Anti-Pathogenic Efficacy and Molecular Targets of a Polyherbal Wound- Care Formulation (Herboheal) Against Staphylococcus aureus

Author(s): Pooja Patel, Chinmayi Joshi, Vijay Kothari*.

Journal Name: Infectious Disorders - Drug Targets
(Formerly Current Drug Targets - Infectious Disorders)

Volume 19 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: A polyherbal formulation (Herboheal) traditionally indicated for woundcare was investigated for its anti-virulence potential against the notorious pathogen Staphylococcus aureus.

Objective: This study aimed at evaluating anti-virulence potential of Herboheal formulation against S. aureus in vitro as well as in vivo, followed by studying its effect on target bacterium’s gene expression at the whole transcriptome level.

Methods: In vitro efficacy of the test formulation was evaluated using broth dilution assay, whereas in vivo efficacy was assayed employing the nematode Caenorhabditis elegans as the model host. Molecular targets of the test formulation in S. aureus were elucidated through whole transcriptome analysis.

Results: This formulation could exert inhibitory effect on bacterial growth and quorum sensingregulated pigment (staphyloxanthin) production at ≥ 0.025% v/v. It not only could inhibit S. aureus biofilm formation, but also eradicated pre-formed biofilm effectively. This formulation could modulate antibiotic susceptibility of S. aureus, enhanced its susceptibility to human serum heavily, while compromising its haemolytic potential. Herboheal-treated bacteria expressed notably lesser virulence towards the nematode worm Caenorhabditis elegans. Even repeated exposure of S. aureus to this polyherbal formulation did not give rise to resistant phenotype. Whole transcriptome analysis revealed genes associated with hemolysis, virulence, enzyme activity, transport, basic cellular processes, quorum sensing, and transcriptional regulators as the major targets of Herboheal in S. aureus.

Conclusion: This study validates the traditional use of Herboheal formulation in wound-care by demonstrating its efficacy against one of the pathogenic bacteria most commonly involved in wound infections.

Keywords: Wound healing, quorum sensing, Post Extract Effect (PEE), hemolysis, biofilm, transcriptome.

