Continuous Vector-free Gene Transfer with a Novel Microfluidic Chip and Nanoneedle Array

Author(s): Dong Huang, Deyao Zhao, Jinhui Li, Yuting Wu, Lili Du, Xin-Hua Xia, Xiaoqiong Li, Yulin Deng, Zhihong Li, Yuanyu Huang*.

Journal Name: Current Drug Delivery

Volume 16 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Delivery of foreign cargoes into cells is of great value for bioengineering research and therapeutic applications.

Objective: In this study, we proposed and established a carrier-free gene delivery platform utilizing staggered herringbone channel and silicon nanoneedle array, to achieve high-throughput in vitro gene transfection.

Methods: With this microchip, fluidic micro vortices could be induced by the staggered-herringboneshaped grooves within the channel, which increased the contact frequency of the cells with the channel substrate. Transient disruptions on the cell membrane were well established by the nanoneedle array on the substrate.

Result: Compared to the conventional nanoneedle-based delivery system, proposed microfluidic chip achieved flow-through treatment with high gene transfection efficiency (higher than 20%) and ideal cell viability (higher than 95%).

Conclusion: It provides a continuous processing environment that can satisfy the transfection requirement of large amounts of biological molecules, showing high potential and promising prospect for both basic research and clinical application.

Keywords: Drug delivery, gene therapy, chaotic microfluidics, nanoneedle array, staggered herringbone channel, microfluidic chip.

