Chronic Myeloid Leukemia: Existing Therapeutic Options and Strategies to Overcome Drug Resistance

Author(s): Vivek Kumar Singh , Mohane Selvaraj Coumar* .

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 19 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Chronic myeloid leukemia (CML) is a myeloproliferative disease caused due to translocation between chromosome 9 and 22 leading to a chimeric gene product known as Bcr-Abl. Bcr-Abl fusion protein has constitutively activated Abl tyrosine kinase activity which is responsible for the uncontrolled proliferation in CML The tyrosine kinase inhibitors (TKIs) such as Imatinib, Dasatinib, and Nilotinib are the current first-line treatments approved by the United States Food and Drug Administration (US FDA) for the treatment of the disease. Despite the spectacular progress made over the decade with the TKIs, patients develop resistance to these TKIs. In such cases, stem cell transplant therapy, which is limited by donor availability, is the only proven cure for the patients. This highlights the need for the development of new strategies for CML treatment. The Bcr-Abl point mutations, including the gatekeeper T315I mutations, are the principal cause for the development of resistance to TKIs. However, other mechanisms are also involved in the failure of TKI therapy. This review outlines the Bcr-Abl dependent and independent mechanism of TKIs resistance development and the strategies used to overcome drug resistance, such as the development of ATP site and allosteric site inhibitors. Binding mode and structural elements of Bcr-Abl inhibition are discussed with emphasis on pathways involved in this complex disease to determine alternative strategies and combination therapies.

Keywords: ATP competitive inhibitor, allosteric inhibitor, Bcr-Abl, chronic myeloid leukaemia, drug resistance, T315I mutation, tyrosine kinase inhibitor.

[1]
Gerber, D.E. Targeted therapies: A New generation of cancer treatments. Am. Family . Physician, 2008, 77(3), 311-319.
[2]
Choueiri, T.K.; Escudier, B.; Powles, T.; Mainwaring, P.N.; Rini, B.I.; Donskov, F.; Hammers, H.; Hutson, T.E.; Lee, J-L.; Peltola, K.; Roth, B.J.; Bjarnason, G.A.; Géczi, L.; Keam, B.; Maroto, P.; Heng, D.Y.; Schmidinger, M.; Kantoff, P.W.; Borgman-Hagey, A.; Hessel, C.; Scheffold, C.; Schwab, G.M.; Tannir, N.M.; Motzer, R.J. METEOR Investigators. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med., 2015, 373(19), 1814-1823.
[3]
Dervisis, N.; Klahn, S. Therapeutic innovations: Tyrosine kinase inhibitors in cancer. Vet. Sci., 2016, 3(1), 4.
[4]
Baudino, T.A. Targeted Cancer Therapy: The Next Generation of Cancer Treatment. Curr. Drug Discov. Technol., 2015, 12(1), 3-20.
[5]
Lugo, T.G.; Pendergast, A-M.; Muller, A.J.; Witte, O.N. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science, 1990, 247(4946), 1079-1082.
[6]
Bartram, C.R.; de Klein, A.; Hagemeijer, A.; van Agthoven, T.; van Kessel, A.G.; Bootsma, D.; Grosveld, G.; Ferguson-Smith, M.A.; Davies, T.; Stone, M. Translocation of C-Abl oncogene correlates with the presence of a philadelphia chromosome in chronic myelocytic leukaemia. Nature, 1983, 306(5940), 277-280.
[7]
Rowley, J.D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and giemsa staining. Nature, 1973, 243(5405), 290-293.
[8]
Jørgensen, H.G.; Holyoake, T.L. A comparison of normal and leukemic stem cell biology in chronic myeloid leukemia. Hematol. Oncol., 2001, 19(3), 89-106.
[9]
Kantarjian, H.M.; Dixon, D.; Keating, M.J.; Talpaz, M.; Walters, R.S.; McCredie, K.B.; Freireich, E.J. Characteristics of accelerated disease in chronic myelogenous leukemia. Cancer, 1988, 61(7), 1441-1446.
