins take center stage. Nat. Rev. Mol. Cell Biol., 2004, 5(11), 875-885.
[2]
Saini, K.S.; Loi, S.; De Azambuja, E.; Metzger-Filho, O.; Saini, M.L.; Ignatiadis, M.; Dancey, J.E.; Piccart-Gebhart, M.J. Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treat. Rev., 2013, 39(8), 935-946.
[3]
Greenman, C.; Stephens, P.; Smith, R.; Dalgliesh, G.L.; Hunter, C.; Bignell, G.; Davies, H.; Teague, J.; Butler, A.; Stevens, C.; Edkins, S.; O’Meara, S.; Vastrik, I.; Schmidt, E.E.; Avis, T.; Barthorpe, S.; Bhamra, G.; Buck, G.; Choudhury, B.; Clements, J.; Cole, J.; Dicks, E.; Forbes, S.; Gray, K.; Halliday, K.; Harrison, R.; Hills, K.; Hinton, J.; Jenkinson, A.; Jones, D.; Menzies, A.; Mironenko, T.; Perry, J.; Raine, K.; Richardson, D.; Shepherd, R.; Small, A.; Tofts, C.; Varian, J.; Webb, T.; West, S.; Widaa, S.; Yates, A.; Cahill, D.P.; Louis, D.N.; Goldstraw, P.; Nicholson, A.G.; Brasseur, F.; Looijenga, L.; Weber, B.L.; Chiew, Y.E.; De Fazio, A.; Greaves, M.F.; Green, A.R.; Campbell, P.; Birney, E.; Easton, D.F.; Chenevix-Trench, G.; Tan, M.H.; Khoo, S.K.; Teh, B.T.; Yuen, S.T.; Leung, S.Y.; Wooster, R.; Futreal, P.A.; Stratton, M.R. Patterns of somatic mutation in human cancer genomes. Nature, 2007, 446(7132), 153-158.
[4]
Wilhelm, S.M.; Carter, C.; Tang, L.Y.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.M.; Vincent, P.; McHugh, M.; Cao, Y.C.; Shujath, J.; Gawlak, S.; Eveleigh, D.; Rowley, B.; Liu, L.; Adnane, L.; Lynch, M.; Auclair, D.; Taylor, I.; Gedrich, R.; Voznesensky, A.; Riedl, B.; Post, L.E.; Bollag, G.; Trail, P.A. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res., 2004, 64(19), 7099-7109.
[5]
Zask, A.; Verheijen, J.C.; Richard, D.J.; Kaplan, J.; Curran, K.; Toral-Barza, L.; Lucas, J.; Hollander, I.; Yu, K. Discovery of 2-ureidophenyltriazines bearing bridged morpholines as potent and selective ATP-competitive mTOR inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(8), 2644-2647.
[6]
Vlahos, C.J.; Matter, W.F.; Hui, K.Y.; Brown, R.F. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem., 1994, 269(7), 5241-5248.
[7]
Cheng, H.M.; Bagrodia, S.; Bailey, S.; Edwards, M.; Hoffman, J.; Hu, Q.Y.; Kania, R.; Knighton, D.R.; Marx, M.A.; Ninkovic, S.; Sun, S.X.; Zhang, E. Discovery of the highly potent PI3K/mTOR dual inhibitor PF-04691502 through structure based drug design. Med. Chem. Commun., 2010, 1(2), 139-144.
[8]
Niculescu-Duvaz, D.; Gaulon, C.; Dijkstra, H.P.; Niculescu-Duvaz, I.; Zambon, A.; Ménard, D.; Suijkerbuijk, B.M.J.M.; Nourry, A.; Davies, L.; Manne, H.; Friedlos, F.; Ogilvie, L.; Hedley, D.; Whittaker, S.; Kirk, R.; Gill, A.; Taylor, R.D.; Raynaud, F.I.; Moreno-Farre, J.; Marais, R.; Springer, C.J. Pyridoimidazolones as novel potent inhibitors of v-Raf murine sarcoma viral oncogene homologue B1 (BRAF). J. Med. Chem., 2009, 52(8), 2255-2264.
