Iron and Vitamin D/Calcium Deficiency after Gastric Bypass: Mechanisms Involved and Strategies to Improve Oral Supplement Disposition

Author(s): Aisling Mangan*, Carel W. Le Roux, Nana Gletsu Miller, Neil G. Docherty.

Journal Name: Current Drug Metabolism

Volume 20 , Issue 3 , 2019


Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Nutritional deficiencies are common following Roux-en-Y Gastric Bypass (RYGB). Aetiology is diverse; including non-compliance, altered diet, unresolved preoperative deficiency and differential degrees of post-operative malabsorption occurring as function of length of bypassed intestine. Iron and calcium/vitamin D deficiency occur in up to 50% of patients following RYGB. Currently, treatment strategies recommend the prescription of oral supplements for those who become deficient. Meanwhile, debate exists regarding the absorption capacity of these post-operatively and their efficacy in treating deficiency.

Objective: To examine the disposition of oral iron and calcium/vitamin D supplementation following RYGB.

Methods: A literature review was carried out using PubMed and Embase. Data from the key interventional studies investigating iron and calcium/vitamin D oral supplement absorption and efficacy following RYGB was summarized.

Results: Absorption of both iron and vitamin D/calcium is adversely affected following RYGB. Distribution and metabolism may be altered by the predominance of paracellular absorption pathways which promote unregulated influx into the circulatory system. Overall, studies indicate that current supplementation strategies are efficacious to a degree in treating deficiency following RYGB, generally restoration of optimal status is not achieved.

Conclusion: Oral supplement disposition is altered following RYGB. As a result, patients are required to take regimens of oral supplementation indefinitely. The dosage which confers optimum health benefit while avoiding potential toxicity and tolerability issues remains unknown. Novel preparations with improved disposition could help limit the extent of post-RYGB nutritional deficiencies.

Keywords: Bariatric, Roux-en-Y gastric bypass, drug malabsorption, iron, vitamin D, calcium.

[1]
Salgado, W., Jr; Modotti, C.; Nonino, C.B.; Ceneviva, R. Anemia and iron deficiency before and after bariatric surgery. SOARD, 2014, 10(1), 49-54.
[2]
World Helath Organisation - Obesity and Overweight. http://www.who.int/mediacentre/factsheets/fs311/en/ (Accessed September 4, 2017).
[3]
Flegal, K.M.; Kruszon-Moran, D.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Trends in obesity among adults in the United States, 2005 to 2014. JAMA, 2016, 315(21), 2284-2291.
[4]
Laura, M.; Segal, J.R.; Alejandra, M. The state of obesity: Better policies for a healthier America. Health, Trust for America’s Health, Ed.; Washington, , 2016.
[5]
Stein, J.; Stier, C.; Raab, H.; Weiner, R. Review article: The nutritional and pharmacological consequences of obesity surgery. Aliment. Pharmacol. Ther., 2014, 40(6), 582-609.
[6]
Douglas, I.J.; Bhaskaran, K.; Batterham, R.L.; Smeeth, L. Bariatric surgery in the United Kingdom: A cohort study of weight loss and clinical outcomes in routine clinical care. PLoS Med., 2015, 12(12), e1001925.
[7]
Sjöström, L.; Peltonen, M.; Jacobson, P.; Sjöström, C.D.; Karason, K.; Wedel, H.; Ahlin, S.; Anveden, Å.; Bengtsson, C.; Bergmark, G.; Bouchard, C.; Carlsson, B.; Dahlgren, S.; Karlsson, J.; Lindroos, A.K.; Lönroth, H.; Narbro, K.; Näslund, I.; Olbers, T.; Svensson, P.A.; Carlsson, L.M. Bariatric surgery and long-term cardiovascular events. JAMA, 2012, 307(1), 56-65.
[8]
Wang, B.C.; Wong, E.S.; Alfonso-Cristancho, R.; He, H.; Flum, D.R.; Arterburn, D.E.; Garrison, L.P.; Sullivan, S.D. Cost-effectiveness of bariatric surgical procedures for the treatment of severe obesity. Eur. J. Health Econ., 2014, 15(3), 253-263.