[10]
Wong, S.; Witte, O.N. Modeling philadelphia chromosome positive leukemias. Oncogene, 2001, 20(40), 5644-5659.
[11]
Smith, D.L.; Burthem, J.; Whetton, A.D. Molecular pathogenesis of chronic myeloid leukaemia. Expert Rev. Mol. Med., 2003, 5(27), 1-27.
[12]
Deininger, M.W.; Goldman, J.M.; Melo, J.V. The molecular biology of chronic myeloid leukemia. Blood, 2000, 96(10), 3343-3356.
[13]
Kantarjian, H.M.; Talpaz, M.; Giles, F.; O’Brien, S.; Cortes, J. New insights into the pathophysiology of chronic myeloid leukemia and imatinib resistance. Ann. Intern. Med., 2006, 145(12), 913-923.
[14]
Liu, Y.; Shah, K.; Yang, F.; Witucki, L.; Shokat, K.M. A molecular gate which controls unnatural ATP analogue recognition by the tyrosine kinase V-Src. Bioorg. Med. Chem., 1998, 6(8), 1219-1226.
[15]
Jabbour, E.; Deininger, M. Hochhaus, a. Management of adverse events associated with tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia. Leuk. Off. J. Leuk. Soc. Am. Leuk. Res. Fund UK, 2011, 25(2), 201-210.
[16]
Bhamidipati, P.K.; Kantarjian, H.; Cortes, J.; Cornelison, A.M.; Jabbour, E. Management of imatinib-resistant patients with chronic myeloid leukemia. Ther. Adv. Hematol., 2013, 4(2), 103-117.
[17]
Graham, S.M.; Jørgensen, H.G.; Allan, E.; Pearson, C.; Alcorn, M.J.; Richmond, L.; Holyoake, T.L. Primitive, quiescent, philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in Vitro. Blood, 2002, 99(1), 319-325.
[18]
Gaiger, a; Henn, T.; Horth, E.; Geissler, K.; Mitterbauer, G.; Maier-Dobersberger, T. Increase of Bcr-Abl chimeric MRNA expression in tumor cells of patients with chronic myeloid leukemia precedes disease progression. Blood, 1995, 86(6), 2371-2378.
[19]
Le Coutre, P.; Tassi, E.; Varella-Garcia, M.; Barni, R.; Mologni, L.; Cabrita, G.; Marchesi, E.; Supino, R.; Gambacorti-Passerini, C. Induction of Resistance to the Abelson Inhibitor STI571 in human leukemic cells through gene amplification. Blood, 2000, 95(5), 1758-1766.
[20]
Gorre, M.E.; Mohammed, M.; Ellwood, K.; Hsu, N.; Paquette, R.; Rao, P.N.; Sawyers, C.L. Clinical Resistance to STI-571 cancer therapy caused by bcr-abl gene mutation or amplification. Science, 2001, 293(5531), 876-880.
[21]
Barnes, D.J.; Palaiologou, D.; Panousopoulou, E.; Schultheis, B.; Yong, A.S.M.; Wong, A.; Pattacini, L.; Goldman, J.M.; Melo, J.V. Bcr-Abl Expression Levels Determine the Rate of Development of Resistance to Imatinib Mesylate in Chronic Myeloid Leukemia. Cancer Res., 2005, 65(19), 8912-8919.
[22]
Mahon, F.X.; Deininger, M.W.; Schultheis, B.; Chabrol, J.; Reiffers, J.; Goldman, J.M.; Melo, J.V. Selection and Characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: Diverse mechanisms of resistance. Blood, 2000, 96(3), 1070-1079.
[23]
Barnes, D.J.; Schultheis, B.; Adedeji, S.; Melo, J.V. Dose-dependent effects of Bcr-Abl in cell line models of different stages of chronic myeloid leukemia. Oncogene, 2005, 24(42), 6432-6440.
