A Novel Non-invasive Effective Method for Potential Treatment of Degenerative Disc Disease: A Hypothesis

Author(s): Siva G. Somasundaram , Cristian Muresanu , Pamela Schield , Alfiya Makhmutovа , Elena V. Bovina , Vladimir P. Fisenko , Nusrat F. Hasanov , Gjumrakch Aliev* .

Journal Name: Central Nervous System Agents in Medicinal Chemistry

Volume 19 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The pathophysiology of the intervertebral discs plays a significant role in the people’s life quality. There is not adequate research done in the pathogenesis and treatment of intervertebral disc degeneration. Alternately, self-educated physiology offers a novel and noninvasive method to reverse the degenerated discs. In this single case study, report attempts have been made to highlight the effect of the self-educative physiology, on magnetic resonance imaging investigations, of progressive healing, on the degenerated intervertebral discs. Based on this novel method, an effort has been made to review literature on the degeneration of intervertebral discs and available mode of treatments and then to propose a hypothesis for the biochemical mechanisms of healing. The idea is that transforming growth factor-β1 from seminal plasma secretions may contribute to releasing the osteogenic protein- 1 which induces nucleus pulposus and annulus fibrosus cells in intervertebral discs for repairs. In addition, the patient’s medical history is presented with background information.

Keywords: Biological transformations, biology, genome, intervertebral disc degeneration, mitochondria, neurology, seminal secretions.