[9]
Lindekilde, N.; Gladstone, B.P.; Lubeck, M.; Nielsen, J.; Clausen, L.; Vach, W.; Jones, A. The impact of bariatric surgery on quality of life: A systematic review and meta-analysis. Obes. Rev., 2015, 16(8), 639-651.
[10]
Lopes, E.C.; Heineck, I.; Athaydes, G.; Meinhardt, N.G.; Souto, K.E.; Stein, A.T. Is bariatric surgery effective in reducing comorbidities and drug costs? A systematic review and meta-analysis. Obes. Surg., 2015, 25(9), 1741-1749.
[11]
Van Der Beek, E.S.; Monpellier, V.M.; Eland, I.; Tromp, E.; van Ramshorst, B. Nutritional deficiencies in gastric bypass patients; incidence, time of occurrence and implications for post-operative surveillance. Obes. Surg., 2015, 25(5), 818-823.
[12]
Toh, S.Y.; Zarshenas, N.; Jorgensen, J. Prevalence of nutrient deficiencies in bariatric patients. Nutrition, 2009, 25(11-12), 1150-1156.
[13]
Cook, F.J.; Khanna, I.; Giordano, J.; Matarese, L.; Hudson, S. Long term bone health after Roux_en_Y gastric bypass: A pilot study. Endocr. Pract., 2017, 23(9), 1077-1084.
[14]
Manning, S.; Pucci, A.; Batterham, R.L. Roux-en-Y gastric bypass: Effects on feeding behavior and underlying mechanisms. J. Clin. Invest., 2015, 125(3), 939-948.
[15]
Aron-Wisnewsky, J.; Verger, E.O.; Bounaix, C.; Dao, M.C.; Oppert, J.M.; Bouillot, J.L.; Chevallier, J.M.; Clément, K. Nutritional and protein deficiencies in the short term following both gastric bypass and gastric banding. PLoS One, 2016, 11(2), e0149588.
[16]
Verger, E.O.; Aron-Wisnewsky, J.; Dao, M.C.; Kayser, B.D.; Oppert, J.M.; Bouillot, J.L.; Torcivia, A.; Clément, K. Micronutrient and Protein Deficiencies After Gastric Bypass and Sleeve Gastrectomy: a 1-year Follow-up. Obes. Surg., 2016, 26(4), 785-796.
[17]
Obinwanne, K.M.; Fredrickson, K.A.; Mathiason, M.A.; Kallies, K.J.; Farnen, J.P.; Kothari, S.N. Incidence, treatment, and outcomes of iron deficiency after laparoscopic Roux-en-Y gastric bypass: A 10-year analysis. J. Am. Coll. Surg., 2014, 218(2), 246-252.
[18]
Sawaya, R.A.; Jaffe, J.; Friedenberg, L.; Friedenberg, F.K. Vitamin, mineral, and drug absorption following bariatric surgery. Curr. Drug Metab., 2012, 13(9), 1345-1355.
[19]
Avgerinos, D.V.; Llaguna, O.H.; Seigerman, M.; Lefkowitz, A.J.; Leitman, I.M. Incidence and risk factors for the development of anemia following gastric bypass surgery. World J. Gastroenterol., 2010, 16(15), 1867-1870.
[20]
Gletsu-Miller, N.; Wright, B.N. Mineral malnutrition following bariatric surgery. Adv. Nutr., 2013, 4(5), 506-517.
[21]
Knight, T.; D’Sylva, L.; Moore, B.; Barish, C.F. Burden of iron deficiency anemia in a bariatric surgery population in the United States. J. Manag. Care Spec. Pharm., 2015, 21(10), 946-954.
[22]
Vix, M.; Liu, K.H.; Diana, M.; D’Urso, A.; Mutter, D.; Marescaux, J. Impact of Roux-en-Y gastric bypass versus sleeve gastrectomy on vitamin D metabolism: short-term results from a prospective randomized clinical trial. Surg. Endosc., 2014, 28(3), 821-826.
[23]
Al-Shoha, A.; Qiu, S.; Palnitkar, S.; Rao, D.S. Osteomalacia with bone marrow fibrosis due to severe vitamin D deficiency after a gastrointestinal bypass operation for severe obesity. Endocr. Pract., 2009, 15(6), 528-533.
