Antimicrobial Peptides: Recent Insights on Biotechnological Interventions and Future Perspectives

Author(s): Rajeshwari Sinha , Pratyoosh Shukla* .

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

With the unprecedented rise of drug-resistant pathogens, particularly antibiotic-resistant bacteria, and no new antibiotics in the pipeline over the last three decades, the issue of antimicrobial resistance has emerged as a critical public health threat. Antimicrobial Peptides (AMP) have garnered interest as a viable solution to this grave issue and are being explored for their potential antimicrobial applications. Given their low bioavailability in nature, tailoring new AMPs or strategizing approaches for increasing the yield of AMPs, therefore, becomes pertinent.

The present review focuses on biotechnological interventions directed towards enhanced AMP synthesis and revisits existing genetic engineering and synthetic biology strategies for production of AMPs. This review further underscores the importance and potential applications of advanced gene editing technologies for the synthesis of novel AMPs in future.

Keywords: Antimicrobial peptides, antimicrobial resistance, magnifection, genetic engineering, gene editing, CRISPR-Cas9.

[1]
Seo, M.D.; Won, H.S.; Kim, J.H.; Mishig-Ochir, T.; Lee, B.J. Antimicrobial peptides for therapeutic applications: A review. Molecules, 2012, 17, 12276-12286.
[2]
Kang, H.K.; Kim, C.; Seo, C.H.; Park, Y. The therapeutic applications of antimicrobial peptides (AMPs): A patent review. J. Microbiol., 2017, 55, 1-2.
[3]
Strempel, N.; Strehmel, J.; Overhage, J. Potential application of antimicrobial peptides in the treatment of bacterial biofilm infections. Curr. Pharm. Des., 2015, 21, 67-84.
[4]
Bahar, A.A.; Ren, D. Antimicrobial peptides. Pharmaceuticals, 2013, 6, 1543-1575.
[5]
Narayana, J.L.; Chen, J.Y. Antimicrobial peptides: Possible anti-infective agents. Peptides, 2015, 72, 88-94.
[6]
Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell. Infect. Microbiol., 2016, 6, 194.
[7]
da Cunha, N.B.; Cobacho, N.B.; Viana, J.F.; Lima, L.A.; Sampaio, K.B.; Dohms, S.S.; Ferreira, A.C.R.; de la Fuente-Núñez, C.; Costa, F.F.; Franco, O.L.; Dias, S.C. The next generation of Antimicrobial Peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discov. Today, 2017, 22, 234-248.
[8]
Huerta-Cantillo, J.; Navarro-García, F. Properties and design of antimicrobial peptides as potential tools against pathogens and malignant cells. Investigación en Discapacidad, 2016, 5, 96-115.
[9]
Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today, 2010, 15, 40-56.
[10]
Kosikowska, P.; Lesner, A. Antimicrobial Peptides (AMPs) as drug candidates: A patent review (2003-2015). Expert Opin. Ther. Pat., 2016, 26, 689-702.
[11]
Gupta, S.K.; Shukla, P. Sophisticated cloning, fermentation, and purification technologies for an enhanced therapeutic protein production: A review. Front. Pharmacol., 2017, 8, 419.
[12]
Li, Y.F.; Chen, Z.X. RAPD: A database of recombinantly-produced antimicrobial peptides. FEMS Microbiol. Lett., 2008, 289, 126-129.
[13]
Li, Y. Production of human antimicrobial peptide LL-37 in Escherichia coli using a thioredoxin-SUMO dual fusion system. Protein Expr. Purif., 2013, 87, 72-78.
[14]
Xia, L.; Zhang, F.; Liu, Z.; Ma, J.I.; Yang, J. Expression and characterization of cecropinXJ, a bioactive antimicrobial peptide from Bombyx mori (Bombycidae, Lepidoptera) in Escherichia coli. Exp. Ther. Med., 2013, 5, 1745-1751.
[15]
Aleinein, R.A.; Hamoud, R.; Schäfer, H.; Wink, M. Molecular cloning and expression of ranalexin, a bioactive antimicrobial peptide from Rana catesbeiana in Escherichia coli and assessments of its biological activities. Appl. Microbiol. Biotechnol., 2013, 97, 3535-3543.