[9]
Ménard, D.; Niculescu-Duvaz, I.; Dijkstra, H.P.; Niculescu-Duvaz, D.; Suijkerbuijk, B.M.J.M.; Zambon, A.; Nourry, A.; Roman, E.; Davies, L.; Manne, H.A.; Friedlos, F.; Kirk, R.; Whittaker, S.; Gill, A.; Taylor, R.D.; Marais, R.; Springer, C.J. Novel potent BRAF inhibitors: Toward 1 nM compounds through optimization of the central phenyl ring. J. Med. Chem., 2009, 52(13), 3881-3891.
[10]
Zambon, A.; Ménard, D.; Suijkerbuijk, B.M.J.M.; Niculescu-Duvaz, I.; Whittaker, S.; Niculescu-Duvaz, D.; Nourry, A.; Davies, L.; Manne, H.A.; Lopes, F.; Preece, N.; Hedley, D.; Ogilvie, L.M.; Kirk, R.; Marais, R.; Springer, C.J. Novel hinge binder improves activity and pharmacokinetic properties of BRAF inhibitors. J. Med. Chem., 2010, 53(15), 5639-5655.
[11]
Zhang, Q.W.; Wang, J.; Wang, F.; Chen, X.H.; He, Y.S.; You, Q.D.; Zhou, H.Y. Identification of type II inhibitors targeting BRAF using privileged pharmacophores. Chem. Biol. Drug Des., 2014, 83(1), 27-36.
[12]
Kim, M.J.; Lee, J.; Jung, K.; Kim, H.; Aman, W.; Ryu, J.S.; Hah, J.M. Design, synthesis and biological evaluation of benzyl 2-(1H-imidazole-1-yl) pyrimidine analogues as selective and potent Raf inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(15), 3600-3604.
[13]
Yang, W.M.; Chen, Y.D.; Zhou, X.; Gu, Y.Z.; Qian, W.Q.; Zhang, F.; Han, W.; Lu, T.; Tang, W.F. Design, synthesis and biological evaluation of bis-aryl ureas and amides based on 2-amino-3-purinylpyridine scaffold as DFG-out B-Raf kinase inhibitors. Eur. J. Med. Chem., 2015, 89, 581-596.
[14]
Venkatesan, A.M.; Dehnhardt, C.M.; Delos Santos, E.; Chen, Z.C.; Dos Santos, O.; Ayral-Kaloustian, S.; Khafizova, G.; Brooijmans, N.; Mallon, R.; Hollander, I.; Feldberg, L.; Lucas, J.; Yu, K.; Gibbons, J.; Abraham, R.T.; Chaudhary, I.; Mansour, T.S. Bis(morpholino-1,3,5-triazine) derivatives: Potent adenosine 5′-triphosphate competitive phosphatidylinositol-3-kinase/mamma-lian target of rapamycin inhibitors: Discovery of compound 26 (PKI-587), a highly efficacious dual inhibitor. J. Med. Chem., 2010, 53(6), 2636-2645.
[15]
Chen, Z.C.; Venkatesan, A.M.; Dehnhardt, C.M.; Ayral-Kaloustian, S.; Brooijmans, N.; Mallon, R.; Feldberg, L.; Hollander, I.; Lucas, J.; Yu, K.; Kong, F.; Mansour, T.S. Synthesis and SAR of novel 4-morpholinopyrrolopyrimidine derivatives as potent phosphatidylinositol 3-kinase inhibitors. J. Med. Chem., 2010, 53(8), 3169-3182.
[16]
Zask, A.; Verheijen, J.C.; Curran, K.; Kaplan, J.; Richard, D.J.; Nowak, P.; Malwitz, D.J.; Brooijmans, N.; Bard, J.; Svenson, K.; Lucas, J.; Toral-Barza, L.; Zhang, W.G.; Hollander, I.; Gibbons, J.J.; Abraham, R.T.; Ayral-Kaloustian, S.; Mansour, T.S.; Yu, K. ATP-competitive inhibitors of the mammalian target of rapamycin: Design and synthesis of highly potent and selective pyrazolopyrimidines. J. Med. Chem., 2009, 52(16), 5013-5016.
