Indexing Natural Products for their Antifungal Activity by Filters-based Approach: Disclosure of Discriminative Properties

Author(s): Mahmoud Rayan, Ziyad Abdallah, Saleh Abu-Lafi, Mahmud Masalha, Anwar Rayan*.

Journal Name: Current Computer-Aided Drug Design

Volume 15 , Issue 3 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Background: A considerable worldwide increase in the rate of invasive fungal infections and resistance toward antifungal drugs was witnessed during the past few decades. Therefore, the need for newer antifungal candidates is paramount. Nature has been the core source of therapeutics for thousands of years, and an impressive number of modern drugs including antifungals were derived from natural sources. In order to facilitate the recognition of potential candidates that can be derived from natural sources, an iterative stochastic elimination optimization technique to index natural products for their antifungal activity was utilized.

Methods: A set of 240 FDA-approved antifungal drugs, which represent the active domain, and a set of 2,892 natural products, which represent the inactive domain, were used to construct predictive models and to index natural products for their antifungal bioactivity. The area under the curve for the produced predictive model was 0.89. When applying it to a database that is composed of active/inactive chemicals, we succeeded to detect 42% of the actives (antifungal drugs) in the top one percent of the screened chemicals, compared with one-percent when using a random model.

Results and Conclusion: Eight natural products, which were highly scored as likely antifungal drugs, are disclosed. Searching PubMed showed only one molecule (Flindersine) out of the eight that have been tested was reported as an antifungal. The other seven phytochemicals await evaluation for their antifungal bioactivity in a wet laboratory.

Keywords: Antifungal, chemoinformatics, ligand-based screening approach, bioactivity index, natural products, data base.

