Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

A Structural Chemistry Perspective on the Antimalarial Properties of Thiosemicarbazone Metal Complexes

Author(s): Kelly L. Summers*

Volume 19, Issue 7, 2019

Page: [569 - 590] Pages: 22

DOI: 10.2174/1389557518666181015152657

Price: $65

Abstract

Malaria is a potentially life-threatening disease, affecting approx. 214 million people worldwide. Malaria is caused by a protozoan, Plasmodium falciparum, which is transmitted through the Anopheles mosquito. Malaria treatment is becoming more challenging due to rising resistance against the antimalarial drug, chloroquine. Novel compounds that target aspects of parasite development are being explored in attempts to overcome this wide-spread problem. Anti-malarial drugs target specific aspects of parasite growth and development within the human host. One of the most effective targets is the inhibition of hematin formation, either through inhibition of cysteine proteases or through iron chelation. Metal-thiosemicarbazone (TSC) complexes have been tested for antimalarial efficacy against drug-sensitive and drug-resistant strains of P. falciparum. An array of TSC complexes with numerous transition metals, including ruthenium, palladium, and gold has displayed antiplasmodial activity. Au(I)- and Pd(II)-TSC complexes displayed the greatest potency; 4-amino-7-chloroquine moieties were also found to improve antiplasmodial activity of TSCs. Although promising metal-TSC drug candidates have been tested against laboratory strains of P. falciparum, problems arise when attempting to compare between studies. Future work should strive to completely characterize synthesized metal-TSC structures and assess antiplasmodial potency against several drug-sensitive and drugresistant strains. Future studies need to precisely determine IC50 values for antimalarial drugs, chloroquine and ferroquine, to establish accurate standard values. This will make future comparisons across studies more feasible and potentially help reveal structure-function relationships. Investigations that attempt to link drug structures or properties to antiplasmodial mechanism(s) of action will aid in the design of antimalarial drugs that may combat rising drug resistance.

Keywords: Antimalarial drugs, anti-Plasmodium drugs, thiosemicarbazone metal complexes, drug mechanism of action, structural chemistry of metal-thiosemicarbazones, transition metal complexes, heavy metal complexes, metallodrugs.

Graphical Abstract
[1]
Aly, A.S.I.; Vaughan, A.M.; Kappe, S.H.I. Malaria parasite development in the mosquito and infection of the mammalian host. Annu. Rev. Microbiol., 2009, 63, 195-221.
[2]
Cowman, A.F.; Crabb, B.S. Invasion of red blood cells by malaria parasites. Cell, 2006, 124, 755-766.
[3]
Gilson, P.R.; Crabb, B.S. Morphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoites. Int. J. Parasitol., 2009, 39, 91-96.
[4]
World Malaria Report 2015.who.int/malaria/publications/world-malaria-report-2015/report/en/ (accessed 14 December 2016).
[5]
Warhurst, D.C. Understanding resistance to antimalarial 4-aminoquinolines, cinchona alkaloids and the highly hydrophobic arylaminoalcohols. Curr. Sci., 2007, 92(11), 1556-1560.
[6]
Jana, S.; Paliwal, J. Novel molecular targets for antimalarial chemotherapy. Int. J. Antimicrob. Agents, 2007, 30, 4-10.
[7]
Mital, A. Recent advances in antimalarial compounds and their patents. Curr. Med. Chem., 2007, 14, 759-773.
[8]
Yu, Y.; Kalinowski, D.S.; Kovacevic, Z.; Siafakas, A.R.; Jansson, P.J.; Stefani, C.; Lovejoy, D.B.; Sharpe, P.C.; Bernhardt, P.V.; Richardson, D.R. Thiosemicarbazones from the old to new: Iron chelators that are more than just ribonucleotide reductase inhibitors. J. Med. Chem., 2009, 52, 5271-5294.