[1]
Gonzalez, A.C. de O.; Costa, T.F.; Andrade, Z. de A.; Medrado, A.R.A.P. Wound healing - A literature review. An. Bras. Dermatol., 2016, 91(5), 614-620.
[2]
Saadatian-Elahi, M.; Teyssou, R.; Vanhems, P. Staphylococcus aureus, the major pathogen in orthopaedic and cardiac surgical site infections: a literature review. Int. J. Surg., 2008, 6(3), 238-245.
[3]
Han, G.; Ceilley, R. Chronic wound healing: A review of current management and treatments. Adv. Ther., 2017, 34(3), 599-610.
[4]
Bowler, P.G.; Duerden, B.I.; Armstrong, D.G. Wound Microbiology and Associated Approaches to Wound Management. Clin. Microbiol. Rev., 2001, 14(2), 244-269.
[5]
Kim, M.; Christley, S.; Khodarev, N.N.; Fleming, I.; Huang, Y.; Chang, E.; Zaborina, O.; Alverdy, J. Pseudomonas aeruginosa wound infection involves activation of its iron acquisition system in response to fascial contact. J. Trauma Acute Care Surg., 2015, 78(4), 823.
[6]
Alebachew, T.; Yismaw, G.; Derabe, A.; Sisay, Z. Staphylococcus aureus burn wound infection among patients attending Yekatit 12 hospital burn unit, Addis Ababa, Ethiopia. Ethiop. J. Health Sci., 2012, 22(3), 209-213.
[7]
Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev., 2015, 28(3), 603-661.
[8]
] Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organization Report. 2017.http://www.who.int/medicines/publi-cations/global-priority-list-antibiotic-resistant-bacteria/en/
[10]
Shankar, R.; Lavekar, G.S.; Deb, S.; Sharma, B.K. Traditional healing practice and folk medicines used by Mishing community of North East India. J. Ayurveda Integr. Med., 2012, 3(3), 124-129.
[11]
Bonar, E.; Międzobrodzki, J.; Władyka, B. 2018 The Staphylococcal Coagulases. In Pet-To-Man Travelling Staphylococci, , 2018; pp. 95-102.
[12]
Queck, S.Y.; Jameson-Lee, M.; Villaruz, A.E.; Bach, T.H.L.; Khan, B.A.; Sturdevant, D.E.; Ricklefs, S.M.; Li, M.; Otto, M. RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol. Cell, 2008, 32(1), 150-158.
[13]
Jorgensen, J.and ; Turnidge, J. Susceptibility test methods: Dilution and disk diffusion methods.In: Murray PR(ed); Manual of clinical microbiology.8th edition. NewYork: ASM Internationa. , 2003, pp. 1108-1127.
[14]
Kamal, A.A.M.; Maurer, C.K.; Allegretta, G.; Haupenthal, J.; Empting, M.; Hartmann, R.W. Quorum Sensing Inhibitors as Pathoblockers for Pseudomonas aeruginosa Infections: A New Concept in Anti-Infective Drug Discovery. In: Fisher J., Mobashery S., Miller M. (eds) Antibacterials. Topics in Medicinal Chemistry, , 2017. , 26. Springer, Cham
[15]
Patel, P.; Joshi, C.; Palep, H.; Kothari, V. Anti-infective potential of a quorum modulatory polyherbal extract (Panchvalkal) against certain pathogenic bacteria. Accepted manuscript. J. Ayurveda Integr. Med., 2017.
[16]
Miklasińska, M.; Kępa, M.; Wojtyczka, R.; Idzik, D.; Dziedzic, A.; Wąsik, T. Catechin hydrate augments the antibacterial action of selected antibiotics against Staphylococcus aureus clinical strains. Molecules, 2016, 21(2), 244.
[17]
Joshi, C.; Kothari, V.; Patel, P. Importance of selecting appropriate wavelength, while quantifying growth and production of quorum sensing regulated pigments in bacteria. Recent Pat. Biotechnol., 2016, 10, 145-152.
[18]
Song, Y.; Liu, C.; Lin, F.Y.; No, J.H.; Hensler, M.; Liu, Y.; Jeng, W.; Low, J.; Liu, G.Y.; Nizet, V.; Wang, A.; Oldfield, E. Inhibition of Staphyloxanthin virulence factor biosynthesis in Staphylococcus aureus: In vitro, in vivo, and crystallographic results. J. Med. Chem., 2009, 52(13), 3869-3880.
[19]