[16]
Orrapin, S.; Intorasoot, S. Recombinant expression of novel protegrin-1 dimer and LL-37-linker–histatin-5 hybrid peptide mediated biotin carboxyl carrier protein fusion partner. Protein Expr. Purif., 2014, 93, 46-53.
[17]
Luan, C.; Zhang, H.W.; Song, D.G.; Xie, Y.G.; Feng, J.; Wang, Y.Z. Expressing antimicrobial peptide cathelicidin-BF in Bacillus subtilis using SUMO technology. Appl. Microbiol. Biotechnol., 2014, 98, 3651-3658.
[18]
Chen, W.; Cotton, M.L. Expression, purification, and micelle reconstitution of antimicrobial piscidin 1 and piscidin 3 for NMR studies. Protein Expr. Purif., 2014, 102, 63-68.
[19]
Luan, C.; Xie, Y.G.; Pu, Y.T.; Zhang, H.W.; Han, F.F.; Feng, J.; Wang, Y.Z. Recombinant expression of antimicrobial peptides using a novel self-cleaving aggregation tag in Escherichia coli. Can. J. Microbiol., 2014, 60, 113-120.
[20]
Wang, X.J.; Wang, X.M.; Teng, D.; Zhang, Y.; Mao, R.Y.; Wang, J.H. Recombinant production of the antimicrobial peptide NZ 17074 in Pichia pastoris using SUMO 3 as a fusion partner. Lett. Appl. Microbiol., 2014, 59, 71-78.
[21]
Li, Y.; Wang, J.; Yang, J.; Wan, C.; Wang, X.; Sun, H. Recombinant expression, purification and characterization of antimicrobial peptide ORBK in Escherichia coli. Protein Expr. Purif., 2014, 95, 182-187.
[22]
Meiyalaghan, S.; Latimer, J.M.; Kralicek, A.V.; Shaw, M.L.; Lewis, J.G.; Conner, A.J.; Barrell, P.J. Expression and purification of the antimicrobial peptide GSL1 in bacteria for raising antibodies. BMC Res. Notes, 2014, 7, 777.
[23]
Herbel, V.; Schäfer, H.; Wink, M. Recombinant production of snakin-2 (an antimicrobial peptide from tomato) in E. coli and analysis of its bioactivity. Molecules, 2015, 20, 14889-14901.
[24]
Shan, Y.; Dong, Y.; Jiang, D. Recombinant expression of a novel antimicrobial peptide consisting of human α-defensin 5 and Mytiluscoruscus mytilin-1 in Escherichia coli. J. Korean Soc. Appl. Biol. Chem., 2015, 58, 807-812.
[25]
Kuddus, M.R.; Rumi, F.; Tsutsumi, M.; Takahashi, R.; Yamano, M.; Kamiya, M.; Kikukawa, T.; Demura, M.; Aizawa, T. Expression, purification and characterization of the recombinant cysteine-rich antimicrobial peptide snakin-1 in Pichia pastoris. Protein Expr. Purif., 2016, 122, 15-22.
[26]
Xing, L.W.; Tian, S.X.; Gao, W.; Yang, N.; Qu, P.; Liu, D.; Jiao, J.; Wang, J.; Feng, X.J. Recombinant expression and biological characterization of the antimicrobial peptide fowlicidin-2 in Pichia pastoris. Exp. Ther. Med., 2016, 12, 2324-2330.
[27]
Meng, D.M.; Zhao, J.F.; Ling, X.; Dai, H.X.; Guo, Y.J.; Gao, X.F. Recombinant expression, purification and antimicrobial activity of a novel antimicrobial peptide PaDef in Pichia pastoris. Protein Expr. Purif., 2017, 130, 90-99.
[28]
Lin, C.H.; Pan, Y.C.; Liu, F.W.; Chen, C.Y. Prokaryotic expression and action mechanism of antimicrobial LsGRP1 C recombinant protein containing a fusion partner of small ubiquitin-like modifier. Appl. Microbiol. Biotechnol., 2017, 101, 8129-8138.
[29]
Mohanraj, U.; Kinnunen, O.; Kaya, M.E.; Aranko, A.S.; Viskari, H.; Linder, M. SUMO-based expression and purification of dermcidin-derived DCD-1L, a human antimicrobial peptideEscherichia coli. bioRxiv; , 2018. 343418.