[9]
Muller, I.B.; Gupta, R.D.; Luerson, K.; Wrenger, C.; Walter, R.D. Assessing the polyamine metabolism of Plasmodium falciparum as chemotherapeutic target. Mol. Biochem. Parasitol., 2008, 160, 1-7.
[10]
Sidhu, A.B.S.; Verdier-Pinard, D.; Fidock, D.A. Chloroquine resistance in plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science, 2002, 298(5591), 210-213.
[11]
De Villers, K.A.; Egan, T.J. Recent advances in the discovery of haem-targeting drugs for malaria and schistosomiasis. Molecules, 2009, 14, 2868-2887.
[12]
Egan, T.J.; Marques, H.M. The role of haem in the activity of chloroquine and related antimalarial drugs. Coord. Chem. Rev., 1999, 190-192, 493-517.
[13]
Nagel, R.L.; Traore, O.; Carnevale, P.; Kaptuenoche, L.; Elion, J.; Labie, D. In Pilot-study of the use of desferrioxamine in the treatment of Plasmodium-falciparum malaria. Clin. Res., 1991, A244-A244.
[14]
Traore, O.; Carnevale, P.; Kaptuenoche, L.; Mbede, J.; Desfontaine, M.; Elion, J.; Labie, D.; Nagel, R.L. Preliminary-report on the use of desferrioxamine in the treatment of Plasmodium-falciparum malaria. Am. J. Hematol., 1991, 37(3), 206-208.
[15]
Gangarossa, S.; Schiliro, G.; Russo, R. Desferrioxamine in the treatment of Plasmodium falciparum malaria. Am. J. Hematol., 1992, 41(1), 67.
[16]
Walcourt, A.; Kuranstin-Mills, J.; Kwagyan, J.; Adenuga, B.B.; Kalinowski, D.; Lovejoy, D.B.; Lane, D.J.R.; Richardson, D.R. Antiplasmodial activity of aroylhydrazone and thiosemicarbazone iron chelators: Effect on erythrocyte membrane integrity, parasite development and the intracellular labile iron pool. J. Inorg. Biochem., 2013, 129, 43-51.
[17]
Rubin, H.; Salem, J.S.; Li, L-S.; Yang, F-D.; Mama, S.; Wang, Z-M.; Fisher, A.; Hamann, C.S.; Cooperman, B.S. Cloning, sequence determination, and regulation of the ribonucleotide reductase subunits from Plasmodium falciparum: A target for antimalarial therapy. Proc. Acad. Nat. Sci. USA., 1993, 90, 9280-9284.
[18]
Lobana, T.S.; Sharma, R.; Bawa, G.; Khanna, S. Bonding and structure trends of thiosemicarbazone derivatives of metals—An overview. Coord. Chem. Rev., 2009, 253, 977-1055.
[19]
Adams, M.; De Kock, C.; Smith, P.J.; Chibale, K.; Smith, G.S. Synthesis, characterization and antiplasmodial evaluation of cyclopalladated thiosemicarbazone complexes. J. Organomet. Chem., 2013, 736, 19-26.
[20]
Greenbaum, D.C.; Mackey, Z.; Hansell, E.; Doyle, P.; Gut, J.; Caffrey, C.R.; Lehrman, J.; Rosenthal, P.J.; Mckerrow, J.H.; Chibale, K. Synthesis and structure-activity relationships of parasiticidal thiosemicarbazone cysteine protease inhibitors against Plasmodium falciparum, Trypanosoma brucei, and Trypanosoma cruzi. J. Med. Chem., 2004, 47, 3212-3219.
[21]
Chellan, P.; Naser, S.; Vivas, L.; Chibale, K.; Smith, G.S. Cyclopalladated complexes containing tridentate thiosemicarbazone ligands of biological significance: Synthesis, structure and antimalarial activity. J. Organomet. Chem., 2010, 695, 2225-2232.