[17]
Saurat, T.; Buron, F.; Rodrigues, N.; De Tauzia, M.L.; Colliandre, L.; Bourg, S.; Bonnet, P.; Guillaumet, G.; Akssira, M.; Corlu, A.; Guillouzo, C.; Berthier, P.; Rio, P.; Jourdan, M.L.; Bédetti, H.; Routier, S. Design, synthesis, and biological activity of pyridopyrimidine scaffolds as novel PI3K/mTOR dual inhibitors. J. Med. Chem., 2014, 57(3), 613-631.
[18]
Jin, H.; Dan, H.G.; Rao, G.W. Research progresses in quinazoline derivatives as multi-target tyrosine kinase inhibitors. Heterocycl. Commun., 2018, 24(1), 1-10.
[19]
Ravez, S.; Barczyk, A.; Six, P.; Cagnon, A.; Garofalo, A.; Goossens, L.; Depreux, P. Inhibition of tumor cell growth and angiogenesis by 7-aminoalkoxy-4-aryloxy-quinazoline ureas, a novel series of multi-tyrosine kinase inhibitors. Eur. J. Med. Chem., 2014, 79, 369-381.
[20]
Barton, J.; Blackledge, G.; Wakeling, A. Growth factors and their receptors: New targets for prostate cancer therapy. Urology, 2001, 58(2), 114-122.
[21]
Le Tourneau, C.; Faivre, S.; Raymond, E. New developments in multitargeted therapy for patients with solid tumours. Cancer Treat. Rev., 2008, 34, 37-48.
[22]
Zuo, S.J.; Zhang, S.; Mao, S.; Xie, X.X.; Xiao, X.; Xin, M.H.; Xuan, W.; He, Y.Y.; Cao, Y.X.; Zhang, S.Q. Combination of 4-anilinoquinazoline, arylurea and tertiary amine moiety to discover novel anticancer agents. Bioorgan. Med. Chem., 2016, 24(2), 179-190.
[23]
Jiang, N.; Bu, Y.; Wang, Y.; Nie, M.; Zhang, D.; Zhai, X. Design, synthesis and structure-activity relationships of novel diaryl urea derivatives as potential EGFR inhibitors. Molecules, 2016, 21(11), 1572.
[24]
Dai, Y.; Hartandi, K.; Ji, Z.; Ahmed, A.A.; Albert, D.H.; Bauch, J.L.; Bouska, J.J.; Bousquet, P.F.; Cunha, G.A.; Glaser, K.B.; Harris, C.M.; Hickman, D.; Guo, J.; Li, J.; Marcotte, P.A.; Marsh, K.C.; Moskey, M.D.; Martin, R.L.; Olson, A.M.; Osterling, D.J.; Pease, L.J.; Soni, N.B.; Stewart, K.D.; Stoll, V.S.; Tapang, P.; Reuter, D.R.; Davidsen, S.K.; Michaelides, M.R. Discovery of N-(4-(3-Amino-1H-indazol-4-yl)phenyl)-N′-(2-fluoro-5-methylphenyl)urea (ABT-869), a 3-aminoindazole-based orally active multitargeted receptor tyrosine kinase inhibitor. J. Med. Chem., 2007, 50(7), 1584-1597.
[25]
Frey, R.R.; Curtin, M.L.; Albert, D.H.; Glaser, K.B.; Pease, L.J.; Soni, N.B.; Bouska, J.J.; Reuter, D.; Stewart, K.D.; Marcotte, P.; Bukofzer, G.; Li, J.; Davidsen, S.K.; Michaelides, M.R. 7-Aminopyrazolo[1,5-a]pyrimidines as potent multitargeted receptor tyrosine kinase inhibitors. J. Med. Chem., 2008, 51, 3777-3787.
[26]
Garofalo, A.; Goossens, L.; Lemoine, A.; Farce, A.; Arlot, Y.; Depreux, P. Quinazoline-urea, new protein kinase inhibitors in treatment of prostate cancer. J. Enzym Inhib. Med. Ch., 2010, 25(2), 158-171.