[30]
Ashcheulova, D.O.; Efimova, L.V.; Lushchyk, A.Y.; Yantsevich, A.V.; Baikov, A.N.; Pershina, A.G. Production of the recombinant antimicrobial peptide UBI18-35 in Escherichia coli. Protein Expr. Purif., 2018, 143, 38-44.
[31]
Zhang, M.; Shan, Y.; Gao, H.; Wang, B.; Liu, X.; Dong, Y.; Liu, X.; Yao, N.; Zhou, Y.; Li, X.; Li, H. Expression of a recombinant hybrid antimicrobial peptide magainin II-cecropin B in the mycelium of the medicinal fungus Cordyceps militaris and its validation in mice. Microb. Cell Fact., 2018, 17, 18.
[32]
Cao, J.; de la Fuente-Nunez, C.; Ou, R.W.; Torres, M.D.; Pande, S.G.; Sinskey, A.J.; Lu, T.K. Yeast-based synthetic biology platform for antimicrobial peptide production. ACS Synth. Biol., 2018, 7, 896-902.
[33]
Li, Y. Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli. Biotechnol. Appl. Biochem., 2009, 54, 1-9.
[34]
Li, Y. Recombinant production of antimicrobial peptides in Escherichia coli: A review. Protein Expr. Purif., 2011, 80, 260-267.
[35]
Schäfer, F.; Seip, N.; Maertens, B.; Block, H.; Kubicek, J. Purification of GST-tagged proteins. In: Methods in Enzymology (Laboratory Methods in Enzymology: Protein Part D); Lorsch, J.R., Ed.; Academic Press: Cambridge, MA, 2015; pp. 127-139.
[36]
Li, Y. Self-cleaving fusion tags for recombinant protein production. Biotechnol. Lett., 2011, 33, 869-881.
[37]
Kim, H.; Yoo, S.J.; Kang, H.A. Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res., 2015, 15, 1-6.
[38]
Ahmad, M.; Hirz, M.; Pichler, H.; Schwab, H. Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Appl. Microbiol. Biotechnol., 2014, 98, 5301-5317.
[39]
Chahardoli, M.; Fazeli, A.; Niazi, A.; Ghabooli, M. Recombinant expression of LFchimera antimicrobial peptide in a plant-based expression system and its antimicrobial activity against clinical and phytopathogenic bacteria. Biotechnol. Biotechnol. Equip., 2018, 32, 714-723.
[40]
Yevtushenko, D.P.; Misra, S. Transgenic expression of antimicrobial peptides in plants: Strategies for enhanced disease resistance, improved productivity, and production of therapeutics.Small Wonders: Peptides for Disease Control; Rajasekaran, K.; Cary, J.W.; Jaynes, J.M.; Montesinos, E., Eds.; American Chemical Society: Washington, D.C, 2012, Vol. 1095, pp. 445-458.
[41]
Wani, S.H.; Sah, S.K. Transgenic plants as expression factories for bio pharmaceuticals. Research and Reviews: J. Bot. Sci, 2015.Phytopathology/ Genes & Diseases- S1.
[42]
Ghag, S.B.; Shekhawat, U.K.; Ganapathi, T.R. Petunia floral defensins with unique prodomains as novel candidates for development of Fusarium wilt resistance in transgenic banana plants. PLoS One, 2012, 7, e39557.
[43]
Balaji, V.; Smart, C.D. Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanumly copersicum). Transgenic Res., 2012, 21, 23-37.
[44]
Fukuta, S.; Kawamoto, K.I.; Mizukami, Y.; Yoshimura, Y.; Ueda, J.I.; Kanbe, M. Transgenic tobacco plants expressing antimicrobial peptide bovine lactoferricin show enhanced resistance to phytopathogens. Plant Biotechnol., 2012, 29, 383-389.
[45]
Verma, S.S.; Yajima, W.R.; Rahman, M.H.; Shah, S.; Liu, J.J.; Ekramoddoullah, A.K.; Kav, N.N. A cysteine-rich antimicrobial peptide from Pinus monticola (PmAMP1) confers resistance to multiple fungal pathogens in canola (Brassica napus). Plant Mol. Biol., 2012, 79, 61-74.