[22]
Matesanz, A.I.; Souza, P. α-N-Heterocyclic thiosemicarbazone derivatives as potential antitumor agents: A structure-activity relationships approach. Mini Rev. Med. Chem., 2009, 9, 1389-1396.
[23]
Moorthy, N.S.H.N.; Cerqueira, N.M.F.S.A.; Ramos, M.J.; Fernandes, P.A. Aryl- and Heteroaryl-Thiosemicarbazone derivatives and their metal complexes: A pharmacological template. Recent Patents Anticancer Drug Discov., 2013, 8, 1-14.
[24]
Vieira, R.P.; Beraldo, H. Design of Schiff Base-derived ligands: Applications in therapeutics and medical diagnosis.In Ligand Design in Medicinal Inorganic Chemistry; Storr, T., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2014.
[25]
West, D.X.; Liberta, A.E.; Padhye, S.B.; Chikate, R.C.; Sonawane, P.B.; Kumbhar, A.S.; Yerande, R.G. Thiosemicarbazone complexes of copper(I1): structural and biological studies. Coord. Chem. Rev., 1993, 123, 49-71.
[26]
Crouch, P.J.; Barnham, K.J. Therapeutic redistribution of metal ions to treat Alzheimer’s disease. Acc. Chem. Res., 2012, 45(9), 1604-1611.
[27]
Mckenzie-Nickson, S.; Bush, A.I.; Barnham, K.J. Bis(thiosemicarbazone) metal complexes as therapeutics for neurodegenerative diseases. Curr. Top. Med. Chem., 2016, 16(27), 3058-3068.
[28]
Paterson, B.M.; Donnelly, P.S. Copper complexes of bis(thiosemicarbazones): From chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals. Chem. Soc. Rev., 2011, 40, 3005-3018.
[29]
Birch, N.; Wang, X.; Chong, H-S. Iron chelators as therapeutic iron depletion agents. Expert Opin. Ther. Pat., 2006, 16(11), 1533-1556.
[30]
Ettari, R.; Bova, F.; Zappala, M.; Grasso, S.; Micale, N. Falcipain-2 Inhibitors. Med. Res. Rev., 2010, 30(1), 136-167.
[31]
Mertens, A.; Bunge, R. The present status of the chemotherapy of tuberculosis with conteben, a substance of the thiosemicarbazone series - A review. Am. Rev. Tuberc., 1950, 61(1), 20-38.
[32]
Wani, W.A.; Jameel, E.; Baig, U.; Mumtazuddin, S.; Hun, L.T. Ferroquine and its derivatives: New generation of antimalarial agents. Eur. J. Med. Chem., 2015, 101, 534-551.
[33]
Weinberg, E.D.; Moon, J. Malaria and iron: History and review. Drug Metab. Rev., 2009, 41(4), 644-662.
[34]
Dehdashti, F. . Phase II Trial of 64Cu-ATSM PET/CT in Cervical Cancer. (NCT00794339 or ACRIN-6682); 2010.
[35]
Beckman, J. Summary for ALS Patients about CuATSM and Clinical Trials, 2016.blogs.oregonstate.edu/linuspaulinginstitute/2016/ 02/03/als-patients-cuatsm-clinical-trials/
[36]
Williams, J.R.; Trias, E.; Beilby, P.R.; Lopez, N.I.; Labut, E.M.; Bradford, C.S.; Roberts, B.R.; Mcallum, E.J.; Crouch, P.J.; Rhoads, T.W.; Pereira, C.; Son, M.; Elliot, J.L.; Franco, M.C.; Estévez, A.G.; Barbeito, L.; Beckman, J.S. Copper delivery to the CNS by CuATSM effectively treats motor neuron disease in SODG93A mice co-expressing the Copper-Chaperone-for-SOD. Neurobiol. Dis., 2016, 89, 1-9.
[37]
Casas, J.S.; Garcia-Tasende, M.S.; Sordo, J. Main group metal complexes of semicarbazones and thiosemicarbazones. A structural review. Coord. Chem. Rev., 2000, 209, 197-261.