Kadan, S.; Rayan, M.; Rayan, A. Anticancer activity of anise (Pimpinella anisum L.) seed extract. Open Nutraceuticals J., 2013, 6, 1-5.
Zaid, H.; Raiyn, J.; Nasser, A.; Saad, B.; Rayan, A. Physicochemical properties of natural based products versus synthetic chemicals. Open Nutraceuticals J., 2010, 3, 194-202.
Dow, E.R.; Hughes, J.B.; Stephens, S.M.; Narayan, V.A.; Bishop, R.W. Integrating scientific data for drug discovery and development using the life sciences grid. Expert Opin. Drug Discov., 2009, 4(6), 687-699.
Kinch, M.S. 2015 in review: FDA approval of new drugs. Drug Discov. Today, 2016, 21(7), 1046-1050.
Amirkia, V.; Heinrich, M. Natural products and drug discovery: A survey of stakeholders in industry and academia. Front. Pharmacol., 2015, 6, 237.
Paoletta, S.; Steventon, G.B.; Wildeboer, D.; Ehrman, T.M.; Hylands, P.J.; Barlow, D.J. Screening of herbal constituents for aromatase inhibitory activity. Bioorg. Med. Chem., 2008, 16(18), 8466-8470.
Jiang, X.; Kumar, K.; Hu, X.; Wallqvist, A.; Reifman, J. DOVIS 2.0: An efficient and easy to use parallel virtual screening tool based on AutoDock 4.0. Chem. Cent. J., 2008, 2, 18.
Luksch, T.; Chan, N.S.; Brass, S.; Sotriffer, C.A.; Klebe, G.; Die-derich, W.E. Computer-aided design and synthesis of nonpeptidic plasmepsin II and IV inhibitors. ChemMedChem, 2008, 3(9), 1323-1336.
Kurczyk, A.; Warszycki, D.; Musiol, R.; Kafel, R.; Bojarski, A.J.; Polanski, J. Ligand-based virtual screening in a search for novel anti-HIV-1 chemotypes. J. Chem. Inf. Model., 2015, 55(10), 2168-2177.
Pappalardo, M.; Shachaf, N.; Basile, L.; Milardi, D.; Zeidan, M.; Raiyn, J.; Guccione, S.; Rayan, A. Sequential application of ligand and structure based modeling approaches to index chemicals for their hH4R antagonism. PLoS One, 2014, 9(10), e109340.
Zaid, H.; Raiyn, J.; Osman, M.; Falah, M.; Srouji, S.; Rayan, A. In silico modeling techniques for predicting the tertiary structure of human H4 receptor. Front. Biosci. (Landmark Ed), 2016, 21, 597-619.
Rayan, A. New tips for structure prediction by comparative modeling. Bioinformation, 2009, 3(6), 263-267.
Rayan, A.; Goldblum, A. A stochastic method to determine, in silico, the drug like character of molecules. WIPO Patent No. 2005022111 2005.
Glick, M.; Goldblum, A. A novel energy-based stochastic method for positioning polar protons in protein structures from X-rays. Proteins, 2000, 38(3), 273-287.
Glick, M.; Rayan, A.; Goldblum, A. A stochastic algorithm for global optimization and for best populations: A test case of side chains in proteins. Proc. Natl. Acad. Sci. USA, 2002, 99(2), 703-708.
Michaeli, A.; Rayan, A. Modeling ensembles of loop conformations by iterative stochastic elimination. Lett. Drug Des. Discov., 2016, 13(3), 1-6.
Rayan, A.; Senderowitz, H.; Goldblum, A. Exploring the conformational space of cyclic peptides by a stochastic search method. J. Mol. Graph. Model., 2004, 22(5), 319-333.
Rayan, A.; Noy, E.; Chema, D.; Levitzki, A.; Goldblum, A. Stochastic algorithm for kinase homology model construction. Curr. Med. Chem., 2004, 11(6), 675-692.
Rayan, A.; Falah, M.; Raiyn, J.; Da’adoosh, B.; Kadan, S.; Zaid, H.; Goldblum, A. Indexing molecules for their hERG liability. Eur. J. Med. Chem., 2013, 65C, 304-314.
Rayan, A. The utility of intelligent learning engine in drug discovery informatics. Br. J. Pharmacol., 2010, 7(4), 26.
Zeidan, M.; Rayan, M.; Zeidan, N.; Falah, M.; Rayan, A. Indexing natural products for their potential anti-diabetic activity: Filtering and mapping discriminative physicochemical properties. Molecules, 2017, 22(9), E1563.
Aswad, M.; Rayan, M.; Abu-Lafi, S.; Falah, M.; Raiyn, J.; Abdallah, Z.; Rayan, A. Nature is the best source of anti-inflammatory drugs: Indexing natural products for their anti-inflammatory bioactivity. Inflamm. Res., 2018, 67(1), 67-75.
Rayan, A.; Raiyn, J.; Falah, M. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS One, 2017, 12(11), e0187925.
Rayan, A.; Marcus, D.; Goldblum, A. Predicting oral druglikeness by iterative stochastic elimination. J. Chem. Inf. Model., 2010, 50(3), 437-445.
Zatsepin, M.; Mattes, A.; Rupp, S.; Finkelmeier, D.; Basu, A.; Burger-Kentischer, A.; Goldblum, A. Computational discovery and experimental confirmation of TLR9 receptor antagonist leads. J. Chem. Inf. Model., 2016, 56(9), 1835-1846.
Rayan, A. New vistas in GPCR 3D structure prediction. J. Mol. Model., 2010, 16(2), 183-191.
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
Hann, M.M.; Oprea, T.I. Pursuing the leadlikeness concept in pharmaceutical research. Curr. Opin. Chem. Biol., 2004, 8(3), 255-263.
Duraipandiyan, V.; Ignacimuthu, S. Antibacterial and antifungal activity of Flindersine isolated from the traditional medicinal plant, Toddalia asiatica (L.) Lam. J. Ethnopharmacol., 2009, 123(3), 494-498.