[46]
Jung, Y.J.; Lee, S.Y.; Moon, Y.S.; Kang, K.K. Enhanced resistance to bacterial and fungal pathogens by overexpression of a human cathelicidin antimicrobial peptide (hCAP18/LL-37) in Chinese cabbage. Plant Biotechnol. Rep., 2012, 6, 39-46.
[47]
Rong, W.; Qi, L.; Wang, J.; Du, L.; Xu, H.; Wang, A.; Zhang, Z. Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat. Funct. Integr. Genomics, 2013, 13, 403-409.
[48]
Wu, T.; Tang, D.; Chen, W.; Huang, H.; Wang, R.; Chen, Y. Expression of antimicrobial peptides thanatin (S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria. Gene, 2013, 527, 235-242.
[49]
Zeitler, B.; Bernhard, A.; Meyer, H.; Sattler, M.; Koop, H.U.; Lindermayr, C. Production of a de-novo designed antimicrobial peptide in Nicotiana benthamiana. Plant Mol. Biol., 2013, 81, 259-272.
[50]
Patiño-Rodríguez, O.; Ortega-Berlanga, B.; Llamas-González, Y.Y.; Flores-Valdez, M.A.; Herrera-Díaz, A.; Montes-de-Oca-Luna, R.; Korban, S.S.; Alpuche-Solís, Á.G. Transient expression and characterization of the antimicrobial peptide protegrin-1 in Nicotiana tabacum for control of bacterial and fungal mammalian pathogens. Plant Cell Tissue Organ Cult., 2013, 115, 99-106.
[51]
Bundó, M.; Montesinos, L.; Izquierdo, E.; Campo, S.; Mieulet, D.; Guiderdoni, E.; Rossignol, M.; Badosa, E.; Montesinos, E.; San Segundo, B.; Coca, M. Production of cecropin A antimicrobial peptide in rice seed endosperm. BMC Plant Biol., 2014, 14, 102.
[52]
Vetchinkina, E.M.; Komakhina, V.V.; Vysotskii, D.A.; Zaitsev, D.V.; Smirnov, A.N.; Babakov, A.V.; Komakhin, R.A. Expression of plant antimicrobial peptide pro-SmAMP2 gene increases resistance of transgenic potato plants to Alternaria and Fusarium pathogens. Russ. J. Genet., 2016, 52, 939-951.
[53]
Hao, G.; Zhang, S.; Stover, E. Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus. PLoS One, 2017, 12, e0186810.
[54]
Holásková, E.; Galuszka, P.; Mičúchová, A.; Šebela, M.; Öz, M.T.; Frébort, I. Molecular farming in barley: Development of a novel production platform to produce human antimicrobial peptide LL‐37. Biotechnol. J., 2018, 13, e1700628.
[55]
Cary, J.W.; Rajasekaran, K.; Jaynes, J.M.; Cleveland, T.E. Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci., 2000, 154, 171-181.
[56]
Chahardoli, M.; Fazeli, A.; Ghabooli, M. Recombinant production of bovine Lactoferrin-derived antimicrobial peptide in tobacco hairy roots expression system. Plant Physiol. Biochem., 2018, 123, 414-421.
[57]
Rajasekaran, K.; Sayler, R.J.; Sickler, C.M.; Majumdar, R.; Jaynes, J.M.; Cary, J.W. Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182. Plant Sci., 2018, 270, 150-156.
[58]
Wang, Q.; Zhu, S.; Liu, Y.; Li, R.; Tan, S.; Wang, S.; Tang, L.; Chen, F. Overexpression of Jatropha curcas defensin (JcDef) enhances sheath blight disease resistance in tobacco. J. Phytopathol., 2017, 165, 15-21.
[59]
Luo, X.M.; Xie, C.J.; Wang, D.; Wei, Y.M.; Cai, J.; Cheng, S.S.; Yang, X.Y.; Sui, A.P. Psc-AFP from Psoralea corylifolia L. overexpressed in Pichia pastoris increases antimicrobial activity and enhances disease resistance of transgenic tobacco. Appl. Microbiol. Biotechnol., 2017, 101, 1073-1084.
[60]
Almasia, N.I.; Bazzini, A.A.; Hopp, H.E.; Vazquez‐Rovere, C.E. Overexpression of snakin‐1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Mol. Plant Pathol., 2008, 9, 329-338.