[1]
McNaughton, B.R.; Cronican, J.J.; Thompson, D.B.; Liu, D.R. Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proc. Natl. Acad. Sci. USA, 2009, 106(15), 6111-6116.
[2]
Zhou, J.; Wu, Y.; Wang, C.; Cheng, Q.; Han, S.; Wang, X.; Zhang, J.; Deng, L.; Zhao, D.; Du, L.; Cao, H.; Liang, Z.; Huang, Y.; Dong, A. pH-sensitive nanomicelles for high-efficiency siRNA delivery in vitro and in vivo: An insight into the design of polycations with robust cytosolic release. Nano Lett., 2016, 16(11), 6916-6923.
[3]
Crooke, S.T.; Witztum, J.L.; Bennett, C.F.; Baker, B.F. RNA-targeted therapeutics. Cell Metab., 2018, 27(4), 714-739.
[4]
Chou, L.Y.; Ming, K.; Chan, W.C. Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev., 2011, 40(1), 233-245.
[5]
Leader, B.; Baca, Q.J.; Golan, D.E. Protein therapeutics: A summary and pharmacological classification. Nat. Rev. Drug Discov., 2008, 7(1), 21-39.
[6]
Kim, D.; Kim, C.H.; Moon, J.I.; Chung, Y.G.; Chang, M.Y.; Han, B.S.; Ko, S.; Yang, E.; Cha, K.Y.; Lanza, R.; Kim, K.S. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 2009, 4(6), 472-476.
[7]
Zhou, Z.; Liu, X.; Zhu, D.; Wang, Y.; Zhang, Z.; Zhou, X.; Qiu, N.; Chen, X.; Shen, Y. Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Adv. Drug Deliv. Rev., 2017, 115, 115-154.
[8]
Xu, H.; Li, Z.; Si, J. Nanocarriers in gene therapy: A review. J. Biomed. Nanotechnol., 2014, 10(12), 3483-3507.
[9]
Huang, Y. Preclinical and clinical advances of GalNAc-decorated nucleic acid therapeutics. Mol. Ther. Nucleic Acids, 2017, 6, 116-132.
[10]
Huang, Y.Y.; Liang, Z.C. Asialoglycoprotein receptor and its application in liver-targeted drug delivery. Prog. Biochem. Biophys., 2015, 42(6), 501-510.
[11]
Cavallaro, G.; Sardo, C.; Scialabba, C.; Licciardi, M.; Giammona, G. Smart inulin-based polycationic nanodevices for siRNA delivery. Curr. Drug Deliv., 2017, 14(2), 224-230.
[12]
Cheng, Q.; Huang, Y.; Zheng, H.; Wei, T.; Zheng, S.; Huo, S.; Wang, X.; Du, Q.; Zhang, X.; Zhang, H.Y.; Liang, X.J.; Wang, C.; Tang, R.; Liang, Z. The effect of guanidinylation of PEGylated poly(2-aminoethyl methacrylate) on the systemic delivery of siRNA. Biomaterials, 2013, 34(12), 3120-3131.
[13]
Yin, H.; Kauffman, K.J.; Anderson, D.G. Delivery technologies for genome editing. Nat. Rev. Drug Discov., 2017, 16(6), 387-399.
[14]
Lin, L.; Li, X.; Yang, Y.; Jing, L.; Yue, X.; Chen, X.; Dai, Z. Chitosan functionalized CuS nanoparticles boots gene transfection via photothermal effect. Curr. Drug Deliv., 2017, 14(3), 334-341.
[15]
Kay, M.A.; Glorioso, J.C.; Naldini, L. Viral vectors for gene therapy: The art of turning infectious agents into vehicles of therapeutics. Nat. Med., 2001, 7(1), 33-40.
[16]
Thomas, C.E.; Ehrhardt, A.; Kay, M.A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet., 2003, 4(5), 346-358.
[17]
Hu, J.; Sheng, Y.; Shi, J.; Yu, B.; Yu, Z.; Liao, G. Long circulating polymeric nanoparticles for gene/drug delivery. Curr. Drug Metab., 2018, 19(9), 723-738.
[18]
Juliano, R.L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res., 2016, 44(14), 6518-6548.
[19]