Neun, B.W.; Ilinskaya, A.N.; Dobrovolskaia, M.A. Analysis of hemolytic properties of nanoparticles. NCL method ITA-1 Version 1.2; Nanotechnology Characterization Laboratory: Frederick, MD, 2015.
[20]
Ferro, T.A.; Araujo, J.M. dos Satos Pinto. B.L.; dos Santos, J.S.; Souza, E.B.; da Silva, B.L.; Colares V.L.P.; Novais M.G.; Filho M. B.; Struve, C.; Calixto, B.; Monteiro-Neto V.; da Silva, C. N.; Fernandes, S. Cinnamaldehyde inhibits Staphylococcus aureus virulence factors and protects against infection in a Galleria mellonella model. Front. Microbiol., 2016, 7, 2052.
[21]
Iwase, T.; Tajima, A.; Sugimoto, S.; Okuda, K.I.; Hironaka, I.; Kamata, Y.; Takada, K.; Mizunoe, Y. A simple assay for measuring catalase activity: a visual approach. Sci. Rep., 2013, 3, 3081.
[22]
Weydert, C.J.; Cullen, J.J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc., 2009, 5(1), 51-66.
[23]
Patel, I.; Patel, V.; Thakkar, A.; Kothari, V. Tamarindus indica (Cesalpiniaceae), and Syzygium cumini (Myrtaceae) seed extracts can kill multidrug resistant Streptococcus mutans in Biofilm. J. Nat. Rem., 2013, 13, 81-94.
[24]
Trafny, E.A.; Lewandowski, R.; Zawistowska-Marciniak, I.; Stępińska, M. Use of MTT assay for determination of the biofilm formation capacity of microorganisms in metal working fluids. World J. Microbiol. Biotechnol., 2013, 29, 1635-1643.
[25]
Hui, Y.W.; Dykes, G.A. Modulation of cell surface hydrophobicity and attachment of bacteria to abiotic surfaces and shrimp by Malaysian herb extracts. J. Food Prot., 2012, 75(8), 1507-1511.
[26]
Eng, S.A.; Nathan, S. Curcumin rescues Caenorhabditis elegans from a Burkholderia pseudomallei infection. Front. Microbiol., 2015, 6, Article 290.
[27]
Kenny, J.G.; Ward, D.; Josefsson, E.; Jonsson, M.; Hinds, J.; Rees, H.H.; Lindsay, J.A.; Tarkowski, A.; Horsburgh, M.J. The Staphylococcus aureus response to unsaturated long chain free fatty acids: survival mechanisms and virulence implications. PLoS One, 2009, 4(2)e4344
[28]
Costa, M.O.; Beltrame, C.O.; Ferreira, F.A.; Botelho, A.M.; Lima, N.C.; Souza, R.C.; de Almeida, L.G.P.; Vasconcelos, A.R.; Nicolás, M.F. SáFigueiredo A.M. Complete genome Sequence of a variant of the methicillin-resistant Staphylococcus aureus ST239 lineage, Strain BMB9393, displaying superior ability to accumulate ica-independent biofilm. Genome Announc., 2013, 1(4), e00576-e00613.
[29]
Sakai, K.; Koyama, N.; Fukuda, T.; Mori, Y.; Onaka, H.; Tomoda, H. Search method for inhibitors of staphyloxanthin production by methicillin-resistant Staphylococcus aureus. Biol. Pharm. Bull., 2012, 35(1), 48-53.
[30]
Yarwood, J.M.; Schlievert, P.M. Quorum sensing in Staphylococcus infections. J. Clin. Invest., 2003, 112(11), 1620-1625.
[31]
Lather, P.; Mohanty, A.K.; Jha, P.; Garsa, A.K. Contribution of cell surface hydrophobicity in the resistance of Staphylococcus aureus against antimicrobial agents. Biochem. Res. Int., 2016, 1-5.
[32]
Clarke, S.R.; Mohamed, R.; Bian, L.; Routh, A.F.; Kokai-Kun, J.F.; Mond, J.J.; Tarkowski, A.; Foster, S.J. The Staphylococcus aureus surface protein IsdA mediates resistance to innate defenses of human skin. Cell Host Microbe, 2007, 1(3), 199-212.
[33]
Dufour, M.; Manson, J.M.; Bremer, P.J.J.; Dufour, P.; Cook, G.M.; Simmonds, R.S. Characterization of monolaurin resistance in Enterococcus faecalis. Appl. Environ. Microbiol., 2007, 73, 5507-5515.
[34]
Torres, S.; Pandey, A.; Castro, G. Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials. Biotechnol. Adv., 2011, 29, 442-452.
[35]
Krasowska, A.; Sigler, K. How microorganisms use hydrophobicity and what does this mean for human needs? Front. Cell. Infect. Microbiol., 2014, 19(4), 2-7.