[27]
Zhang, J.; Zhou, J.; Ren, X.M.; Diao, Y.Y.; Li, H.L.; Jiang, H.L.; Ding, K.; Pei, D.Q. A new diaryl urea compound, D181, induces cell cycle arrest in the G1 and M phases by targeting receptor tyrosine kinases and the microtubule skeleton. Invest. New Drugs, 2012, 30(2), 490-507.
[28]
Zhang, H.Q.; Gong, F.H.; Ye, J.Q.; Zhang, C.; Yue, X.H.; Li, C.G.; Xu, Y.G.; Sun, L.P. Design and discovery of 4-anilinoquinazoline-urea derivatives as dual TK inhibitors of EGFR and VEGFR-2. Eur. J. Med. Chem., 2017, 125, 245-254.
[29]
Chiche, J.; Ilc, K.; Laferriére, J.; Trottier, E.; Dayan, F.; Mazure, N.M.; Brahimi-Horn, M.C. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res., 2009, 69(1), 358-368.
[30]
Supuran, C.T. Indisulam: An anticancer sulfonamide in clinical development. Expert Opin. Invest. Drug, 2003, 12(2), 283-287.
[31]
Gieling, R.G.; Babur, M.; Mamnani, L.; Burrows, N.; Telfer, B.A.; Carta, F.; Winum, J.Y.; Scozzafava, A.; Supuran, C.T.; Williams, K.J. Antimetastatic effect of sulfamate carbonic anhydrase IX inhibitors in breast carcinoma xenografts. J. Med. Chem., 2012, 55(11), 5591-5600.
[32]
Carta, F.; Vullo, D.; Osman, S.M.; AlOthman, Z.; Supuran, C.T. Synthesis and carbonic anhydrase inhibition of a series of SLC-0111 analogs. Bioorg. Med. Chem., 2017, 25(9), 2569-2576.
[33]
Slawinski, J.; Pogorzelska, A.; Żołnowska, B.; Brożewicz, K.; Vullo, D.; Supuran, C.T. Carbonic anhydrase inhibitors. Synthesis of a novel series of 5-substituted 2,4-dichlorobenzenesulfonamides and their inhibition of human cytosolic isozymes I and II and the transmembrane tumor-associated isozymes IX and XII. Eur. J. Med. Chem., 2014, 82, 47-55.
[34]
Kops, G.J.P.L.; Weaver, B.A.A.; Cleveland, D.W. On the road to cancer: Aneuploidy and the mitotic checkpoint. Nat. Rev. Cancer, 2005, 5(10), 773-785.
[35]
Mortlock, A.A.; Foote, K.M.; Heron, N.M.; Jung, F.H.; Pasquet, G.; Lohmann, J.M.; Warin, N.; Renaud, F.; De Savi, C.; Roberts, N.J. Discovery, synthesis, and in vivo activity of a new class of pyrazoloquinazolines as selective inhibitors of Aurora B Kinase. J. Med. Chem., 2007, 50, 2213.
[36]
Shiao, H.Y.; Coumar, M.S.; Chang, C.W.; Ke, Y.Y.; Chi, Y.H.; Chu, C.Y.; Sun, H.Y.; Chen, C.H.; Lin, W.H.; Fung, K.S.; Kuo, P.C.; Huang, C.T.; Chang, K.Y.; Lu, C.T.; Hsu, J.T.A.; Chen, C.T.; Jiaang, W.T.; Chao, Y.S.; Hsieh, H.P. Optimization of ligand and lipophilic efficiency to identify an in vivo active furano-pyrimidine Aurora kinase inhibitor. J. Med. Chem., 2013, 56(13), 5247-5260.
[37]
Curtin, M.L.; Frey, R.R.; Heyman, H.R.; Soni, N.B.; Marcotte, P.A.; Pease, L.J.; Glaser, K.B.; Magoc, T.J.; Tapang, P.; Albert, D.H.; Osterling, D.J.; Olson, A.M.; Bouska, J.J.; Guan, Z.; Preusser, L.C.; Polakowski, J.S.; Stewart, K.D.; Tse, C.; Davidsen, S.K.; Michaelides, M.R. Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families. Bioorg. Med. Chem. Lett., 2012, 22(9), 3208-3212.