[61]
Rivero, M.; Furman, N.; Mencacci, N.; Picca, P.; Toum, L.; Lentz, E.; Bravo-Almonacid, F.; Mentaberry, A. Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens. J. Biotechnol., 2012, 15, 334-343.
[62]
Goyal, R.K.; Hancock, R.E.; Mattoo, A.K.; Misra, S. Expression of an engineered heterologous antimicrobial peptide in potato alters plant development and mitigates normal abiotic and biotic responses. PLoS One, 2013, 8, e77505.
[63]
Osusky, M.; Osuska, L.; Hancock, R.E.; Kay, W.W.; Misra, S. Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Res., 2004, 13, 181-190.
[64]
Kobayashi, A.K.; Vieira, L.G.E. BespalhokFilho, J.C.; Leite, R.P.; Pereira, L.F.P.; Molinari, H.B.C.; Marques, V.V. Enhanced resistance to citrus canker in transgenic sweet orange expressing the sarcotoxin IA gene. Eur. J. Plant Pathol., 2017, 149, 865-873.
[65]
Saharan, V.; Jain, D.; Pareek, S.; Pal, A.; Kumaraswamy, R.V.; Jakhar, S.K.; Singh, M. Viral, fungal and bacterial disease resistance in transgenic plants. In: Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits; Al-Khayri, J.M.; Jain, S.M.; Johnson, D.V., Eds.; Springer: Berlin, 2016; Vol. 2, pp. 627-656.
[66]
Khan, M.S. Plastid genome engineering in plants: Present status and future trends. Mol. Plant Breed., 2012, 3, 91-102.
[67]
Wang, Y.P.; Wei, Z.Y.; Zhang, Y.Y.; Lin, C.J.; Zhong, X.F.; Wang, Y.L.; Ma, J.Y. M, J.; Xing, S.-C. Chloroplast-expressed MSI-99 in tobacco improves disease resistance and displays inhibitory effect against rice blast fungus. Int. J. Mol. Sci., 2015, 16, 4628-4641.
[68]
Lee, S.B.; Li, B.; Jin, S.; Daniell, H. Expression and characterization of antimicrobial peptides Retrocyclin‐101 and Protegrin‐1 in chloroplasts to control viral and bacterial infections. Plant Biotechnol. J., 2011, 9, 100-115.
[69]
Hoelscher, M.; Forner, J.; Bock, R. Chloroplast produced antimicrobial peptide fusions for pharma and plant protection. The 3rd, Conference of the International Society for Plant Molecular Farming, Helsinki Congress Paasitorni, Finland, June 11-13. 2018, p. 196.
[70]
Dangi, A.K.; Sinha, R.; Dwivedi, S.; Gupta, S.K.; Shukla, P.S. Cell line techniques and gene editing tools for antibody production: A review. Front. Pharmacol., 2018, 9, 630.
[71]
Baweja, M.; Nain, L.; Kawarabayasi, Y.; Shukla, P. Current technological improvements in enzymes toward their biotechnological applications. Front. Microbiol., 2016, 7, 965.
[72]
Kumar, V.; Baweja, M.; Liu, H.; Shukla, P. Microbial enzyme engineering: Applications and perspectives. In: Recent Advances in Applied Microbiology; Shukla, P., Ed.; Springer: Singapore, 2017; pp. 259-273.
[73]
Tucker, A.T.; Leonard, S.P.; DuBois, C.D.; Knauf, G.A.; Cunningham, A.L.; Wilke, C.O.; Trent, M.S.; Davies, B.W. Discovery of next-generation antimicrobials through bacterial self-screening of surface-displayed peptide libraries. Cell, 2018, 172, 618-628.
[74]
Haney, E.F.; Brito-Sánchez, Y.; Trimble, M.J.; Mansour, S.C.; Cherkasov, A.; Hancock, R.E. Computer-aided discovery of peptides that specifically attack bacterial biofilms. Sci. Rep., 2018, 8, 1871.
[75]
Guralp, S.A.; Murgha, Y.E.; Rouillard, J.M.; Gulari, E. From design to screening: A new antimicrobial peptide discovery pipeline. PLoS One, 2013, 8, e59305.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 2
Year: 2019
Page: [79 - 87]
Pages: 9
DOI: 10.2174/0929866525666181026160852

Article Metrics

PDF: 36
HTML: 7