[36]
Morath, S. Structure/function relationships of lipoteichoicacids. J. Innate Immun., 2005, 11, 348-356.
[37]
Xia, G.; Kohler, T.; Peschel, A. The wall teichoicacid and lipoteichoic acid polymers of Staphylococcus aureus. Int. J. Med. Microbiol., 2010, 300, 148-154.
[38]
Singh, R.; Ray, P. Quorum sensing-mediated regulation of staphylococcal virulence and antibiotic resistance. Future Microbiol., 2014, 9(5), 669-681.
[39]
Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.; Wertheim, H.F.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; Greko, C. Antibiotic resistance—the need for global solutions. Lancet Infect. Dis., 2013, 13(12), 1057-1098.
[40]
Watanakunakorn, C.; Glotzbecker, C. Comparative susceptibility of Haemophilus species to cefaclor, cefamandole, and five other cephalosporins and ampicillin, chloramphenicol, and tetracycline. Antimicrob. Agents Chemother., 1979, 15(6), 836-838.
[41]
Yin, S.; Jiang, B.; Huang, G.; Gong, Y.; You, B.; Yang, Z.; Chen, Y.; Chen, J.; Yuan, Z.; Li, M.; Hu, F. Burn Serum Increases Staphylococcus aureus Biofilm Formation via Oxidative Stress. Front. Microbiol., 2017, 8, 1191.
[42]
Golebiewska, E.M.; Poole, A.W. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev., 2015, 29(3), 153-162.
[43]
Arciola, C.R.; Campoccia, D.; Montanaro, L. Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol., 2018.
[http://dx.doi.org/10.1038/s41579-018-0019-y]
[44]
Mirzaee, M.; Najar-Peerayeh, S.; Behmanesh, M. Prevalence of fibronectin-binding protein (FnbA and FnbB) genes among clinical isolates of methicillin resistant Staphylococcus aureus. Mol. Gen. Microbiol. Virol., 2015, 30(4), 221-224.
[45]
Bronner, S.; Monteil, H.and ; Prévost, G. 2004 Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol. Rev., 2004, 28(2), 183-200.
[46]
Bronner, S.; Jehl, F.; Peter, J.D.; Ploy, M.C.; Renault, C.; Arvis, P.; Monteil, H.; Prevost, G. Moxifloxacin efficacy and vitreous penetration in a rabbit model of Staphylococcus aureus endophthalmitis and effect on gene expression of leucotoxins and virulence regulator factors. Antimicrob. Agents Chemother., 2003, 47(5), 1621-1629.
[47]
Schmidt, K.A.; Manna, A.C.; Gill, S.; Cheung, A.L. SarT, a Repressor of α-Hemolysin in Staphylococcus aureus. Infect. Immun., 2001, 69(8), 4749-4758.
[48]
Dale, S.E.; Sebulsky, M.T.; Heinrichs, D.E. Involvement of SirABC in iron-siderophore import in Staphylococcus aureus. J. Bacteriol., 2004, 186(24), 8356-8362.
[49]
Speziali, C.D.; Dale, S.E.; Henderson, J.A.; Vinés, E.D.; Heinrichs, D.E. Requirement of Staphylococcus aureus ATP-binding cassette-ATPase FhuC for iron-restricted growth and evidence that it functions with more than one iron transporter. J. Bacteriol., 2006, 188(6), 2048-2055.
[50]
Hammer, N.D.; Skaar, E.P. Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu. Rev. Microbiol., 2011, 65, 129-147.
[51]
Singh, M.; Singh, A.; Sharma, A. Production and applications of an N-terminally-truncated recombinant beta-haemolysin from Staphylococcus aureus. Biologicals, 2014, 42(4), 191-198.
[52]
Berube, B.J.; Wardenburg, J.B. Staphylococcus aureus α-toxin: nearly a century of intrigue.Toxins 2013, 5(6), 1140-1166.
[53]
Balasubramanian, D.; Ohneck, E.A.; Chapman, J.; Weiss, A.; Kim, M.K.; Reyes-Robles, T.; Zhong, J.; Shaw, L.N.; Lun, D.S.; Ueberheide, B.; Shopsin, B. Staphylococcus aureus coordinates leukocidin expression and pathogenesis by sensing metabolic fluxes via RpiRc. MBio, 2017, 7(3), e00818-e16.
[54]
Schmidt, K.A.; Manna, A.C.; Cheung, A.L. SarT influences sarS expression in Staphylococcus aureus. Infect. Immun., 2003, 71(9), 5139-5148.