[24]
Pantopoulos, K.; Porwal, S.K.; Tartakoff, A.; Devireddy, L. Mechanisms of mammalian iron homeostasis. Biochemistry, 2012, 51(29), 5705-5724.
[25]
Gulec, S.; Anderson, G.J.; Collins, J.F. Mechanistic and regulatory aspects of intestinal iron absorption. Am. J. Physiol. Gastrointest. Liver Physiol., 2014, 307(4), G397-G409.
[26]
Geisser, P.; Burckhardt, S. The Pharmacokinetics and pharmacodynamics of iron preparations. Pharmaceutics, 2011, 3(1), 12-33.
[27]
Shawki, A.; Anthony, S.R.; Nose, Y.; Engevik, M.A.; Niespodzany, E.J.; Barrientos, T.; Öhrvik, H.; Worrell, R.T.; Thiele, D.J.; Mackenzie, B. Intestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese. Am. J. Physiol. Gastrointest. Liver Physiol., 2015, 309(8), G635-G647.
[28]
Garrick, M.D. Human iron transporters. Genes Nutr., 2011, 6(1), 45-54.
[29]
Kiela, P.R.; Ghishan, F.K. Physiology of intestinal absorption and secretion. Best Pract. Res. Clin. Gastroenterol., 2016, 30(2), 145-159.
[30]
Wu, W.; Song, Y.; He, C.; Liu, C.; Wu, R.; Fang, L.; Cong, Y.; Miao, Y.; Liu, Z. Divalent metal-ion transporter 1 is decreased in intestinal epithelial cells and contributes to the anemia in inflammatory bowel disease. Sci. Rep., 2015, 5, 16344.
[31]
Pantopoulos, K.; Porwal, S.K.; Tartakoff, A.; Devireddy, L. Mechanisms of mammalian iron homeostasis. Biochemistry, 2012, 51(29), 5705-5724.
[32]
Mastrogiannaki, M.; Matak, P.; Peyssonnaux, C. The gut in iron homeostasis: Role of HIF-2 under normal and pathological conditions. Blood, 2013, 122(6), 885.
[33]
Crichton, R. Iron Metabolism: From Molecular Mechanisms to Clinical Consequences, 4th ed; Wiley: Hoboken, New Jersey, 2016.
[34]
Christakos, S.; Dhawan, P.; Porta, A.; Mady, L.J.; Seth, T. Vitamin D and intestinal calcium absorption. Mol. Cell. Endocrinol., 2011, 347(1-2), 25-29.
[35]
Booth, A.; Camacho, P.A. Closer look at calcium absorption and the benefits and risks of dietary versus supplemental calcium. Postgrad. Med., 2013, 125(6), 73-81.
[36]
Fleet, J.C.; Schoch, R.D. Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. Crit. Rev. Clin. Lab. Sci., 2010, 47(4), 181-195.
[37]
Bonjour, J.P. Calcium and phosphate: A duet of ions playing for bone health. J. Am. Coll. Nutr., 2011, 30(5)(Suppl. 1), 438s-448s.
[38]
Borel, P.; Caillaud, D.; Cano, N.J. Vitamin D bioavailability: State of the art. Crit. Rev. Food Sci. Nutr., 2015, 55(9), 1193-1205.
[39]
Ross, A.C.; Taylor, C.L.; Yaktine, A.L. Del Valle, H.B. Overview of Vitamin D In: Dietary Reference Intakes for Calcium and Vitamin D,, (US), Institute of Medicine, Ed.; National Academies Press: Washington DC. 2011.
[40]
Nair, R.; Maseeh, A.; Vitamin, D. The “sunshine” vitamin. J. Pharmacol. Pharmacother., 2012, 3(2), 118-126.
[41]
Xanthakos, S.A. Nutritional deficiencies in obesity and after bariatric surgery. Pediatr. Clin. North Am., 2009, 56(5), 1105-1121.
[42]
Peterson, L.A.; Zeng, X.; Caufield-Noll, C.P.; Schweitzer, M.A.; Magnuson, T.H.; Steele, K.E. Vitamin D status and supplementation before and after bariatric surgery: A comprehensive literature review. SOARD, 2016, 12(3), 693-702.