[38]
Chen, L.; Petrelli, R.; Gao, G.; Wilson, D.J.; McLean, G.T.; Jayaram, H.N.; Sham, Y.Y.; Pankiewicz, K.W. Dual inhibitors of inosine monophosphate dehydrogenase and histone deacetylase based on a cinnamic hydroxamic acid core structure. Bioorg. Med. Chem., 2010, 18(16), 5950-5964.
[39]
Marks, P.A. Discovery and development of SAHA as an anticancer agent. Oncogene, 2007, 26(9), 1351-1356.
[40]
Bouchain, G.; Leit, S.; Frechette, S.; Abou Khalil, E.; Lavoie, R.; Moradei, O.; Woo, S.H.; Fournel, M.; Yan, P.T.; Kalita, A.; Trachy-Bourget, M.C.; Beaulieu, C.; Li, Z.M.; Robert, M.F.; MacLeod, A.R.; Besterman, J.M.; Delorme, D. Development of potential antitumor agents. Synthesis and biological evaluation of a new set of sulfonamide derivatives as histone deacetylase inhibitors. J. Med. Chem., 2003, 46(5), 820-830.
[41]
Zhu, Y.; Chen, X.; Wu, Z.; Zheng, Y.X.; Chen, Y.D.; Tang, W.F.; Lu, T. Synthesis and antitumor activity of novel diaryl ether hydroxamic acids derivatives as potential HDAC inhibitors. Arch. Pharm. Res., 2012, 35(10), 1723-1732.
[42]
Al-Ejeh, F.; Kumar, R.; Wiegmans, A.; Lakhani, S.R.; Brown, M.P.; Khanna, K.K. Harnessing the complexity of DNA-damage response pathways to improve cancer treatment outcomes. Oncogene, 2010, 29(46), 6085-6098.
[43]
Osborne, M.R.; Lawley, P.D.; Crofton-Sleigh, C.; Warren, W. Products from alkylation of DNA in cells by melphalan: Human soft tissue sarcoma cell line RD and Escherichia coli WP2. Chem. Biol. Interact., 1995, 97(3), 287-296.
[44]
Kapuriya, N.; Kapuriya, K.; Zhang, X.; Chou, T.C.; Kakadiya, R.; Wu, Y.T.; Tsai, T.H.; Chen, Y.T.; Lee, T.C.; Shah, A.; Naliapara, Y.; Su, T.L. Synthesis and biological activity of stable and potent antitumor agents, aniline nitrogen mustards linked to 9-anilinoacridines via a urea linkage. Bioorg. Med. Chem., 2008, 16(10), 5413-5423.
[45]
Nagle, P.S.; Rodriguez, F.; Kahvedžić, A.; Quinn, S.J.; Rozas, I. Asymmetrical diaromatic guanidinium/2-aminoimidazolinium derivatives: Synthesis and DNA affinity. J. Med. Chem., 2009, 52(22), 7113-7121.
[46]
Marvania, B.; Kakadiya, R.; Christian, W.; Chen, T.L.; Wu, M.H.; Suman, S.; Tala, K.; Lee, T.C.; Shah, A.; Su, T.L. The synthesis and biological evaluation of new DNA-directed alkylating agents, phenyl N-mustard-4-anilinoquinoline conjugates containing a urea linker. Eur. J. Med. Chem., 2014, 83, 695-708.
[47]
Chen, T.; Ozel, D.; Qiao, Y.; Harbinski, F.; Chen, L.; Denoyelle, S.; He, X.; Zvereva, N.; Supko, J.G.; Chorev, M.; Halperin, J.A.; Aktas, B.H. Chemical genetics identify eIF2α kinase heme-regulated inhibitor as an anticancer target. Nat. Chem. Biol., 2011, 7, 610-616.
