Permeation Efficacy of a Transdermal Vehicle with Steroidal Hormones and Nonsteroidal Anti-inflammatory Agents as Model Drugs

Author(s): Laura A. Junqueira*, Hudson Polonini, Sharlene Loures, Nádia R.B. Raposo, Anderson O. Ferreira, Marcos Antônio F. Brandão.

Journal Name: Current Drug Delivery

Volume 16 , Issue 2 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Abstract:

Background: Transdermal delivery is an alternative route for the administration of drugs. However, it requires the development of vehicles that allow the drugs to cross the layers of the skin and reach the systemic circulation.

Objective: In this study, a new transdermal vehicle was evaluated using progesterone, estradiol, estradiol + estriol (Biest) and ketoprofen administered as model drugs.

Methods: To evaluate the ex vivo permeation of the drugs, the Franz vertical diffusion cell with human skin was used.

Results: After 24 h, the vehicle was able to deliver 18.32 µg/cm2 of progesterone and 92.07 µg/cm2 of ketoprofen through the skin to the receptor medium. The permeation percentages were 91%, 78.8%, 48.5%, 73.2%, and 63.6%, respectively, for estradiol, estradiol (Biest), estriol (Biest), progesterone and ketoprofen. For all drugs, sufficient amounts were delivered to achieve a systemic effect, and it was also possible to decrease the amount of emulsion applied.

Conclusion: Thus, the vehicle demonstrated a high performance and the possibility of it being used for drugs that present difficulties in regards to administration by the transdermal route.

Keywords: Transdermal vehicle, ex vivo permeation, progesterone, estriol, estradiol, ketoprofen.