[24]
Hochhaus, a; Kreil, S.; Corbin, a S.; La Rosée, P.; Müller, M.C.; Lahaye, T.; Hanfstein, B.; Schoch, C.; Cross, N.C.P.; Berger, U.; Gschaidmeier, H.; Druker, B.J.; Hehlmann, R. Molecular and Chromosomal Mechanisms of Resistance to Imatinib (STI571) Therapy. Leukemia, 2002, 16(11), 2190-2196.
[25]
Judson, I. Imatinib Mesylate. Drugs, 2003, 63(5), 523-524.
[26]
Redaelli, S.; Piazza, R.; Rostagno, R.; Magistroni, V.; Perini, P.; Marega, M.; Gambacorti-Passerini, C.; Boschelli, F. activity of bosutinib, dasatinib, and nilotinib against 18 Imatinib-Resistant BCR/ABL mutants. J. Clin. Oncol., 2009, 27(3), 469-471.
[27]
Soverini, S.; Colarossi, S.; Gnani, A.; Rosti, G.; Castagnetti, F.; Poerio, A.; Iacobucci, I.; Amabile, M.; Abruzzese, E.; Orlandi, E.; Radaelli, F.; Ciccone, F.; Tiribelli, M.; di Lorenzo, R.; Caracciolo, C.; Izzo, B.; Pane, F.; Saglio, G.; Baccarani, M.; Martinelli, G. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of philadelphia-positive patients: by the gimema working party on chronic myeloid leukemia. Clin. Cancer Res., 2006, 12(24), 7374-7379.
[28]
Premkumar Reddy, E.; Aggarwal, A.K. The ins and outs of bcr-abl inhibition. Genes Cancer, 2012, 3(5-6), 447-454.
[29]
Von Bubnoff, N.; Schneller, F.; Peschel, C.; Duyster, J. BCR-ABL gene mutations in relation to clinical resistance of philadelphia-chromosome-Positive leukaemia to STI571: A prospective study. Lancet, 2002, 359(9305), 487-491.
[30]
Gambacorti-Passerini, C.B.; Gunby, R.H.; Piazza, R.; Galietta, A.; Rostagno, R.; Scapozza, L. Molecular mechanisms of resistance to imatinib in philadelphia-chromosome-positive leukaemias. Lancet Oncol., 2003, 4(2), 75-85.
[31]
Azam, M.; Latek, R.R.; Daley, G.Q. Mechanisms of autoinhibition and sti-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell, 2003, 112(6), 831-843.
[32]
Peng, B.; Hayes, M.; Resta, D.; Racine-Poon, A.; Druker, B.J.; Talpaz, M.; Sawyers, C.L.; Rosamilia, M.; Ford, J.; Lloyd, P.; Capdeville, R. Pharmacokinetics and Pharmacodynamics of Imatinib in a Phase I Trial with Chronic Myeloid Leukemia Patients. J. Clin. Oncol., 2004, 22(5), 935-942.
[33]
Picard, S.; Titier, K.; Etienne, G.; Teilhet, E.; Ducint, D.; Bernard, M.A.; Lassalle, R.; Marit, G.; Reiffers, J.; Begaud, B.; Nicholas, M.; Mathieu, M.; Francois-Xavier, M. Trough Imatinib Plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood, 2007, 109(8), 3496-3499.
[34]
Jabbour, E.J.; Cortes, J.E.; Kantarjian, H.M. Resistance to tyrosine kinase inhibition therapy for chronic myelogenous leukemia: A clinical perspective and emerging treatment options. Clin. Lymphoma Myeloma Leuk., 2013, 13(5), 515-529.
[35]
Quints-Cardama, A.; Kantarjian, H.M.; Cortes, J.E. Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control., 2009, 16(2), 122-131.
[36]
Apperley, J.F.; Part, I. Mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol., 2007, 8(11), 1018-1029.