[55]
Tuchscherr, L.; Bischoff, M.; Lattar, S.M.; Llana, M.N.; Pförtner, H.; Niemann, S.; Geraci, J.; Van de Vyver, H.; Fraunholz, M.J.; Cheung, A.L.; Herrmann, M. Sigma factor SigB is crucial to mediate Staphylococcus aureus adaptation during chronic infections. PLoS Pathog., 2015, 11(4)e1004870
[56]
Gaupp, R.; Ledala, N.; Somerville, G.A. Staphylococcal response to oxidative stress. Front. Cell. Infect. Microbiol., 2012, 2, 1-19.
[57]
vanSchaik, W.; Abee, T. The role of σB in the stress response of Gram-positive bacteria–targets for food preservation and safety. Curr. Opin. Biotechnol., 2005, 16(2), 218-224.
[58]
Domenech, P.; Reed, M.B.; Barry, C.E. Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect. Immun., 2005, 73(6), 3492-3501.
[59]
Ates, O. Systems biology of microbial exopolysaccharides production. Front. Bioeng. Biotechnol., 2015, 3, 200.
[60]
Cussiol, JR; Alegria, TG; Szweda, LI; Netto, LE Ohr (organic hydroperoxide resistance protein) possesses a previously undescribed activity: Lipoyl-dependent peroxidase. J. Biol. Chem. 2010. jbc- M110.
[61]
Bui, L.M.G. Staphylococcus aureus: stress response and its roles in pathogenesis. PhD Thesis, The university of Adelaide: Australia, July 2015.
[62]
Byun, Y. Thymidine kinase as a molecular target for the development of novel anticancer and antibiotic agents., Doctoral dissertation, The Ohio State University. 2006.
[63]
Saito, H.; Tomioka, H.; Ohkido, S. Further studies on thymidine kinase: distribution pattern of the enzyme in bacteria. Microbiol, 1985, 131(11), 3091-3098.
[64]
Ibarra, J.A.; Pérez-Rueda, E.; Carroll, R.K.; Shaw, L.N. Global analysis of transcriptional regulators in Staphylococcus aureus. BMC Genomics, 2013, 14(1), 1-12.
[65]
Mainiero, M.; Goerke, C.; Geiger, T.; Gonser, C.; Herbert, S.; Wolz, C. Differential target gene activation by the Staphylococcus aureus two-component system saeRS. J. Bacteriol., 2010, 192(3), 613-623.
[66]
Geiger, T.; Goerke, C.; Mainiero, M.; Kraus, D.; Wolz, C. The virulence regulator Sae of Staphylococcus aureus: promoter activities and response to phagocytosis-related signals. J. Bacteriol., 2008, 190(10), 3419-3428.
[67]
Konieczna, I.; Zarnowiec, P.; Kwinkowski, M.; Kolesinska, B.; Fraczyk, J.; Kaminski, Z.; Kaca, W. Bacterial urease and its role in long-lasting human diseases. Curr. Protein Pept. Sci., 2012, 13(8), 789-806.
[68]
Bore, E.; Langsrud, S.; Langsrud, Ø.; Rode, T.M.; Holck, A. Acid-shock responses in Staphylococcus aureus investigated by global gene expression analysis. Microbiol, 2007, 153(7), 2289-2303.
[69]
Hiron, A.; Borezée-Durant, E.; Piard, J.C.; Juillard, V. Only one of four oligopeptide transport systems mediates nitrogen nutrition in Staphylococcus aureus. J. Bacteriol., 2007, 189(14), 5119-5129.
[70]
McCarty, S.M.; Percival, S.L. Proteases and delayed wound healing., Adv. Wound Care. 2013, 2(8), 438-447.
[71]
Girish, T.S.; Navratna, V.; Gopal, B. Structure and nucleotide specificity of Staphylococcus aureus dihydrodipicolinate reductase (DapB). FEBS Lett., 2011, 585(16), 2561-2567.
[72]
Hazenbos, W.L.; Skippington, E.; Tan, M. Staphylococcus aureus type I signal peptidase: essential or not essential, that’s the question. Microb. Cell, 2017, 4(4), 108.
[73]
Frykberg, R.G.; Banks, J. Challenges in the Treatment of Chronic Wounds. Adv. Wound. Care.,. 2015, 4(9), 560-582.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 2
Year: 2019
Page: [193 - 206]
Pages: 14
DOI: 10.2174/1871526518666181022112552

Article Metrics

PDF: 21
HTML: 5
EPUB: 1
PRC: 1