[1]
Cobo, A.; Sheybani, R.; Meng, E. MEMS: Enabled drug delivery systems. Adv. Healthc. Mater., 2015, 4(7), 969-982.
[2]
Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S.K. Drug delivery systems: An updated review. Int. J. Pharm. Investig., 2012, 2(1), 2-11.
[3]
Mathias, N.R.; Hussain, M.A. Non-invasive systemic drug delivery: Developability considerations for alternate routes of administration. J. Pharm. Sci., 2010, 99(1), 1-20.
[4]
Ye, D.; Zhang, X.; Yue, Y.; Raliya, R.; Biswas, P.; Taylor, S.; Tai, Y.C.; Rubin, J.B.; Liu, Y.; Chen, H. Focused ultrasound combined with microbubble-mediated intranasal delivery of gold nanoclusters to the brain. J. Control. Release, 2018, 286, 145-153.
[5]
Robinson, A.; Wermeling, D.P. Intranasal naloxone administration for treatment of opioid overdose. Am. J. Health Syst. Pharm., 2014, 71(24), 2129-2135.
[6]
Lai, K.L.; Fang, Y.; Han, H.; Li, Q.; Zhang, S.; Li, H.Y.; Chow, S.F.; Lam, T.N.; Lee, W.Y.T. Orally-dissolving film for sublingual and buccal delivery of ropinirole. Colloids Surf. B Biointerfaces, 2018, 163, 9-18.
[7]
Song, Q.; Shen, C.; Shen, B.; Lian, W.; Liu, X.; Daia, B.; Yuan, H. Development of a fast dissolving sublingual film containing meloxicam nanocrystals for enhanced dissolution and earlier absorption. J. Drug Deliv. Sci. Technol., 2018, 43, 243-252.
[8]
Lane, M.E. The transdermal delivery of fentanyl. Eur. J. Pharm. Biopharm., 2013, 84(3), 449-455.
[9]
Jung, E.; Kang, Y.P.; Yoon, I.S.; Kim, J.S.; Kwon, S.W.; Chung, S.J.; Shim, C.K.; Kim, D.D. Effect of permeation enhancers on transdermal delivery of fluoxetine: In vitro and in vivo evaluation. Int. J. Pharm., 2013, 456(2), 362-369.
[10]
Hu, Q.; Chen, Q.; Gu, Z. Advances in transformable drug delivery systems. Biomaterials, 2018, 178, 546-558.
[11]
Matoba, T.; Egashira, K. Nanoparticle-mediated drug delivery system for cardiovascular disease. Int. Heart J., 2014, 55(4), 281-286.
[12]
Jin, X.; Zhou, B.; Xue, L.; San, W. Soluplus(®) micelles as a potential drug delivery system for reversal of resistant tumor. Biomed. Pharmacother., 2015, 69, 388-395.
[13]
Campani, V.; Marchese, D.; Pitaro, M.T.; Pitaro, M.; Grieco, P.; De Rosa, G. Development of a liposome-based formulation for vitamin K1 nebulization on the skin. Int. J. Nanomedicine, 2014, 9, 1823-1832.
[14]
Nomani, A.; Nosrati, H.; Manjili, H.K.; Khesalpour, L.; Danafar, H. Preparation and characterization of copolymeric polymersomes for protein delivery. Drug Res., 2017, 67(8), 458-465.
[15]
Nosrati, H.; Adinehvand, R.; Manjili, H.K.; Rostamizadeh, K.; Danafar, H. Synthesis, characterization, and kinetic release study of methotrexate loaded mPEG-PCL polymersomes for inhibition of MCF-7 breast cancer cell line. Pharm. Dev. Technol., 2018, 18, 1-10.
[16]
Rostamizadeh, K.; Manafi, M.; Nosrati, H.; Manjilia, H.K.; Danafar, H. Methotrexate-conjugated mPEG-PCL copolymers: A novel approach for dual triggered drug delivery. New J. Chem., 2018, 42, 5937-5945.
[17]
Salehiabar, M.; Nosrati, H.; Javani, E.; Aliakbarzadeh, F.; Manjili, H.K.; Davaran, S.; Danafar, H. Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. Int. J. Biol. Macromol., 2018, 115, 83-89.
[18]
Nosrati, H.; Sefidi, N.; Sharafi, A.; Danafar, H.; Manjili, H.K. Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg. Chem., 2018, 76, 501-509.
[19]
Nosrati, H.; Salehiabar, M.; Manjili, H.K.; Danafar, H.; Davaran, S. Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications. Int. J. Biol. Macromol., 2018, 108, 909-915.
[20]
Nosrati, H.; Adibtabar, M.; Sharafi, A.; Danafar, H.; Manjili, H.K. PAMAM-modified citric acid-coated magnetic nanoparticles as pH sensitive biocompatible carrier against human breast cancer cells. Drug Dev. Ind. Pharm., 2018, 44(8), 1377-1384.
[21]
Nosrati, H.; Salehiabar, M.; Davaran, S.; Ramazani, A.; Manjili, H.K.; Danafar, H. New advances strategies for surface functionalizationof iron oxide magnetic nano particles (IONPs). Res. Chem. Intermed., 2017, 43(12), 7423-7442.
[22]
Nosrati, H.; Mojtahedi, A.; Danafar, H.; Manjili, H.K. Enzymatic stimuli-responsive methotrexate-conjugated magnetic nanoparticles for target delivery to breast cancer cells and release study in lysosomal condition. J. Biomed. Mater. Res. A, 2018, 106(6), 1646-1654.
[23]
Nosrati, H.; Salehiabar, M.; Davaran, S.; Danafar, H.; Manjili, H.K. Methotrexate-conjugated L-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells. Drug Dev. Ind. Pharm., 2017, 27, 1-9.