[38]
Beraldo, H.; Gambino, D. The wide pharmacological versatility of semicarbazones, thiosemicarbazones and their metal complexes. Mini Rev. Med. Chem., 2004, 4, 31-39.
[39]
Glisic, B.D.; Djuran, M.I. Gold complexes as antimicrobial agents: An overview of different biological activities in relation to the oxidation state of the gold ion and the ligand structure. Dalton Trans., 2014, 43, 5950-5970.
[40]
Nasser, A.M. Bioactive palladium azomethine chelates, a review of recent research. Synth. React. Inorg. Met.-Org. Chem., 2016, 46, 1349-1366.
[41]
Pelosi, G. Thiosemicarbazone metal complexes: From structure to activity. Open Crystallograph.j 2010, 3, 16-28.
[42]
Shim, J.; Jyothi, N.R.; Farook, N.M. Biological applications of thiosemicarbazones and their metal complexes. Asian J. Chem., 2013, 25(10), 5838-5840.
[43]
Chibale, K.; Musonda, C.C. The synthesis of parasitic cysteine protease and trypanothione reductase inhibitors. Curr. Med. Chem., 2003, 10, 1863-1889.
[44]
Adams, M.; De Kock, C.; Smith, P.J.; Malatji, P.; Hutton, A.T.; Chibale, K.; Smith, G.S. Heterobimetallic ferrocenylthiosemicarbazone palladium(II) complexes: Synthesis, electrochemistry and antiplasmodial evaluation. J. Organomet. Chem., 2013, 739, 15-20.
[45]
Biot, C.; Pradines, B.; Sergeant, M-H.; Gut, J.; Rosenthal, P.J.; Chibale, K. Design, synthesis, and antimalarial activity of structural chimeras of thiosemicarbazone and ferroquine analogues. Bioorg. Med. Chem. Lett., 2007, 17, 6436-6438.
[46]
Adams, M.; Li, Y.; Khot, H.; De Kock, C.; Smith, P.J.; Land, K.M.; Chibale, K.; Smith, G.S. The synthesis and antiparasitic activity of aryl- and ferrocenyl-derived thiosemicarbazone ruthenium(II)–arene complexes. Dalton Trans., 2013, 42, 4677-4685.
[47]
Baartzes, N.; Stringer, T.; Okombo, J.; Seldon, R.; Warner, D.F.; De Kock, C.; Smith, P.J.; Smith, G.S. Mono- and polynuclear ferrocenylthiosemicarbazones: Synthesis, characterisation and antimicrobial evaluation. J. Organomet. Chem., 2016, 819, 166-172.
[48]
Costa, R.F.F.; Rebolledo, A.P.; Matencio, T.; Calado, H.D.R.; Ardisson, J.D.; Cortes, M.E.; Rodrigues, B.L.; Beraldo, H. Metal complexes of 2-benzoylpyridine semicarbazone: spectral, electrochemical and structural studies. J. Coord. Chem., 2006, 58, 1307-1319.
[49]
Khanye, S.D.; Gut, J.; Rosenthal, P.J.; Chibale, K.; Smith, G.S. Ferrocenylthiosemicarbazones conjugated to a poly(propyleneimine) dendrimer scaffold: Synthesis and in vitro antimalarial activity. J. Organomet. Chem., 2011, 696, 3296-3300.
[50]
Shao, J.; Zhou, B.; Dibilio, A.J.; Zhu, L.; Wang, T.; Qi, C.; Shih, J.; Yen, Y. A Ferrous-triapine complex mediates formation of reactive oxygen species that inactivate human ribonucleotide reductase. Mol. Cancer Ther., 2006, 5, 586-592.
[51]
Walcourt, A.; Loyevsky, M.; Lovejoy, D.B.; Gordeuk, V.R.; Richardson, D.R. Novel aroylhydrazone and thiosemicarbazone iron chelators with anti-malarial activity against chloroquine-resistant and -sensitive parasites. Int. J. Biochem. Cell Biol., 2004, 36.