[1]
American Association of Neurological Surgeons (AANS) / Congress of Neurological Surgeons (CNS). Available from: http://wwwp.medtronic.com/Newsroom/LinkedItemDetails.do?itemId=1169645431867&itemType=fact_sheet&lang=en_IN (Accessed on August 22, 2018)
[2]
WebMD Medical (Journal Online). Available from. http://www.webmd.com/back-pain/guide/understanding-spinal-disk-problems-basic-information?page=2 (Accessed on August 22,2018).
[3]
Dagenais, S.; Caro, J.; Haldeman, S. A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J., 2008, 8(1), 8-20.
[4]
Annunen, S.; Paassilta, P.; Lohiniva, J.; Perälä, M.; Pihlajamaa, T.; Karppinen, J.; Tervonen, O.; Kröger, H.; Lähde, S.; Vanharanta, H.; Ryhänen, L.; Göring, H.H.; Ott, J.; Prockop, D.J.; Ala-Kokko, L. An allele of COL9A2 associated with intervertebral disc disease. Science, 1999, 285(5426), 409-412.
[5]
Kalichman, L.; Hunter, D.J. The genetics of intervertebral disc degeneration. Associated genes. Joint Bone Spine, 2008, 75(4), 388-396.
[6]
Le Maitre, C.L.; Freemont, A.J.; Hoyland, J.A. The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res. Ther., 2005, 7(4), 732-745.
[7]
Zhu, Z.; Huang, P.; Chong, Y.; George, S.K.; Wen, B.; Han, N.; Liu, Z.; Kang, L.; Lin, N. Nucleus pulposus cells derived IGF-1 and MCP-1 enhance osteoclastogenesis and vertebrae disruption in lumbar disc herniation. Int. J. Clin. Exp. Pathol., 2014, 7(12), 8520-8531.
[8]
Gruber, H.E.; Watts, J.A.; Riley, F.E.; Fulkerson, M.B.; Norton, H.J.; Hanley, E.N., Jr Mitochondrial bioenergetics, mass, and morphology are altered in cells of the degenerating human annulus. J. Orthop. Res., 2013, 31(8), 1270-1275.
[9]
Madiraju, P.; Gawri, R.; Wang, H.; Antoniou, J.; Mwale, F. Mechanism of parathyroid hormone-mediated suppression of calcification markers in human intervertebral disc cells. Eur. Cell. Mater., 2013, 25, 268-283.
[10]
Chencheng, F.; Huan, L.; Minghui, Y.; Yang, Z.; Bo, H.; Yue, Z. Disc cell senescence in intervertebral disc degeneration: Causes and molecular pathways. Cell Cycle, 2016, 15(13), 1674-1684.
[11]
Le Maitre, C.L.; Freemont, A.J.; Hoyland, J.A. Accelerated cellular senescence in degenerate intervertebral discs: A possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res. Ther., 2007, 9(3), R45.
[12]
van den Akker, G.G.; Surtel, D.A.; Cremers, A.; Richardson, S.M.; Hoyland, J.A.; van Rhijn, L.W.; Voncken, J.W.; Welting, T.J. Novel immortal cell lines support cellular heterogeneity in the human annulus fibrosus. PLoS One, 2016, 11(1), e0144497.
[13]
Bibby, S.R.S.; Urban, J.P.G. Effect of nutrient deprivation on the viability of intervertebral disc cells. Eur. Spine J., 2004, 13(8), 695-701.
[14]
Bibby, S.R.S.; Jones, D.A.; Ripley, R.M.; Urban, J.P.G. Metabolism of the intervertebral disc: Effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells. Spine J., 2005, 30(5), 487-496.
[15]
Ohshima, H.; Urban, J.P. The effect of lactate and pH on proteoglycan and protein synthesis rates in the intervertebral disc. Spine J., 1992, 17(9), 1079-1082.
[16]
Ishihara, H.; Urban, J.P. Effects of low oxygen concentrations and metabolic inhibitors on proteoglycan and protein synthesis rates in the intervertebral disc. J. Orthop. Res., 1999, 17(6), 829-835.
[17]
Wieland, L.S.; Skoetz, N.; Pilkington, K.; Vempati, R.; D’Adamo, C.R.; Berman, B.M. Yoga treatment for chronic non-specific low back pain. Cochrane Database Syst. Rev., 2017, 12(1), CD010671.
[18]
Smith, J.A.; Greer, T.; Sheets, T.; Watson, S. Is there more to yoga than exercise? Altern. Ther. Health Med., 2011, 17(3), 22-29.
[19]
Rocha, K.K.; Ribeiro, A.M.; Rocha, K.C.; Sousa, M.B.; Albuquerque, F.S.; Ribeiro, S.; Silva, R.H. Improvement in physiological and psychological parameters after 6 months of yoga practice. Conscious. Cogn., 2012, 21(2), 843-850.
[20]
Woodyard, C. Exploring the therapeutic effects of yoga and its ability to increase quality of life. Int. J. Yoga, 2011, 4(2), 49-54.
[21]
Khan, S.I.; Hudson-Rodd, N.; Saggers, S.; Bhuiyan, M.I.; Bhuiya, A.; Karim, S.A.; Rauyajin, O. ‘Semen Contains Vitality and Heredity, Not Germs’: Seminal discourse in the AIDS Era. J. Health Popul. Nutr., 2006, 24(4), 426-437.
[22]
Herdt, G.H. In: Semen depletion and the Sense of Maleness., Herdt, G.H., Ed.; Sambia Sexual Culture. University of Chicago Press: Chicago. 1999, pp. 163-185.
[23]
Durgawati, D.; Rajeev, S.; Dwivedi, B.K. A critical review of concept of aging in Ayurveda. Ayurveda, 2010, 31(4), 516-519.
[24]
Rodríguez-Martínez, H.; Kvist, U.; Ernerudh, J.; Sanz, L.; Calvete, J.J. Seminal plasma proteins: What role do they play? Am. J. Reprod. Immunol., 2011, 66(1), 11-22.