[24]
Nosrati, H.; Rashidi, N.; Danafar, H.; Manjili, H.K. Anticancer activity of tamoxifen loaded tyrosine decorated biocompatible Fe3O4 magnetic nanoparticles against breast cancer cell lines. J. Inorg. Organomet. Polym. Mater., 2017, 28(3), 1178-1186.
[25]
Salehiabar, M.; Nosrati, H.; Davaran, S.; Danafar, H.; Manjili, H.K. Facile synthesis and characterization of l-aspartic acid coated iron oxide magnetic nanoparticles (IONPs) for biomedical applications. Drug Res., 2018, 68(5), 280-285.
[26]
Alexander, A.; Dwivedi, S. Ajazuddin.; Giri, T.K.; Saraf, S.; Saraf, S.; Tripathi, D.K. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J. Control. Realease, 2012, 164, 26-40.
[27]
Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol., 2008, 26(11), 1261-1268.
[28]
Wiedersberg, S.; Guy, R.H. Transdermal drug delivery: 30 + years of war and still fighting! J. Control. Releas, 2014, 190, 150-156.
[29]
Lane, M.E.; Woods, R.A. Skin penetration enhancers. Int. J. Pharm., 2013, 447, 12-21.
[30]
Lunter, D.; Daniels, R. Confocal Raman microscopic investigation of the effectiveness of penetration enhancers for procaine delivery to the skin. J. Biomed. Opt., 2014, 19(12), 126015.
[31]
Polonini, H.C.; Soldati, P.P.; Oliveira, M.A.; Brandão, M.A.; Chaves, M.G.; Raposo, N.R. Transdermal formulation containing human sexual steroids: Development and validation of methods and in vitro drug release. Quim. Nova, 2014, 37(4), 720-727.
[32]
Bourdon, F.; Lecoeur, M.; Leconte, L.; Ultré, V.; Kouach, M.; Odou, P.; Vaccher, C.; Foulon, C. Evaluation of Pentravan®, Pentravan® Plus, Phytobase®, Lipovan® and Pluronic Lecithin Organogel for the transdermal administration of antiemetic drugs to treat chemotherapy-induced nausea and vomiting at the hospital. Int. J. Pharm., 2016, 515, 774-787.
[33]
Carmona-Moran, C.A.; Zavgorodnya, O.; Penman, A.D.; Kharlampieva, E.; Bridges, Jr. , S.L.; Hergenrother, R.W.; Singh, J.A.; Wick, T.M. Development of gellan gum containing formulations for transdermal drug delivery: Component evaluation and controlled drug release using temperature responsive nanogels. Int. J. Pharm., 2016, 509, 465-476.
[34]
Polonini, H.C.; Brandão, M.A.; Ferreira, A.O.; Ramos, C.; Raposo, N.R. Evaluation of percutaneous absorption performance for human female sexual steroids into pentravan cream. Int. J. Pharm. Compd., 2014, 18(4), 332-340.
[35]
Silva, J.A.; A.C., Apolinário. A.C.; Souza, M.S.; Damasceno, B.P.; Medeiros, A.C. Administração cutânea de fármacos: Desafios e estratégias para o desenvolvimento de formulações transdérmicas. Rev. Cienc. Farm. Basica Apl., 2010, 31(3), 125-131.
[36]
Flaten, G.E.; Palac, Z.; Engesland, A.; Filipović-Grčić, J.; Vanić, Ž.; Škalko-Basnet, N. In vitro skin models as a tool in optimization of drug formulation. Eur. J. Pharm. Sci., 2015, 75, 10-24.
[37]
Planz, V.; Lehr, C.M.; Windbergs, M. In vitro models for evaluating safety and efficacy of novel technologies for skin drug delivery. J. Control. Release, 2016, 242, 89-104.
[38]
Pereira, R.O.; Silva, T.C.C.P.E.; Ferreira, A.O.; Brandão, M.A.F.; Raposo, N.R.B.; Polonini, H.C. Ex vivo skin permeation evaluation of an innovative transdermal vehicle using nimesulide and piroxicam as model drugs. Curr. Drug Deliv., 2017, 14, 516-520.
[39]
Polonini, H.C.; Bastos, C.A.; Oliveira, M.A.; Silva, C.G.; Collins, C.H.; Brandão, M.A.; Raposo, N.R. In vitro drug release and ex vivo percutaneous absorption of resveratrol cream using HPLC with zirconized silica stationary phase. J. Chromatogr. B., 2014, 947, 23-31.
[40]
Davis, R.; Batur, P.; Thacker, H.L. Risks and effectiveness of compounded bioidentical hormone therapy: A case series. J. Womens Health., 2014, 23(8), 642-648.
[41]
Rençber, S.; Karavana, S.Y.; Özyazici, M. Bioavailability file: Ketoprofen. FABAD J. Pharm. Sci., 2009, 34, 203-216.
[42]
Elgindy, N.A.; Mehanna, M.M.; Mohyeldin, S.M. Self-assembled nano-architecture liquid crystalline particles as a promising carrier for progesterone transdermal delivery. Int. J. Pharm., 2016, 501, 167-179.
[43]
Zhang, J.; Michniak-Kohn, B. Investigation of microemulsion microstructures and their relationship to transdermal permeation of model drugs: Ketoprofen, lidocaine, and caffeine. Int. J. Pharm., 2011, 421, 34-44.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 16
ISSUE: 2
Year: 2019
Page: [136 - 141]
Pages: 6
DOI: 10.2174/1567201815666181024141849

Article Metrics

PDF: 20
HTML: 4
PRC: 1