[37]
Ferrao, P.T.; Frost, M.J.; Siah, S.P.; Ashman, L.K. Overexpression of P-Glycoprotein in K562 cells does not confer resistance to the growth inhibitory effects of imatinib (STI571) in Vitro. Blood, 2003, 102(13), 4499-4503.
[38]
Galimberti, S.; Cervetti, G.; Guerrini, F.; Testi, R.; Pacini, S.; Fazzi, R.; Simi, P.; Petrini, M. Quantitative molecular monitoring of bcr-abl and mdr1 transcripts in patients with chronic myeloid leukemia during imatinib treatment. Cancer Genet. Cytogenet., 2005, 162(1), 57-62.
[39]
Donato, N.J.; Wu, J.Y.; Stapley, J.; Gallick, G.; Lin, H.; Arlinghaus, R.; Talpaz, M. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood, 2003, 101(2), 690-698.
[40]
Burchert, a; Wang, Y.; Cai, D.; von Bubnoff, N.; Paschka, P.; Müller-Brüsselbach, S.; Ottmann, O.G.; Duyster, J.; Hochhaus, a; Neubauer, a. compensatory PI3-Kinase/Akt/MTor activation regulates imatinib resistance development. Leuk. Off. J. Leuk. Soc. Am. Leuk. Res. Fund UK, 2005, 19(10), 1774-1782.
[41]
Agarwal, A.; Eide, C.A.; Harlow, A.; Corbin, A.S.; Mauro, M.J.; Druker, B.J.; Corless, C.L.; Heinrich, M.C.; Deininger, M.W. An activating KRAS mutation in imatinib-resistant chronic myeloid leukemia. Leukemia, 2008, 22(12), 2269-2272.
[42]
Wang, Y.; Cai, D.; Brendel, C.; Barett, C.; Erben, P.; Manley, P.W.; Hochhaus, A.; Neubauer, A.; Burchert, A. Adaptive secretion of Granulocyte-Macrophage Colony-Stimulating factor (GM-CSF) mediates imatinib and nilotinib resistance in BCR/ABL+ progenitors via JAK-2/STAT-5 Pathway Activation. Blood, 2007, 109(5), 2147-2155.
[43]
Jiang, B.H.; Liu, L.Z. Chapter 2 PI3K/PTEN Signaling in angiogenesis and tumorigenesis; Adv. Cancer Res, 2009, pp. 19-65.
[44]
Danial, N.N. Pernis, a; Rothman, P. B. Jak-STAT signaling induced by the v-Abl oncogene. Science, 1995, 269(5232), 1875-1877.
[45]
Xie, S.; Wang, Y.; Liu, J.; Sun, T.; Wilson, M.B.; Smithgall, T.E.; Arlinghaus, R.B. involvement of Jak2 tyrosine phosphorylation in Bcr-Abl transformation. Oncogene, 2001, 20(43), 6188-6195.
[46]
Hehlmann, R.; Berger, U.; Hochhaus, A. chronic myeloid leukemia: A model for oncology. Ann. Hematol., 2005, 487-497.
[47]
Hehlmann, R.; Hochhaus, A.; Baccarani, M. Chronic myeloid leukaemia. Lancet, 2007, 342-350.
[48]
Deininger, M.; Buchdunger, E.; Druker, B.J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood, 2005, 105(7), 2640-2653.
[49]
Druker, B.J.; Tamura, S.; Buchdunger, E.; Ohno, S.; Segal, G.M.; Fanning, S.; Zimmermann, J.; Lydon, N.B. Effects of a selective inhibitor of the ABL tyrosine kinase on the growth of Bcr–Abl positive cells. Nat. Med., 1996, 2(5), 561-566.