[43]
Bacci, V.; Silecchia, G. Vitamin D status and supplementation in morbid obesity before and after bariatric surgery. Expert Rev. Gastroenterol. Hepatol., 2010, 4(6), 781-794.
[44]
Wortsman, J.; Matsuoka, L.Y.; Chen, T.C.; Lu, Z.; Holick, M.F. Decreased bioavailability of vitamin D in obesity. Am. J. Clin. Nutr., 2000, 72(3), 690-693.
[45]
Schweiger, C.; Weiss, R.; Berry, E.; Keidar, A. Nutritional deficiencies in bariatric surgery candidates. Obes. Surg., 2010, 20(2), 193-197.
[46]
Tussing-Humphreys, L.M.; Nemeth, E.; Fantuzzi, G.; Freels, S.; Holterman, A.X.L.; Galvani, C.; Ayloo, S.; Vitello, J.; Braunschweig, C. Decreased serum hepcidin and improved functional iron status 6 months after restrictive bariatric surgery. Obesity., 2010, 18(10), 2010-2016.
[47]
Bal, B.S.; Finelli, F.C.; Shope, T.R.; Koch, T.R. Nutritional deficiencies after bariatric surgery. Nat. Rev. Endocrinol., 2012, 8, 544.
[48]
Laurenius, A.; Larsson, I.; Melanson, K.J.; Lindroos, A.K.; Lonroth, H.; Bosaeus, I.; Olbers, T. Decreased energy density and changes in food selection following Roux-en-Y gastric bypass. Eur. J. Clin. Nutr., 2013, 67(2), 168-173.
[49]
Nicoletti, C.F.; De Oliveira, B.A.; Barbin, R.
Marchini, J.S.; Salgado, W., Jr; Nonino, C.B. Red meat intolerance in patients submitted to gastric bypass: A 4-year follow-up study. Surg. Obes. Relat. Dis., 2015, 11(4), 842-846.
[50]
Johnson, J.M.; Maher, J.W.; DeMaria, E.J.; Downs, R.W.; Wolfe, L.G.; Kellum, J.M. The long-term effects of gastric bypass on vitamin D metabolism. Ann. Surg., 2006, 24(5), 701-705.
[51]
Schafer, A.L.; Weaver, C.M.; Black, D.M.; Wheeler, A.L.; Chang, H.; Szefc, G.V.; Stewart, L.; Rogers, S.J.; Carter, J.T.; Posselt, A.M.; Shoback, D.M.; Sellmeyer, D.E. Intestinal calcium absorption decreases dramatically after gastric bypass surgery despite optimization of vitamin D status. J. Bone Miner. Res., 2015, 30(8), 1377-1385.
[52]
Schafer, A.L. Vitamin D and intestinal calcium transport after bariatric surgery. J. Steroid Biochem. Mol. Biol., 2017, 173, 202-210.
[53]
Parrott, J.; Frank, L.; Rabena, R.; Craggs-Dino, L.; Isom, K.A.; Greiman, L. American Society for metabolic and bariatric surgery integrated health nutritional guidelines for the surgical weight loss patient 2016 update: Micronutrients. Surg. Obes. Relat. Dis., 2017, 13(5), 727-741.
[54]
Fried, M.; Yumuk, V.; Oppert, J.M.; Scopinaro, N.; Torres, A.; Weiner, R.; Yashkov, Y.; Frühbeck, G. Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes. Surg., 2014, 24(1), 42-55.
[55]
National Institute for Health and Care Excellence. Obesity: Identification, assessment and management. Clinical guideline [CG189],. 2014.
[56]
Prince, R.A.; Pincheira, J.C.; Mason, E.E.; Printen, K.J. Influence of bariatric surgery on erythromycin absorption. J. Clin. Pharmacol., 1984, 24(11-12), 523-527.
[57]
Varma, S.; Baz, W.; Badine, E.; Nakhl, F.; McMullen, H.; Nicastro, J.; Forte, F.; Terjanian, T.; Dai, Q. Need for parenteral iron therapy after bariatric surgery. Surg. Obes. Relat. Dis., 2008, 4(6), 715-719.
[58]
Kotkiewicz, A.; Donaldson, K.; Dye, C.; Rogers, A.M.; Mauger, D.; Kong, L.; Eyster, M.E. Anemia and the need for intravenous iron infusion after Roux-en-Y Gastric bypass. Clin. Med. Insights Blood Disord., 2015, 8, 9-17.