[52]
Agrawal, R.K.; Prasad, S. Synthesis, spectroscopic and physiochemical characterization and biological activity of Co(II) and Ni(II) coordination compounds with 4-aminoantipyrine thiosemicarbazone. Bioinorg. Chem. Appl., 2005, 3(3-4), 271-288.
[53]
Bahl, D.; Athar, F.; Soares, M.B.P.; De Sa, M.S.; Moreira, D.R.M.; Srivastava, R.M.; Leite, A.C.L.; Azam, A. Structure-activity relationships of mononuclear metal-thiosemicarbazone complexes endowed with potent antiplasmodial and antiamoebic activities. Bioorg. Med. Chem. Lett., 2010, 18, 6857-6864.
[54]
Adams, M.; Barnard, L.; De Kock, C.; Smith, P.J.; Wiesner, L.; Chibale, K.; Smith, G.S. Cyclopalladated organosilane–tethered thiosemicarbazones: novel strategies for improving antiplasmodial activity. Dalton Trans., 2016, 45, 5514-5520.
[55]
Adams, M.; De Kock, C.; Smith, P.J.; Land, K.M.; Liu, N.; Hopper, M.; Hsiao, A.; Burgoyne, A.R.; Stringer, T.; Meyer, M.; Wiesner, L.; Chibale, K.; Smith, G.S. Improved antiparasitic activity by incorporation of organosilane entities into half-sandwich ruthenium(II) and rhodium(III) thiosemicarbazone complexes. Dalton Trans., 2015, 44, 2456-2468.
[56]
Anchuri, S.S.; Dhulipala, S.; Thota, S.; Bongoni, R.N.; Yerra, R.; Reddy, A.R.N. Antimicrobial and antimalarial activity of novel synthetic mononuclear ruthenium(II) compounds. J. Chin. Chem. Soc., 2013, 60, 153-159.
[57]
Chellan, P.; Shunmoogam-Gounden, N.; Hendricks, D.T.; Gut, J.; Rosenthal, P.J.; Lategan, C.; Smith, P.J.; Chibale, K.; Smith, G.S. Synthesis, structure and in vitro biological screening of palladium(II) complexes of functionalised salicylaldimine thiosemicarbazones as antimalarial and anticancer agents. Eur. J. Inorg. Chem., 2010, 2010, 3520-3528.
[58]
Chellan, P.; Land, K.M.; Shokar, A.; Au, A.; An, S.H.; Clavel, C.M.; Dyson, P.J.; De Kock, C.; Smith, P.J.; Chibale, K.; Smith, G.S. Exploring the versatility of cycloplatinated thiosemicarbazones as antitumor and antiparasitic agents. Organometallics, 2012, 31, 5791-5799.
[59]
Khanye, S.D.; Bathori, N.B.; Smith, G.S.; Chibale, K. Gold(I) derived thiosemicarbazone complexes with rare halogen–halogen interaction–reduction of [Au(damp-C1,N)Cl2]. Dalton Trans., 2010, 39, 2697-2700.
[60]
Khanye, S.D.; Smith, G.S.; Lategan, C.; Smith, P.J.; Gut, J.; Rosenthal, P.J.; Chibale, K. Synthesis and in vitro evaluation of gold(I) thiosemicarbazone complexes for antimalarial activity. J. Inorg. Biochem., 2010, 104, 1079-1083.
[61]
Khanye, S.D.; Wan, B.; Franzhlau, S.G.; Gut, J.; Rosenthal, P.J.; Smith, G.S.; Chibale, K. Synthesis and in vitro antimalarial and antitubercular activity of gold(III) complexes containing thiosemicarbazone ligands. J. Organomet. Chem., 2011, 696, 3392-3396.