Wu, Y.C.; Wu, T.H.; Clemens, D.L.; Lee, B.Y.; Wen, X.; Horwitz, M.A.; Teitell, M.A.; Chiou, P.Y. Massively parallel delivery of large cargo into mammalian cells with light pulses. Nat. Methods, 2015, 12(5), 439-444.
[20]
Gallego-Perez, D.; Chang, L.; Shi, J.; Ma, J.; Kim, S.H.; Zhao, X.; Malkoc, V.; Wang, X.; Minata, M.; Kwak, K.J.; Wu, Y.; Lafyatis, G.P.; Lu, W.; Hansford, D.J.; Nakano, I.; Lee, L.J. On-chip clonal analysis of glioma-stem-cell motility and therapy resistance. Nano Lett., 2016, 16(9), 5326-5332.
[21]
Gallego-Perez, D.; Pal, D.; Ghatak, S.; Malkoc, V.; Higuita-Castro, N.; Gnyawali, S.; Chang, L.; Liao, W.C.; Shi, J.; Sinha, M.; Singh, K.; Steen, E.; Sunyecz, A.; Stewart, R.; Moore, J.; Ziebro, T.; Northcutt, R.G.; Homsy, M.; Bertani, P.; Lu, W.; Roy, S.; Khanna, S.; Rink, C.; Sundaresan, V.B.; Otero, J.J.; Lee, L.J.; Sen, C.K. Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue. Nat. Nanotechnol., 2017, 12(10), 974-979.
[22]
Chang, L.; Li, L.; Shi, J.; Sheng, Y.; Lu, W.; Gallego-Perez, D.; Lee, L.J. Micro-/nanoscale electroporation. Lab Chip, 2016, 16(21), 4047-4062.
[23]
Wei, Z.; Zheng, S.; Wang, R.; Bu, X.; Ma, H.; Wu, Y.; Zhu, L.; Hu, Z.; Liang, Z.; Li, Z. A flexible microneedle array as low-voltage electroporation electrodes for in vivo DNA and siRNA delivery. Lab Chip, 2014, 14(20), 4093-4102.
[24]
Huang, H.; Wei, Z.; Huang, Y.; Zhao, D.; Zheng, L.; Cai, T.; Wu, M.; Wang, W.; Ding, X.; Zhou, Z.; Du, Q.; Li, Z.; Liang, Z. An efficient and high-throughput electroporation microchip applicable for siRNA delivery. Lab Chip, 2011, 11(1), 163-172.
[25]
van Wamel, A.; Kooiman, K.; Harteveld, M.; Emmer, M.; ten Cate, F.J.; Versluis, M.; de Jong, N. Vibrating microbubbles poking individual cells: Drug transfer into cells via sonoporation. J. Control. Release, 2006, 112(2), 149-155.
[26]
Escoffre, J.M.; Novell, A.; Piron, J.; Zeghimi, A.; Doinikov, A.; Bouakaz, A. Microbubble attenuation and destruction: Are they involved in sonoporation efficiency? IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2013, 60(1), 46-52.
[27]
Tirlapur, U.K.; Konig, K. Cell biology - Targeted transfection by femtosecond laser. Nature, 2002, 418(6895), 290-291.
[28]
Fan, Q.; Hu, W.; Ohta, A.T. Laser-induced microbubble poration of localized single cells. Lab Chip, 2014, 14(9), 1572-1578.
[29]
Sharei, A.; Zoldan, J.; Adamo, A.; Sim, W.Y.; Cho, N.; Jackson, E.; Mao, S.; Schneider, S.; Han, M.J.; Lytton-Jean, A.; Basto, P.A.; Jhunjhunwala, S.; Lee, J.; Heller, D.A.; Kang, J.W.; Hartoularos, G.C.; Kim, K.S.; Anderson, D.G.; Langer, R.; Jensen, K.F. A vector-free microfluidic platform for intracellular delivery. Proc. Natl. Acad. Sci. USA, 2013, 110(6), 2082-2087.
[30]
Shalek, A.K.; Gaublomme, J.T.; Wang, L.; Yosef, N.; Chevrier, N.; Andersen, M.S.; Robinson, J.T.; Pochet, N.; Neuberg, D.; Gertner, R.S.; Amit, I.; Brown, J.R.; Hacohen, N.; Regev, A.; Wu, C.J.; Park, H. Nanowire-mediated delivery enables functional interrogation of primary immune cells: Application to the analysis of chronic lymphocytic leukemia. Nano Lett., 2012, 12(12), 6498-6504.
[31]
Xie, X.; Xu, A.M.; Angle, M.R.; Tayebi, N.; Verma, P.; Melosh, N.A. Mechanical model of vertical nanowire cell penetration. Nano Lett., 2013, 13(12), 6002-6008.