[59]
Bayraktar, U.D.; Bayraktar, S. Treatment of iron deficiency anemia associated with gastrointestinal tract diseases. World J. Gastroenterol., 2010, 16(22), 2720-2725.
[60]
Mechanick, J.I.; Youdim, A.; Jones, D.B.; Garvey, W.T.; Hurley, D.L.; McMahon, M.; Heinberg, L.J.; Kushner, R.; Adams, T.D.; Shikora, S.; Dixon, J.B.; Brethauer, S. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient-2013 Update: Cosponsored by American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery. Obesity (Silver Spring Md), 2013, 21(01), S1-S27.
[61]
Lizer, M.H.; Papageorgeon, H.; Glembot, T.M. Nutritional and pharmacologic challenges in the bariatric surgery patient. Obes. Surg., 2010, 20(12), 1654-1659.
[62]
Gesquiere, I.; Lannoo, M.; Augustijns, P.; Matthys, C.; Van Der Schueren, B.; Foulon, V. Iron deficiency after Roux-en-Y gastric bypass: Insufficient iron absorption from oral iron supplements. Obes. Surg., 2014, 24(1), 56-61.
[63]
Joosten, E.; Van Der Elst, B.; Billen, J. Small-dose oral iron absorption test in anaemic and non-anaemic elderly hospitalized patients. Eur. J. Haematol., 1997, 58(2), 99-103.
[64]
Brolin, R.E.; Gorman, J.H.; Gorman, R.C.; Petschenik, A.J.; Bradley, L.B.; Kenler, H.A.; Cody, R.P. Prophylactic iron supplementation after Roux-en-Y gastric bypass: A prospective, double-blind, randomized study. Arch. Surg., 1998, 133(7), 740-744.
[65]
Mischler, R.A.; Armah, S.M.; Craig, B.A.; Rosen, A.D.; Banerjee, A.; Selzer, D.J.; Choi, J.N.; Gletsu-Miller, N. Comparison of oral iron supplement formulations for normalization of iron status following Roux-EN-y gastric bypass surgery: A randomized trial. Obes. Surg., 2018, 28(2), 369-377.
[66]
Schijns, W.; Ligthart, M.A.P.; Berends, F.J.; Janssen, I.M.C.; Van Laarhoven, C.J.H.M.; Aarts, E.O.; De Boer, H. Changes in iron absorption after Roux-en-Y gastric bypass. Obes. Surg., 2018, 28(6), 1738-1744.
[67]
Tolkien, Z.; Stecher, L.; Mander, A.P.; Pereira, D.I.; Powell, J.J. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: A systematic review and meta-analysis. PLoS One, 2015, 10(2), e0117383.
[68]
Brolin, R.E.; Gorman, J.H.; Gorman, R.C.; Petschenik, A.J.; Bradley, L.B.; Kenler, H.A.; Cody, R.P. Prophylactic iron supplementation after Roux-en-Y gastric bypass: A prospective, double-blind, randomized study. Arch. Surg., 1998, 133(7), 740-744.
[69]
Rhode, B.M.; Shustik, C.; Christou, N.V.; MacLean, L.D. Iron absorption and therapy after gastric bypass. Obes. Surg., 1999, 9(1), 17-21.
[70]
Hutchinson, C.; Al-Ashgar, W.; Liu, D.Y.; Hider, R.C.; Powell, J.J.; Geissler, C.A. Oral ferrous sulphate leads to a marked increase in pro-oxidant nontransferrin-bound iron. Eur. J. Clin. Invest., 2004, 34(11), 782-784.
[71]
Brittenham, G.M.; Andersson, M.; Egli, I.; Foman, J.T.; Zeder, C.; Westerman, M.E.; Hurrell, R.F. Circulating non-transferrin-bound iron after oral administration of supplemental and fortification doses of iron to healthy women: A randomized study. Am. J. Clin. Nutr., 2014, 100(3), 813-820.
[72]
Dresow, B.; Petersen, D.; Fischer, R.; Nielsen, P. Non-transferrin-bound iron in plasma following administration of oral iron drugs. Biometals, 2008, 21(3), 273-276.