[50]
Talpaz, M.; Silver, R.T.; Druker, B.J.; Goldman, J.M.; Gambacorti-Passerini, C.; Guilhot, F.; Schiffer, C.A.; Fischer, T.; Deininger, M.W.N.; Lennard, A.L.; Andreas, H.; Oliver, G.O.; Alois, G.; Michele, B.; Richard, S.; Sante, T.; Francois, X.M.; Sofia, F-R.; Insa, G. Renaud, Capdeville. imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: Results of a phase 2 study. Blood, 2002, 99(6), 1928-1937.
[51]
Schindler, T.; Bornmann, W.; Pellicena, P.; Miller, W.T.; Clarkson, B.; Kuriyan, J. structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science, 2000, 289(5486), 1938-1942.
[52]
Shah, N.P.; Talpaz, M.; Kantarjian, H.M.; Donato, N.; Nicoll, J.; Cortes, J.E.; Paquette, R.; O’brien, S.; Nicaise, C.; Bleickardt, E. dasatinib in imatinib-resistant philadelphia chromosome-positive leukemias. N. Engl. J. Med., 2006, 354(24), 2531-2541.
[53]
Irvine, E.; Williams, C. Treatment-, Patient-, and disease-related factors and the emergence of adverse events with tyrosine kinase inhibitors for the treatment of chronic myeloid leukemia. Pharmacotherapy, 2013, 33(8), 868-881.
[54]
Tokarski, J.S.; Newitt, J.A.; Chang, C.Y.J.; Cheng, J.D.; Wittekind, M.; Kiefer, S.E.; Kish, K.; Lee, F.Y.F.; Borzillerri, R.; Lombardo, L.J.; Xie, D.; Zhang, Y.; Klei, H.E. The Structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res., 2006, 66(11), 5790-5797.
[55]
Shah, N.P.; Tran, C.; Lee, F.Y.; Chen, P.; Norris, D.; Sawyers, C.L. overriding imatinib resistance with a Novel ABL kinase inhibitor. Science, 2004, 305(5682), 399-401.
[56]
Cowan-Jacob, S.W.; Fendrich, G.; Floersheimer, A.; Furet, P.; Liebetanz, J.; Rummel, G.; Rheinberger, P.; Centeleghe, M.; Fabbro, D.; Manley, P.W. Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia. acta crystallog. D. Biol. Crystallog., 2007, 63(Pt 1), 80-93.
[57]
Weisberg, E.; Manley, P.W.; Breitenstein, W.; Brggen, J.; Cowan-Jacob, S.W.; Ray, A.; Huntly, B.; Fabbro, D.; Fendrich, G.; Hall-Meyers, E.; Kung, A.L.; Mestan, J.; Daley, G.Q.; Callahan, L.; Catley, L.; Cavazza, C.; Azam, M.; Neuberg, D.; Wright, R.D.; Gilliland, D.G.; Griffin, J.D. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell, 2005, 7(2), 129-141.
[58]
Bose, P.; Park, H.; Al-Khafaji, J.; Grant, S. Strategies to circumvent the T315I gatekeeper mutation in the Bcr-Abl tyrosine kinase. Leuk. Res. Reports., 2013, 2(1), 18-20.
[59]
Golas, J.M.; Lucas, J.; Etienne, C.; Golas, J.; Discafani, C.; Sridharan, L.; Boghaert, E.; Arndt, K.; Ye, F.; Boschelli, D.H.; Li, F.; Titsch, C.; Huselton, C.; Chaudhary, I.; Boschelli, F. SKI-606, a Src/Abl inhibitor with in vivo activity in colon tumor xenograft models. Cancer Res., 2005, 65(12), 5358-5364.
[60]
Doan, V.; Wang, A.; Prescott, H. Bosutinib for the treatment of chronic myeloid leukemia. Am. J. Heal. Pharm., 2015, 72(6), 439-447.
[61]
Moslehi, J.J.; Deininger, M. Tyrosine kinase inhibitor-Associated cardiovascular toxicity in chronic myeloid leukemia. J. Clin. Oncol., 2015, 33(35), 4210-4218.