[32]
Wang, Z.; Yang, Y.; Xu, Z.; Wang, Y.; Zhang, W.; Shi, P. Interrogation of cellular innate immunity by diamond-nanoneedle-assisted intracellular molecular fishing. Nano Lett., 2015, 15(10), 7058-7063.
[33]
Jiang, K.; Fan, D.; Belabassi, Y.; Akkaraju, G.; Montchamp, J.L.; Coffer, J.L. Medicinal surface modification of silicon nanowires: Impact on calcification and stromal cell proliferation. ACS Appl. Mater. Interfaces, 2009, 1(2), 266-269.
[34]
Shalek, A.K.; Robinson, J.T.; Karp, E.S.; Lee, J.S.; Ahn, D.R.; Yoon, M.H.; Sutton, A.; Jorgolli, M.; Gertner, R.S.; Gujral, T.S.; MacBeath, G.; Yang, E.G.; Park, H. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc. Natl. Acad. Sci. USA, 2010, 107(5), 1870-1875.
[35]
Chiappini, C.; Martinez, J.O.; De Rosa, E.; Almeida, C.S.; Tasciotti, E.; Stevens, M.M. Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: Exploring the biointerface. ACS Nano, 2015, 9(5), 5500-5509.
[36]
Chiappini, C.; De Rosa, E.; Martinez, J.O.; Liu, X.; Steele, J.; Stevens, M.M.; Tasciotti, E. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater., 2015, 14(5), 532-539.
[37]
Chen, X.; Zhu, G.; Yang, Y.; Wang, B.; Yan, L.; Zhang, K.Y.; Lo, K.K.; Zhang, W. A diamond nanoneedle array for potential high-throughput intracellular delivery. Adv. Healthc. Mater., 2013, 2(8), 1103-1107.
[38]
Wang, Y.; Yang, Y.; Yan, L.; Kwok, S.Y.; Li, W.; Wang, Z.; Zhu, X.; Zhu, G.; Zhang, W.; Chen, X.; Shi, P. Poking cells for efficient vector-free intracellular delivery. Nat. Commun., 2014, 5, 4466.
[39]
Stroock, A.D.; Dertinger, S.K.; Ajdari, A.; Mezic, I.; Stone, H.A.; Whitesides, G.M. Chaotic mixer for microchannels. Science, 2002, 295(5555), 647-651.
[40]
Stott, S.L.; Hsu, C.H.; Tsukrov, D.I.; Yu, M.; Miyamoto, D.T.; Waltman, B.A.; Rothenberg, S.M.; Shah, A.M.; Smas, M.E.; Korir, G.K.; Floyd, F.P., Jr; Gilman, A.J.; Lord, J.B.; Winokur, D.; Springer, S.; Irimia, D.; Nagrath, S.; Sequist, L.V.; Lee, R.J.; Isselbacher, K.J.; Maheswaran, S.; Haber, D.A.; Toner, M. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. USA, 2010, 107(43), 18392-18397.
[41]
Wang, S.; Liu, K.; Liu, J.; Yu, Z.T.; Xu, X.; Zhao, L.; Lee, T.; Lee, E.K.; Reiss, J.; Lee, Y.K.; Chung, L.W.; Huang, J.; Rettig, M.; Seligson, D.; Duraiswamy, K.N.; Shen, C.K.; Tseng, H.R. Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew. Chem. Int. Ed. Engl., 2011, 50(13), 3084-3088.
[42]
Luo, D.; Saltzman, W.M. Synthetic DNA delivery systems. Nat. Biotechnol., 2000, 18(1), 33-37.
[43]
Obataya, I.; Nakamura, C.; Han, S.; Nakamura, N.; Miyake, J. Mechanical sensing of the penetration of various nanoneedles into a living cell using atomic force microscopy. Biosens. Bioelectron., 2005, 20(8), 1652-1655.
[44]
Dai, W.J.; Zhu, L.Y.; Yan, Z.Y.; Xu, Y.; Wang, Q.L.; Lu, X.J. CRISPR-Cas9 for in vivo gene therapy: promise and hurdles. Mol. Ther. Nucleic Acids, 2016, 5, e349.
[45]
Afzal, S.; Wilkening, S.; von Kalle, C.; Schmidt, M.; Fronza, R. GENE-IS: Time-efficient and accurate analysis of viral integration events in large-scale gene therapy data. Mol. Ther. Nucleic Acids, 2017, 6, 133-139.
[46]