[62]
Molter, A.; Rust, J.; Lehmann, C.W.; Deepa, G.; Chiba, P.; Mohr, F. Synthesis, structures and anti-malaria activity of some gold(I) phosphine complexes containing seleno- and thiosemicarbazonato ligands. Dalton Trans., 2011, 40, 9810-9820.
[63]
Navarro, M.; Vasquez, F.; Sanchez-Delgado, R.A.; Perez, H.; Sinou, V.; Schrevel, J. Toward a novel metal-based chemotherapy against tropical diseases. 7. Synthesis and in vitro antimalarial activity of new gold-chloroquine complexes. J. Med. Chem., 2004, 47, 5204-5209.
[64]
Chipeleme, A.; Gut, J.; Rosenthal, P.J.; Chibale, K. Synthesis and biological evaluation of phenolic Mannich bases of benzaldehyde and (thio)semicarbazone derivatives against the cysteine protease falcipain-2 and a chloroquine resistant strain of Plasmodium falciparum. Bioorg. Med. Chem. Lett., 2007, 15, 273-282.
[65]
Lo, Y-C.; Su, W-C.; Ko, T-P.; Wang, N-C.; Wang, A.H-J. Terpyridine platinum(II) complexes inhibit cysteine proteases by binding to active-site cysteine. J. Biomol. Struct. Dyn., 2011, 29(2), 267-282.
[66]
Sweeney, D.; Raymera, M.L.; Lockwood, T.D. Antidiabetic and antimalarial biguanide drugs are metal-interactive antiproteolytic agents. Biochem. Pharmacol., 2003, 66, 663-677.
[67]
Bailey-Wood, R.; Blayney, L.; Anjuir, J.R.; Jacobs, A. The effects of iron deficiency on rat liver enzymes. Br. J. Exp. Pathol., 1975, 56, 193-198.
[68]
Trossini, G.H.G.; Guido, R.V.C.; Oliva, G.; Ferreira, E.I.; Andricopulo, A.D. Quantitative structure–activity relationships for a series of inhibitors of cruzain from Trypanosoma cruzi: Molecular modeling, CoMFA and CoMSIA studies. J. Mol. Graph. Model., 2009, 28, 3-11.
[69]
Farrel, N. Biomedical uses and applications of inorganic chemistry. An overview. Coord. Chem. Rev., 2002, 232, 1-4.
[70]
Agrawal, K.C.; Booth, B.A.; Moore, E.C.; Santorelli, A. Potential antitumor agents. 6. Possible irreversible inhibitors of ribonucleoside diphosphate reductase. J. Med. Chem., 1972, 15(11), 1154-1158.
[71]
Ames, J.R.; Ryan, M.D.; Klayman, D.L.; Kovacic, P. Charge transfer and oxy radicals in antimalarial action. Quinones, dapsone metabolites, metal complexes, iminium ions, and peroxides. J. Free Radic. Biol. Med., 1985, 1, 353-361.
[72]
Bernhardt, P.V.; Sharpe, P.C.; Islam, M.; Lovejoy, D.B.; Kalinowski, D.S.; Richardson, D.R. Iron chelators of the dipyridylketone thiosemicarbazone class: Precomplexation and transmetalation effects on anticancer activity. J. Med. Chem., 2009, 52, 407-415.
[73]
Buller, R.; Peterson, M.L.; Almarsson, O.; Leiserowitz, L. Quinoline binding site on malaria pigment crystal: A rational pathway for antimalaria drug design. Cryst. Growth Des., 2002, 2(6), 553-562.
[74]
Stringer, T.; Taylor, D.; De Kock, C.; Guzgay, H.; Au, A.; An, S.H.; Sanchez, B.; O’connor, R.; Patel, N.; Land, K.M.; Smith, P.J.; Hendricks, D.T.; Egan, T.J.; Smith, G.S. Synthesis, characterization, antiparasitic and cytotoxic evaluation of thioureas conjugated to polyamine scaffolds. Eur. J. Med. Chem., 2013, 69, 90-98.