[62]
Levinson, N.M.; Boxer, S.G. Structural and spectroscopic analysis of the kinase inhibitor bosutinib and an isomer of bosutinib binding to the abl tyrosine kinase domain. PLoS One, 2012, 7(4), e29828.
[63]
Cortes, J.E.; Kantarjian, H.; Shah, N.P.; Bixby, D.; Mauro, M.J.; Flinn, I.; O’Hare, T.; Hu, S.; Narasimhan, N.I.; Rivera, V.M.; Clackson, T.; Turner, C.D.; Haluska, F.G.; Druker, B.J.; Deininger, M.W.; Talpaz, M. Ponatinib in refractory philadelphia chromosome-positive leukemias. N. Engl. J. Med., 2012, 367(22), 2075-2088.
[64]
O’Hare, T.; Shakespeare, W.C.; Zhu, X.; Eide, C.A.; Rivera, V.M.; Wang, F.; Adrian, L.T.; Zhou, T.; Huang, W.S.; Xu, Q.; Metcalf, C.A.; Tyner, J.W.; Loriaux, M.M.; Corbin, A.S.; Wardwell, S.; Ning, Y.; Keats, J.A.; Wang, Y.; Sundaramoorthi, R.; Thomas, M.; Zhou, D.; Snodgrass, J.; Commodore, L.; Sawyer, T.K.; Dalgarno, D.C.; Deininger, M.W.; Druker, B.J.; Clackson, T. AP24534, a Pan-BCR-ABL Inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell, 2009, 16(5), 401-412.
[65]
Chan, W.W.; Wise, S.C.; Kaufman, M.D.; Ahn, Y.M.; Ensinger, C.L.; Haack, T.; Hood, M.M.; Jones, J.; Lord, J.W.; Lu, W.P.; Miller, D.; Patt, W.C.; Smith, B.D.; Petillo, P.A.; Rutkoski, T.J.; Telikepalli, H.; Vogeti, L.; Yao, T.; Chun, L.; Clark, R.; Evangelista, P.; Gavrilescu, L.C.; Lazarides, K.; Zaleskas, V.M.; Stewart, L.J.; Van Etten, R.A.; Flynn, D.L. Conformational CONtrol INHibition of the BCR-ABL1 tyrosine kinase, including the gatekeeper t315i mutant, by the switch-control inhibitor DCC-2036. Cancer Cell, 2011, 19(4), 556-568.
[66]
Liu, F.; Wang, B.; Wang, Q.; Qi, Z.; Chen, C.; Kong, L-L.; Chen, J-Y.; Liu, X.; Wang, A.; Hu, C.; Wang, W.; Wang, H.; Wu, F.; Ruan, Y.; Qi, S.; Liu, J.; Zou, F.; Hu, Z.; Wang, W.; Wang, L.; Zhang, S.; Yun, C.H.; Zhai, Z.; Liu, J.; Liu, Q. Discovery and characterization of a novel potent Type II native and mutant BCR-ABL Inhibitor (CHMFL-074) for chronic myeloid leukemia (CML). Oncotarget, 2016, 7(29), 45562-45574.
[67]
Zhang, J.; Adrián, F.J.; Jahnke, W.; Cowan-Jacob, S.W.; Li, A.G.; Iacob, R.E.; Sim, T.; Powers, J.; Dierks, C.; Sun, F.; Guo, G.R.; Ding, Q.; Okram, B.; Choi, Y.; Wojciechowski, A.; Deng, X.; Liu, G.; Fendrich, G.; Strauss, A.; Vajpai, N.; Grzesiek, S.; Tuntland, T.; Liu, Y.; Bursulaya, B.; Azam, M.; Manley, P.W.; Engen, J.R.; Daley, G.Q.; Warmuth, M.; Gray, N.S. targeting Bcr-Abl by combining allosteric with ATP-Binding-Site inhibitors. Nature, 2010, 463(7280), 501-506.