El Ashkar, S.; Van Looveren, D.; Schenk, F.; Vranckx, L.S.; Demeulemeester, J.; De Rijck, J.; Debyser, Z.; Modlich, U.; Gijsbers, R. Engineering next-generation BET-Independent MLV Vectors for safer gene therapy. Mol. Ther. Nucleic Acids, 2017, 7, 231-245.
[47]
Falkenhagen, A.; Singh, J.; Asad, S.; Leontyev, D.; Read, S.; Zuniga-Pflucker, J.C.; Joshi, S. Control of HIV infection in vivo using gene therapy with a secreted entry inhibitor. Mol. Ther. Nucleic Acids, 2017, 9, 132-144.
[48]
Chen, C.; Yue, D.; Lei, L.; Wang, H.; Lu, J.; Zhou, Y.; Liu, S.; Ding, T.; Guo, M.; Xu, L. Promoter-operating targeted expression of gene therapy in cancer: Current stage and prospect. Mol. Ther. Nucleic Acids, 2018, 11, 508-514.
[49]
McCrudden, C.M.; McBride, J.W.; McCaffrey, J.; Ali, A.A.; Dunne, N.J.; Kett, V.L.; Coulter, J.A.; Robson, T.; McCarthy, H.O. Systemic RALA/iNOS nanoparticles: A potent gene therapy for metastatic breast cancer coupled as a biomarker of treatment. Mol. Ther. Nucleic Acids, 2017, 6, 249-258.
[50]
Schimmer, J.; Breazzano, S. Investor outlook: Rising from the Ashes; GSK’s European Approval of Strimvelis for ADA-SCID. Hum. Gene Ther. Clin. Dev., 2016, 27(2), 57-61.
[51]
Mullard, A. EMA greenlights second gene therapy. Nat. Rev. Drug Discov., 2016, 15(5), 299.
[52]
Stirnadel-Farrant, H.; Kudari, M.; Garman, N.; Imrie, J.; Chopra, B.; Giannelli, S.; Gabaldo, M.; Corti, A.; Zancan, S.; Aiuti, A.; Cicalese, M.P.; Batta, R.; Appleby, J.; Davinelli, M.; Ng, P. Gene therapy in rare diseases: The benefits and challenges of developing a patient-centric registry for Strimvelis in ADA-SCID. Orphanet J. Rare Dis., 2018, 13(1), 49.
[53]
Guo, S.; Huang, Y.; Zhang, W.; Wang, W.; Wei, T.; Lin, D.; Xing, J.; Deng, L.; Du, Q.; Liang, Z.; Liang, X.J.; Dong, A. Ternary complexes of amphiphilic polycaprolactone-graft-poly (N,N-dimethylaminoethyl methacrylate), DNA and polyglutamic acid-graft-poly(ethylene glycol) for gene delivery. Biomaterials, 2011, 32(18), 4283-4292.
[54]
Guo, S.; Huang, Y.; Wei, T.; Zhang, W.; Wang, W.; Lin, D.; Zhang, X.; Kumar, A.; Du, Q.; Xing, J.; Deng, L.; Liang, Z.; Wang, P.C.; Dong, A.; Liang, X.J. Amphiphilic and biodegradable methoxy polyethylene glycol-block-(polycaprolactone-graft-poly(2-(dimethylamino)ethyl methacrylate)) as an effective gene carrier. Biomaterials, 2011, 32(3), 879-889.
[55]
Huang, D.; Zhao, D.; Wang, X.; Li, C.; Yang, T.; Du, L.; Wei, Z.; Cheng, Q.; Cao, H.; Liang, Z.; Huang, Y.; Li, Z. Efficient delivery of nucleic acid molecules into skin by combined use of microneedle roller and flexible interdigitated electroporation array. Theranostics, 2018, 8(9), 2361-2376.
[56]
Guo, S.; Huang, Y.; Jiang, Q.; Sun, Y.; Deng, L.; Liang, Z.; Du, Q.; Xing, J.; Zhao, Y.; Wang, P.C.; Dong, A.; Liang, X.J. Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano, 2010, 4(9), 5505-5511.
[57]
Sun, J.Y.; Chatterjee, S.; Wong, K.K., Jr Immunogenic issues concerning recombinant adeno-associated virus vectors for gene therapy. Curr. Gene Ther., 2002, 2(4), 485-500.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 2
Year: 2019
Page: [164 - 170]
Pages: 7
DOI: 10.2174/1567201815666181017095044

Article Metrics

PDF: 26
HTML: 6
PRC: 1