[48]
Fidanze, S.D.; Erickson, S.A.; Wang, G.T.; Mantei, R.; Clark, R.F.; Sorensen, B.K.; Bamaung, N.Y.; Kovar, P.; Johnson, E.F.; Swinger, K.K.; Stewart, K.D.; Zhang, Q.; Tucker, L.A.; Pappano, W.N.; Wilsbacher, J.L.; Wang, J.; Sheppard, G.S.; Bell, R.L.; Davidsen, S.K.; Hubbard, R.D. Imidazo[2,1-b]thiazoles: Multitargeted inhibitors of both the insulin-like growth factor receptor and members of the epidermal growth factor family of receptor tyrosine kinases. Med. Chem. Lett., 2010, 20(8), 2452-2455.
[49]
Hamed, M.M.; Darwish, S.S.; Herrmann, J.; Abadi, A.H.; Engel, M. First bispecific inhibitors of the epidermal growth factor receptor kinase and the NF-κB activity as novel anticancer agents. J. Med. Chem., 2017, 60(7), 2853-2868.
[50]
Albaugh, P.; Fan, Y.; Mi, Y.; Sun, F.; Adrian, F.; Li, N.; Jia, Y.; Sarkisova, Y.; Kreusch, A.; Hood, T.; Lu, M.; Liu, G.; Huang, S.; Liu, Z.; Loren, J.; Tuntland, T.; Karanewsky, D.S.; Seidel, H.M.; Molteni, V. Discovery of GNF-5837, a selective TRK inhibitor with efficacy in rodent cancer tumor models. ACS Med. Chem. Lett., 2012, 3(2), 140-145.
[51]
Vo, D.D.; Staedel, C.; Zehnacker, L.; Benhida, R.; Darfeuille, F.; Duca, M. Targeting the production of oncogenic microRNAs with multimodal synthetic small molecules. ACS Chem. Biol., 2014, 9(3), 711-721.
[52]
Richters, A.; Ketzer, J.; Getlik, M.; Grütter, C.; Schneider, R.; Heuckmann, J.M.; Heynck, S.; Sos, M.L.; Gupta, A.; Unger, A.; Schultz-Fademercht, C.; Thomas, R.K.; Bauer, S.; Rauh, D. Targeting gain of function and resistance mutations in Abl and KIT by hybrid compound design. J. Med. Chem., 2013, 56(14), 5757-5772.
[53]
Harold, A.D.; Richard, M.L.; Richard, F.H. A low-pressure, palladium-catalyzed N,N'-diarylurea synthesis from nitro compounds, amines, and carbon monoxide. J. Org. Chem., 1975, 40(19), 2819-2822.
[54]
Oh, J.S.; Lee, S.M. Process for preparing symmetric N,N'- disubstituted aromatic urea. U.S. Patent 5198582 1993.
[55]
Artamkina, G.A.; Sergeev, A.G.; Beletskaya, A.P. Palladium-catalyzed reaction of aryl halides with ureas. Tetrahedron Lett., 2001, 42, 4381-4384.
[56]
Kotachi, S.; Tsuji, Y.; Kondo, T.; Watanabe, Y. Ruthenium catalysed N,N’-diarylurea synthesis from N-aryl substituted formamides and aminoarenes. J. Chem. Soc. Chem. Commun., 1990, 7, 549-550.
[57]
Ridone, B.; Bassoli, A.; Cenini, S.J. Polar effects in the ruthenium (0)-catalysed reductive carbonylation of aromatic nitro derivatives to give ureas and amines. J. Mol. Catal., 1991, 66, 163-170.
[58]
Wang, X.; Lu, S.W.; Yu, Z.K. Selenium-catalyzed carbonylation of nitroarenes to symmetrical 1,3-diarylureas under solvent-free conditions. J. Mol. Catal. A-Chem., 2006, 253, 261-264.
[59]
Tian, F.S.; Chen, Y.H.; Wang, X.F.; Li, P.; Lu, S.W. Oxidative carbonylation of aromatic amines with CO catalyzed by 1,3-dialkylimidazole-2-selenone in ionic liquids. J. Chem., 2015, 2015, 1-5.
[60]
Wang, X.; Li, P.; Yuan, X.H.; Lu, S.W. Synthesis of symmetrical 1,3-diarylureas by sulfur-catalyzed carbonylation in ionic liquids. J. Mol. Catal. A-Chem., 2006, 255, 25-27.