[73]
Piga, A.; Longo, F.; Duca, L.; Roggero, S.; Vinciguerra, T.; Calabrese, R.; Hershko, C.; Cappellini, M.D. High nontransferrin bound iron levels and heart disease in thalassemia major. Am. J. Hematol., 2009, 84(1), 29-33.
[74]
Brissot, P.; Ropert, M.; Le Lan, C.; Loréal, O. Non-transferrin bound iron: A key role in iron overload and iron toxicity. Biochim. Biophys. Acta, 2012, 1820(3), 403-410.
[75]
Pereira, D.I.A.; Couto Irving, S.S.; Lomer, M.C.E.; Powell, J.J. A rapid, simple questionnaire to assess gastrointestinal symptoms after oral ferrous sulphate supplementation. BMC Gastroenterol., 2014, 14, 103-103.
[76]
Sahebzamani, F.M.; Berarducci, A.; Murr, M.M. Malabsorption anemia and iron supplement induced constipation in post-Roux-en-Y Gastric Bypass (RYGB) patients. J. Am. Acad. Nurse Pract., 2013, 25(12), 634-640.
[77]
Lund, E.K.; Wharf, S.G.; Fairweather-Tait, S.J.; Johnson, I.T. Oral ferrous sulfate supplements increase the free radical-generating capacity of feces from healthy volunteers. Am. J. Clin. Nutr., 1999, 69(2), 250-255.
[78]
Cancelo-Hidalgo, M.J.; Castelo-Branco, C.; Palacios, S.; Haya-Palazuelos, J.; Ciria-Recasens, M.; Manasanch, J.; Perez-Edo, L. Tolerability of different oral iron supplements: A systematic review. Curr. Med. Res. Opin., 2013, 29(4), 291-303.
[79]
Christides, T.; Wray, D.; McBride, R.; Fairweather, R.; Sharp, P. Iron bioavailability from commercially available iron supplements. Eur. J. Nutr., 2015, 54(8), 1345-1352.
[80]
Tondapu, P.; Provost, D.; Adams-Huet, B.; Sims, T.; Chang, C.; Sakhaee, K. Comparison of the absorption of calcium carbonate and calcium citrate after Roux-en-Y gastric bypass. Obes. Surg., 2009, 19(9), 1256-1261.
[81]
Heller, H.J.; Stewart, A.; Haynes, S.; Pak, C.Y. Pharmacokinetics of calcium absorption from two commercial calcium supplements. J. Clin. Pharmacol., 1999, 39(11), 1151-1154.
[82]
Richardson, W.S.; Plaisance, A.M.; Periou, L.; Buquoi, J.; Tillery, D. Long-term Management of Patients After Weight Loss Surgery. Ochsner J., 2009, 9(3), 154-159.
[83]
Baretta, G.A.P.; Cambi, M.P.C.; Rodrigues, A.L.; Mendes, S.A. Secondary hyperparathyroidism after bariatric surgery: Treatment is with calcium carbonate or calcium citrate? Arq. Bras. Cir. Dig., 2015, 28(Suppl. 1), 43-45.
[84]
Aarts, E.; Van Groningen, L.; Horst, R.; Telting, D.; van Sorge, A.; Janssen, I.; De Boer, H. Vitamin D absorption: consequences of gastric bypass surgery. Eur. J. Endocrinol., 2011, 164(5), 827-832.
[85]
Chakhtoura, M.; Nakhoul, N.; Shawwa, K.; Mantzoros, C.; El Hajj Fuleihan, G. Hypovitaminosis D in bariatric surgery: A systematic review of observational studies. Metabolism, 2016, 65(4), 574-585.
[86]
Moore, C.E.; Sherman, V. Vitamin D supplementation efficacy: Sleeve gastrectomy versus gastric bypass surgery. Obes. Surg., 2014, 24(12), 2055-2060.
[87]
Goldner, W.S.; Stoner, J.A.; Lyden, E.; Thompson, J.; Taylor, K.; Larson, L.; Erickson, J.; McBride, C. Finding the optimal dose of vitamin D following Roux-en-Y gastric bypass: A prospective, randomized pilot clinical trial. Obes. Surg., 2009, 19(2), 173-179.