[68]
Hantschel, O.; Superti-Furga, G. Regulation of the C-Abl and Bcr-Abl tyrosine kinases. Nat. Rev. Mol. Cell Biol., 2004, 5(1), 33-44.
[69]
Zhang, J.; Adrian, F.J.; Jahnke, W.; Cowan-jacob, S.W.; Li, A.G.; Iacob, R.E.; Sim, T.; Powers, J.; Dierks, C.; Guo, G.; Ding, Q.; Okram, B.; Choi, Y.; Wojciechowski, A.; Deng, X.; Liu, G.; Fendrich, G.; Strauss, A.; Vajpai, N.; Grzesiek, S.; Tuntland, T.; Liu, Y.; Bursulaya, B.; Azam, M.; Manley, P.W.; Engen, J.R.; Daley, G.Q.; Warmuth, M.; Gray, N.S. Targeting wild-type and T315I Bcr-Abl by combining allosteric with ATP-Site inhibitors. Nature, 2010, 463(7280), 501-506.
[70]
Yang, J.; Campobasso, N.; Biju, M.P.; Fisher, K.; Pan, X.Q.; Cottom, J.; Galbraith, S.; Ho, T.; Zhang, H.; Hong, X.; Ward, P.; Hofmann, G.; Siegfried, B.; Zappacosta, F.; Washio, Y.; Cao, P.; Qu, J.; Bertrand, S.; Wang, D.Y.; Head, M.S.; Li, H.; Moores, S.; Lai, Z.; Johanson, K.; Burton, G.; Erickson-Miller, C.; Simpson, G.; Tummino, P.; Copeland, R.A.; Oliff, A. Discovery and characterization of a cell-permeable, small-Molecule c-Abl Kinase Activator That Binds to the myristoyl binding site. Chem. Biol., 2011, 18(2), 177-186.
[71]
Jahnke, W.; Grotzfeld, R.M.; Pell, X.; Strauss, A.; Fendrich, G.; Cowan-Jacob, S.W.; Cotesta, S.; Fabbro, D.; Furet, P.; Mestan, J.; Marzinzik, A.L. Binding or bending: Distinction of allosteric abl kinase agonists from antagonists by an nmr-based conformational assay. J. Am. Chem. Soc., 2010, 132(20), 7043-7048.
[72]
Hantschel, O. Allosteric BCR-ABL inhibitors in philadelphia chromosome-positive acute lymphoblastic leukemia: Novel opportunities for drug combinations to overcome resistance. Haematologica, 2012, 97(2), 157-159.
[73]
Crespan, E.; Radi, M.; Zanoli, S.; Schenone, S.; Botta, M.; Maga, G. Dual Src and Abl inhibitors target wild type abl and the ablt315i imatinib-resistant mutant with different mechanisms. Bioorg. Med. Chem., 2010, 18(11), 3999-4008.
[74]
Fallacara, A.L.; Tintori, C.; Radi, M.; Schenone, S.; Botta, M. Insight into the allosteric inhibition of Abl kinase. J. Chem. Inf. Model., 2014, 54(5), 1325-1338.
[75]
Wu, L.; Wu, Y.; Chen, R.; Liu, Y.; Huang, L.; Lou, L.; Zheng, Z.; Chen, Y.; Xu, J. Curcumin derivative C817 inhibits proliferation of imatinib-resistant chronic myeloid leukemia cells with wild-type or mutant Bcr-Abl in Vitro. Acta Pharmacol. Sin., 2014, 35(3), 401-409.
[76]
Carter, B.Z.; Mak, P.Y.; Mu, H.; Zhou, H.; Mak, D.H.; Schober, W.; Leverson, J.D.; Zhang, B.; Bhatia, R.; Huang, X.; Cortes, J.; Kantarjian, H.; Konopleva, M.; Andreeff, M. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Sci. Transl. Med., 2016, 8(355), 355ra117.