[61]
Sarveswari, S.; Raja, T.K. A rapid microwave assisted synthesis of N,N'-diarylureas under solvent-free condition. Indian J. Chem. B, 2006, 45B, 546-547.
[62]
Wang, X.; Lu, S.; Yu, Z. Selenium-catalyzed carbonylation of nitroarenes to symmetrical 1,3-diarylureas under atmospheric pressure. Adv. Synth. Catal., 2004, 346(8), 929-932.
[63]
Cooper, C.F.; Falcone, S.J. A simple one-pot procedure for preparing symmetrical diarylureas from carbon dioxide and aromatic amines. Synth. Commun., 1995, 25(16), 2467-2474.
[64]
Li, X.Q.; Wang, W.K.; Han, Y.X.; Zhang, C. One-pot synthesis of symmetrical 1,3-diarylureas or substituted benzamides directly from benzylic primary alcohols and effective oxidation of secondary alcohols to ketones using phenyliodine diacetate in combination with sodium azide. Adv. Synth. Catal., 2010, 352, 2588-2598.
[65]
Schoenberg, A.; Heck, R.F. Palladium-catalyzed amidation of aryl, heterocyclic, and vinylic halides. J. Org. Chem., 1974, 39(23), 3327-3330.
[66]
Kotecki, B.J.; Fernando, D.P.; Haight, A.R.; Lukin, K.A. A general method for the synthesis of unsymmetrically substituted ureas via palladium-catalyzed amidation. Org. Lett., 2009, 11(4), 947-950.
[67]
Breitler, S.; Oldenhuis, N.J.; Fors, B.P.; Buchwald, S.L. Synthesis of unsymmetrical diarylureas via Pd-catalyzed C-N cross-coupling reactions. Org. Lett., 2011, 13(12), 3262-3265.
[68]
Hosseinzadeh, R.; Sarrafi, Y.; Mohadjerani, M.; Mohammadpourmir, F. Copper-catalyzed arylation of phenylurea using KF/Al2O3. Tetrahedron Lett., 2008, 49(5), 840-843.
[69]
Gavade, S.N.; Balaskar, R.S.; Mane, M.S.; Pabrekar, P.N.; Shingare, M.S.; Mane, D.V. An efficient method for the N-arylation of phenylurea via copper catalyzed amidation. Chinese. Chem. Lett., 2011, 22(6), 675-678.
[70]
Nasrollahzadeh, M.; Enayati, M.; Khalaj, M. Synthesis of N-arylureas in water and their N-arylation with aryl halides using copper nanoparticles loaded on natural Natrolite zeolite under ligand-free conditions. RSC Adv, 2014, 4(50), 26264-26270.
[71]
Kuo, K.K.; Boominathan, S.S.K.; Vandavasi, J.K.; Hsiao, J.S.; Wang, J.J.; Hu, W.P. Copper-catalyzed one-pot process to construct triazole-linked urea derivatives. Synth. Commun., 2016, 46(19), 1612-1618.
[72]
Etter, M.C.; Zofia, U.L.; Zia, M. Hydrogen bond directed cocrystallization and molecular recognition properties of diarylurea. J. Am. Chem. Soc., 1990, 112, 8415.
[73]
Sun, T.; Li, J.; Wang, Y.L. Solvent-free synthesis of N,N’-diarylureas using microwave technology. J. Chin. Chem. Soc., 2003, 50, 425-427.
[74]
Padiya, K.J.; Gavade, S.; Kardile, B.; Tiwari, M.; Bajare, S.; Mane, M.; Gaware, V.; Varghese, S.; Harel, D.; Kurhade, S. Unprecedented “in water” imidazole carbonylation: Paradigm shift for preparation of urea and carbamate. Org. Lett., 2012, 14(11), 2814-2817.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 7
Year: 2019
Page: [617 - 630]
Pages: 14
DOI: 10.2174/1570193X15666181029130418
Price: $65

Article Metrics

PDF: 38
HTML: 4
EPUB: 1

Special-new-year-discount