[25]
Chaudhury, A.; Howe, P.H. The tale of transforming growth factor-beta (TGFbeta) signaling: a soigne enigma. IUBMB Life, 2009, 61, 929-939.
[26]
Shiying, L.; Xiaosong, G.; Sheng, Y. The regulatory effects of transforming growth factor-β on nerve regeneration. Cell Transplant., 2017, 26(3), 381-394.
[27]
Mustoe, T.A.; Pierce, G.F.; Morishima, C.; Deuel, T.F. Growth factor-induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model. J. Clin. Invest., 1991, 87(2), 694-703.
[28]
Pierce, G.F.; Mustoe, T.A.; Lingelbach, J.; Masakowski, V.R.; Griffin, G.; Senior, R.M.; Deuel, T.F. Platelet-derived growth factor and transforming growth factor-jB enhance tissue repair activities by unique mechanisms. J. Cell Biol., 1989, 109(1), 429-440.
[29]
Wahl, S.M.; McCartrey-Francis, N.; Mergenhagen, S.E. Inflammatory and immunomodulatory roles of TGF-ft. Immunol. Today, 1989, 10, 258-261.
[30]
Postlethwaite, A.E.; Keski-Oja, J.; Moses, H.L.; Kang, A.H. Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor-ES. J. Exp. Med., 1987, 165, 251-256.
[31]
van Obberghen-Schilling, E.; Roche, N.S.; Flanders, K.L.; Sporn, M.B.; Roberts, A.B. Transforming growth factor 0I positively regulates its own expression in normal and transformed cells. J. Biol. Chem., 1988, 263(16), 7741-7746.
[32]
Keski-Oja, J.; Raghow, R.; Sawdey, M.; Loskutoff, D.J.; Postlethwaite, A.E.; Kang, A.H.; Moses, H.L. Regulation of mRNAs for type-l plasminogen activator inhibitor, fibronectin and type I procollagen by transforming growth factor-β. J. Biol. Chem., 1988, 263(7), 3111-3115.
[33]
Abbott, R.D.; Purmessur, D.; Monsey, R.D.; Iatridis, J.C. Regenerative potential of TGFβ3 + Dex and notochordal cell conditioned media on degenerated human intervertebral disc cells. J. Orthop. Res., 2012, 30(3), 482-488.
[34]
Matta, A.; Karim, M.Z.; Isenman, D.E.; Erwin, W.M. Molecular therapy for degenerative disc disease: Clues from secretome analysis of the notochordal cell-rich nucleus pulposus. Sci. Rep., 2017, 7, 45623.
[35]
Takegami, K.; An, H.S.; Kumano, F.; Chiba, K.; Thonar, E.J.; Singh, K.; Masuda, K. Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC-induced in vitro chemonucleolysis. Spine J., 2005, 5(3), 231-238.
[36]
MacLellan, W.R.; Brand, T.; Schneider, M.D. Transforming Growth Factor-ß in Cardiac Ontogeny and Adaptation. Circ. Res., 1993, 73(5), 783-791.
[37]
Takegami, K.; An, H.S.; Kumano, F.; Chiba, K.; Thonar, E.J.; Singh, K.; Masuda, K. Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC-induced in vitro chemonucleolysis. Spine J., 2005, 5(3), 231-238.
[38]
Takegami, K.; Thonar, E.J.; An, H.S.; Kamada, H.; Masuda, K. Osteogenic protein-1 enhances matrix replenishment by intervertebral disc cells previously exposed to interleukin-1. Spine J., 2002, 27(12), 1318-1325.
[39]
Muresanu, C.; Somasundaram, S.G. Biological Transformations Controlled by the Mind., Vol. 1, AlphaGraphics Sugar Land: Texas. 2013, pp. 8-14; 95-96.
[40]
Muresanu, C. Mitochondria transfer for healing degenerated intervertebral discs by using male educated biological transformations. I.J.I.R.E.S., 2014, 1(2), 123-126.
[41]
Micromedex Consumer Medication Information. Chlorzoxazone (By mouth) Available form. https://www.ncbi.nlm.nih.gov/ pubmedhealth/PMHT0009589/?report=details 2018 (Accessed on August 22, 2018).
[42]
Bonaventure, C.; Nancey, S.; Pont, E.; Michalet, V.; Chevalier, M.; Vial, T.; Taieb, S.; Claudel, S.; Flourie, B.; Descos, L. Ketoprofen-induced acute hepatitis. Gastroenterol. Clin. Biol., 2001, 25(6-7), 716-717.
[43]
Rambaud, S.; Nores, J.M.; Rémy, J.M. Jaundice related to the ingestion of ketoprofen. Ann. Med. Interne., 1990, 141(3), 278.
[44]
González, E.; de la Cruz, C.; de Nicoläs, R.; Egido, J.; Herrero-Beaumont, G. Long-term effect of nonsteroidal anti-inflammatory drugs on the production of cytokines and other inflammatory mediators by blood cells of patients with osteoarthritis. Agents Actions, 1994, 41(3-4), 171-178.
[45]
Khan, S.I.; Hudson-Rodd, N.; Saggers, S.; Bhuiyan, M.I.; Bhuiya, A.; Karim, S.A.; Rauyajin, O. ‘Semen Contains Vitality and Heredity, Not Germs’: Seminal Discourse in the AIDS Era. J. Health Popul. Nutr., 2006, 24(4), 426-437.
[46]
Salvatierra, J.C.; Yuan, T.Y.; Fernando, H.; Castillo, A.; Gu, W.Y.; Cheung, H.S.; Huant, C.Y. Difference in energy metabolism of annulus fibrosus and nucleus pulposus cells of the intervertebral Disc. Cell. Mol. Bioeng., 2011, 4(2), 302-310.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 1
Year: 2019
Page: [8 - 14]
Pages: 7
DOI: 10.2174/1871524918666181017152053
Price: $58

Article Metrics

PDF: 87
HTML: 3