[77]
Pemovska, T.; Johnson, E.; Kontro, M.; Repasky, G.A.; Chen, J.; Wells, P.; Cronin, C.N.; McTigue, M.; Kallioniemi, O.; Porkka, K.; Murray, B.W.; Wennerberg, K. Axitinib effectively inhibits Bcr-Abl1(T315i) with a distinct binding conformation. Nature, 2015, 519(7541), 102-105.
[78]
Massimino, M.; Stella, S.; Tirrò, E.; Romano, C.; Pennisi, M.S.; Puma, A.; Manzella, L.; Zanghì, A.; Stagno, F.; Di Raimondo, F.; Vigneri, P. Non ABL-directed inhibitors as alternative treatment strategies for chronic myeloid leukemia. Mol. Cancer, 2018, 17(1), 1-15.
[79]
Cayssials, E.; Guilhot, F. Beyond tyrosine kinase inhibitors: combinations and other agents. Best Pract. Res. Clin. Haematol., 2016, 29(3), 271-283.
[80]
Lucansky, V.; Sobotkova, E.; Tachezy, R.; Duskova, M.; Vonka, V. DNA Vaccination against Bcr-Abl-Positive Cells In Mice. Int. J. Oncol., 2009, 35(4), 941-951.
[81]
Pinilla-Ibarz, J.; Cathcart, K.; Korontsvit, T.; Soignet, S.; Bocchia, M.; Caggiano, J.; Lai, L.; Jimenez, J.; Kolitz, J.; Scheinberg, D.a. vaccination of patients with chronic myelogenous leukemia with Bcr-Abl oncogene breakpoint fusion peptides generates specific immune responses. Blood, 2000, 95(5), 1781-1787.
[82]
Vaidya, S.; Ghosh, K.; Vundinti, B.R. Recent developments in drug resistance mechanism in chronic myeloid leukemia: A review. Europ. J. Haematol., 2011, 87(5), 381-393.
[83]
Saikia, T. The cure of chronic myeloid leukemia: Are we there yet? Curr. Oncol. Rep., 2018, 20(2), 12.
[84]
Rossari, F.; Minutolo, F.; Orciuolo, E. Past, present, and future of BCR-ABL inhibitors: From chemical development to clinical efficacy. J. Hematol. Oncol., 2018, 11(1), 84.
[85]
Singh, V.K.; Chang, H-H.; Kuo, C-C.; Shiao, H-Y.; Hsieh, H-P.; Coumar, M.S. Drug repurposing for chronic myeloid leukemia: in silico and in vitro investigation of drugbank database for allosteric BCR-ABL inhibitors. J. Biomol. Struct. Dyn., 2017, 35(8), 1833-1848.
[86]
P, P.K.; Khajapeer, K.V.; Balakrishnan, A.P.; Rajasekaran, B. Multi-Targeted approach to treat drug resistant CML using natural compounds : A double edged sword. Signif. Bioeng. Biosci, 2018, 2(2), SBB-000531.
[87]
Kibble, M.; Saarinen, N.; Tang, J.; Wennerberg, K.; Mäkelä, S.; Aittokallio, T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat. Prod. Rep., 2015, 32(8), 1249-1266.
[88]
Ho, T.T.; Tran, Q.T.; Chai, C.L. The polypharmacology of natural products. Future Med. Chem., 2018, 10(11), 1361-1368.
[89]
Manley, P.W.; Cowan-Jacob, S.W.; Mestan, J. Advances in the structural biology, design and clinical development of bcr-abl kinase inhibitors for the treatment of chronic myeloid leukaemia. Biochim. Biophys. Acta, 2005, 1754(1-2), 3-13.
[90]
Roskoski, R. A Historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacol. Res., 2015, 100, 1-23.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 4
Year: 2019
Page: [333 - 345]
Pages: 13
DOI: 10.2174/1389557518666181017124854
Price: $58

Article Metrics

PDF: 52
HTML: 6
EPUB: 1