Moon, L.; Ha, Y.M.; Jang, H.J.; Kim, H.S.; Jun, M.S.; Kim, Y.M.; Lee, Y.S.; Lee, D.H.; Son, K.H.; Kim, H.J.; Seo, H.G.; Lee, J.H.; Kim, Y.S.; Chang, K.C. Isoimperatorin, cimiside E and 23-O-acetylshengmanol-3-xyloside from Cimicifugae rhizome inhibit TNF-alpha-induced VCAM-1 expression in human endothelial cells: Involvement of PPAR-gamma upregulation and PI3K, ERK1/2, and PKC signal pathways. J. Ethnopharmacol., 2011, 133(2), 336-344.
Guo, N.; Wu, J.; Fan, J.; Yuan, P.; Shi, Q.; Jin, K.; Cheng, W.; Zhao, X.; Zhang, Y.; Li, W.; Tang, X.; Yu, L. In vitro activity of isoimperatorin, alone and in combination, against Mycobacterium tuberculosis. Lett. Appl. Microbiol., 2014, 58(4), 344-349.
Tong, K.; Xin, C.; Chen, W. Isoimperatorin induces apoptosis of the SGC-7901 human gastric cancer cell line via the mitochondria-mediated pathway. Oncol. Lett., 2017, 13(1), 518-524.
Lee, W.; Kim, K.Y.; Yu, S.N.; Kim, S.H.; Chun, S.S.; Ji, J.H.; Yu, H.S.; Ahn, S.C. Pipernonaline from piper longum linn. induces ros-mediated apoptosis in human prostate cancer PC-3 cells. Biochem. Biophys. Res. Commun., 2013, 430(1), 406-412.
Kim, K.J.; Lee, M.S.; Jo, K.; Hwang, J.K. Piperidine alkaloids from Piper retrofractum Vahl. protect against high-fat diet-induced obesity by regulating lipid metabolism and activating AMP-activated protein kinase. Biochem. Biophys. Res. Commun., 2011, 411(1), 219-225.
Park, B.S.; Son, D.J.; Park, Y.H.; Kim, T.W.; Lee, S.E. Antiplatelet effects of acidamides isolated from the fruits of Piper longum L. Phytomedicine, 2007, 14(12), 853-855.
Park, I.K. Insecticidal activity of isobutylamides derived from Piper nigrum against adult of two mosquito species, Culex pipiens pallens and Aedes aegypti. Nat. Prod. Res., 2012, 26(22), 2129-2131.
Lee, S.A.; Hwang, J.S.; Han, X.H.; Lee, C.; Lee, M.H.; Choe, S.G.; Hong, S.S.; Lee, D.; Lee, M.K.; Hwang, B.Y. Methylpiperate derivatives from Piper longum and their inhibition of monoamine oxidase. Arch. Pharm. Res., 2008, 31(6), 679-683.
Lee, S.W.; Rho, M.C.; Nam, J.Y.; Lim, E.H.; Kwon, O.E.; Kim, Y.H.; Lee, H.S.; Kim, Y.K. Guineensine, an Acyl-CoA: Cholesterol acyltransferase inhibitor, from the fruits of Piper longum. Planta Med., 2004, 70(7), 678-679.
Nicolussi, S.; Viveros-Paredes, J.M.; Gachet, M.S.; Rau, M.; Flores-Soto, M.E.; Blunder, M.; Gertsch, J. Guineensine is a novel inhibitor of endocannabinoid uptake showing cannabimimetic behavioral effects in BALB/c mice. Pharmacol. Res., 2014, 80, 52-65.
Rukachaisirikul, T.; Siriwattanakit, P.; Sukcharoenphol, K.; Wongvein, C.; Ruttanaweang, P.; Wongwattanavuch, P.; Suksamrarn, A. Chemical constituents and bioactivity of Piper sarmentosum. J. Ethnopharmacol., 2004, 93(2-3), 173-176.
Singh, B.; Sharma, R.A. Anti-inflammatory and antimicrobial properties of pyrroloquinazoline alkaloids from Adhatoda vasica Nees. Phytomedicine, 2013, 20(5), 441-445.
Sarkar, C.; Bose, S.; Banerjee, S. Evaluation of hepatoprotective activity of vasicinone in mice. Indian J. Exp. Biol., 2014, 52(7), 705-711.
Liu, W.; Wang, Y.; He, D.D.; Li, S.P.; Zhu, Y.D.; Jiang, B.; Cheng, X.M.; Wang, Z.; Wang, C.H. Antitussive, expectorant, and bronchodilating effects of quinazoline alkaloids (+/-)-vasicine, deoxyvasicine, and (+/-)-vasicinone from aerial parts of Peganum harmala L. Phytomedicine, 2015, 22(12), 1088-1095.
Usia, T.; Banskota, A.H.; Tezuka, Y.; Midorikawa, K.; Matsushige, K.; Kadota, S. Constituents of Chinese propolis and their antiproliferative activities. J. Nat. Prod., 2002, 65(5), 673-676.
Sun, L.; Wang, K.; Xu, X.; Ge, M.; Chen, Y.; Hu, F. Potential protective effects of bioactive constituents from chinese propolis against acute oxidative stress induced by hydrogen peroxide in cardiac H9c2 cells. Evid. Based Complement. Alternat. Med., 2017, 2017, 7074147.
Jaikang, C.; Chaiyasut, C.; Narongchai, P.; Niwatananun, K.; Narongchai, S.; Kusirisin, W. Inhibitory effects of caffeic acid ester analogues on free radicals and human liver microsome CYP1A2 activities. Med. Chem., 2011, 7(2), 99-105.
Kim, K.S.; Cui, X.; Lee, D.S.; Sohn, J.H.; Yim, J.H.; Kim, Y.C.; Oh, H. Anti-inflammatory effect of neoechinulin a from the marine fungus Eurotium sp. SF-5989 through the suppression of NF-small ka, CyrillicB and p38 MAPK Pathways in lipopolysaccharide-stimulated RAW264.7 macrophages. Molecules, 2013, 18(11), 13245-13259.
Sasaki-Hamada, S.; Hoshi, M.; Niwa, Y.; Ueda, Y.; Kokaji, A.; Kamisuki, S.; Kuramochi, K.; Sugawara, F.; Oka, J. Neoechinulin A induced memory improvements and antidepressant-like effects in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 71, 155-161.
Banbury, L.K.; Shou, Q.; Renshaw, D.E.; Lambley, E.H.; Griesser, H.J.; Mon, H.; Wohlmuth, H. Compounds from Geijera parviflora with prostaglandin E2 inhibitory activity may explain its traditional use for pain relief. J. Ethnopharmacol., 2015, 163, 251-255.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [235 - 242]
Pages: 8
DOI: 10.2174/1573409914666181017100532
Price: $58

Article Metrics

PDF: 18