[88]
Sakhaee, K.; Pak, C. Superior calcium bioavailability of effervescent potassium calcium citrate over tablet formulation of calcium citrate after Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis., 2013, 9(5), 743-748.
[89]
Lanzarini, E.; Nogues, X.; Goday, A.; Benaiges, D.; de Ramon, M.; Villatoro, M.; Pera, M.; Grande, L.; Ramon, J.M. High-dose vitamin d supplementation is necessary after bariatric surgery: A prospective 2-year follow-up study. Obes. Surg., 2015, 25(9), 1633-1638.
[90]
Youssef, Y.; Richards, W.O.; Sekhar, N.; Kaiser, J.; Spagnoli, A.; Abumrad, N.; Torquati, A. Risk of secondary hyperparathyroidism after laparoscopic gastric bypass surgery in obese women. Surg. Endosc., 2007, 21(8), 1393-1396.
[91]
Alexandrou, A.; Armeni, E.; Kaparos, G.; Rizos, D.; Tsoka, E.; Deligeoroglou, E.; Creatsa, M.; Augoulea, A.; Diamantis, T.; Lambrinoudaki, I. BSM1 vitamin D receptor polymorphism and calcium homeostasis following bariatric surgery. J. Invest. Surg., 2015, 28(1), 8-17.
[92]
DeLuca, H.F. Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutr., 2004, 80(6)(Suppl.), 1689s-1696s.
[93]
Heaney, R.P.; Horst, R.L.; Cullen, D.M.; Armas, L.A. Vitamin D3 distribution and status in the body. J. Am. Coll. Nutr., 2009, 28(3), 252-256.
[94]
Roust, L.R.; DiBaise, J.K. Nutrient deficiencies prior to bariatric surgery. Curr. Opin. Clin. Nutr. Metab. Care, 2017, 20(2), 138-144.
[95]
Gudzune, M.; Chang, H.Y.; Asamoah, V.; Gadgil, M.K.A.; Huizinga, M.; Clark, J.M. Screening and diagnosis of micronutrient deficiencies before and after bariatric surgery. Obes. Surg., 2013, 23(10), 1581-1589.
[96]
Schiavo, L.; Scalera, G.; Pilone, V.; De Sena, G.; Capuozzo, V.; Barbarisi, A. Micronutrient deficiencies in patients candidate for bariatric surgery: A prospective, preoperative trial of screening, diagnosis, and treatment. Int. J. Vitam. Nutr. Res., 2016, 10(5-6), 1-8.
[97]
Cura Global Health Inc., ASPIRON™ NATURAL KOJI IRON. http://www.curaglobalhealth.com/aspiron-natural-koji-iron.aspx (Accessed February 21, 2017).
[98]
Reddy, M. Aspiron and ferrous sulfate - stable isotope study in humans. Iowa State University: Unpublished. 2016.
[99]
Brody, F.; Flood, M.; Richards, N.G.; Vaziri, K.; Garey, C.; LeBrun, C. A novel single agent for nutritional supplementation following Roux-en-Y gastric bypass. J. Laparoendosc. Adv. Surg. Tech., 2013, 23(7), 596-600.
[100]
Levinson, R.; Silverman, J.B.; Catella, J.G.; Rybak, I.; Jolin, H.; Isom, K. Pharmacotherapy prevention and management of nutritional deficiencies post Roux-en-Y gastric bypass. Obes. Surg., 2013, 23(7), 992-1000.
[101]
Miller, A.D.; Smith, K.M. Medication and nutrient administration considerations after bariatric surgery. Am. J. Health Syst. Pharm., 2006, 6(19), 1852.
[102]
Geraldo, M.S.; Fonseca, F.L.; Gouveia, M.R.; Feder, D. The use of drugs in patients who have undergone bariatric surgery. Int. J. Gen. Med., 2014, 7, 219-224.
[103]
Haslam, D.W. The Role of Primary Care in Bariatric Surgery In: Obesity, Bariatric and Metabolic Surgery: A Practical Guide;, Agrawal, Ed.; Springer International Publishing: Cham,. 2016, pp. 673-681.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 20
ISSUE: 3
Year: 2019
Page: [244 - 252]
Pages: 9
DOI: 10.2174/1389200219666181026160242
Price: $58

Article Metrics

PDF: 40
HTML: 6