Utilization of Apatinib-Loaded Nanoparticles for the Treatment of Ocular Neovascularization

Author(s): Kathleen Halasz, Shannon J. Kelly, Muhammad Tajwar Iqbal, Yashwant Pathak, Vijaykumar Sutariya*.

Journal Name: Current Drug Delivery

Volume 16 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: The current treatment of ocular neovascularization requires frequent intravitreal injections of anti-vascular endothelial growth factor (VEGF) agents that cause severe side effects.

Objective: The purpose of this study is to prepare and characterize a novel nanoscale delivery system of apatinib for ocular neovascularization.

Methods: The optimized formulation showed a particle size of 135.04 nm, polydispersity index (PDI) of 0.28 ± 0.07, encapsulation efficiency (EE) of 65.92%, zeta potential (ZP) of -23.70 ± 8.69 mV, and pH of 6.49 ± 0.20. In vitro release was carried out to demonstrate a 3.13-fold increase in the sustainability of apatinib-loaded nanoparticles versus free apatinib solution.

Result: Cell viability and VEGFA and VEGFR2 expression were analyzed in animal retinal pigment epithelial (ARPE-19) cells.

Conclusion: The results confirmed the hypothesis that apatinib nanoparticles decreased toxicity (1.36 ± 0.74 fold) and efficient VEGF inhibition (3.51 ± 0.02 fold) via VEGFR2 mediation.

Keywords: Apatinib, nanoparticles, neovascularization, vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2).

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [153 - 163]
Pages: 11
DOI: 10.2174/1567201815666181017095708
Price: $58

Article Metrics

PDF: 14