[75]
Cui, F.L.; Liu, Q.F.; Luo, H.X.; Zhang, G.S. Spectroscopic, Viscositic and Molecular Modeling Studies on the Interaction of 3 '-Azido-Daunorubicin Thiosemicarbazone with DNA. J. Fluoresc., 2014, 24(1), 189-195.
[76]
Fan, X.R.; Dong, J.J.; Min, R.; Chen, Y.; Yi, X.Y.; Zhou, J.L.; Zhang, S.C. Cobalt(II) complexes with thiosemicarbazone as potential antitumor agents: synthesis, crystal structures, DNA interactions, and cytotoxicity. J. Coord. Chem., 2013, 66(24), 4268-4279.
[77]
Matesanz, A.I.; Perez, J.M.; Navarro, P.; Moreno, J.M.; Colacio, E.; Souza, P. Synthesis and characterization of novel palladium(II) complexes of bis(thiosemicarbazone). Structure, cytotoxic activity and DNA binding of Pd(II)-benzyl bis(thiosemicarbazonate). J. Inorg. Biochem., 1999, 76(1), 29-37.
[78]
Min, R.; Fan, X.R.; Zhou, P.; Yan, J.; Zhou, J.L.; Zhang, S.C. Synthesis, Crystal Structure, DNA Interaction and Antitumor Activity of Nickel(II) Complex with Quinoline-2-carboxaldehyde N-4-methyl-thiosemicarbazone. Chin. J. Inorg. Chem.,, 2014, 30(8), 1771-1777.
[79]
Palanimuthu, D.; Samuelson, A.G. Dinuclear zinc bis(thiosemicarbazone) complexes: Synthesis, in vitro anticancer activity, cellular uptake and DNA interaction study. Inorg. Chim. Acta, 2013, 408, 152-161.
[80]
Quiroga, A.G.; Perez, J.M.; Alonso, C.; Navarro-Ranninger, C. DNA binding and in vitro antileukemic activity of dimeric and tetrameric platinated complexes derived from p-isopropyl-benzaldehyde thiosemicarbazone. Appl. Organomet. Chem., 1998, 12(12), 809-813.
[81]
Vikneswaran, R.; Eltayeb, N.E.; Ramesh, S.; Yahya, R. New alicyclic thiosemicarbazone chelated zinc(II) antitumor complexes: Interactions with DNA/protein, nuclease activity and inhibition of topoisomerase-I. Polyhedron, 2016, 105, 89-95.
[82]
Yang, Z.Y.; Wang, Y.; Wang, Y. Study on synthesis, structure, and DNA-binding of lanthanide complexes with 2-carboxyl-benzaldiehyde thiosemicarbazone. Bioorg. Med. Chem. Lett., 2007, 17(7), 2096-2101.
[83]
Rajapakse, C.S.K.; Martinez, A.; Naoulou, B.; Jarzecki, A.A.; Suarez, L.; Deregnaucourt, C.; Sinou, V.; Schrevel, J.; Musi, E.; Ambrosini, G.; Schwartz, G.K.; Sanchez-Delgado, R.A. Synthesis, characterization, and in vitro antimalarial and antitumour activity of new ruthenium(II) complexes of chloroquine. Inorg. Chem., 2009, 48, 1122-1131.
[84]
Scovill, J.P.; Klayman, D.L.; Franchino, C.F. 2-Acetylpyridine Thiosemicarbazones. 4. Complexes with Transition Metals as Antimalarial and Antileukemic Agents. J. Med. Chem., 1982, 25, 1261-1264.
[85]
Franz, A.K.; Wilson, S.O. Organosilicon Molecules with Medicinal Applications. J. Med. Chem., 2012, 56, 388-405.
[86]
Biot, C.; Taramelli, D.; Forfar-Bares, I.; Maciejewski, L.A.; Boyce, M.; Nowogrocki, G.; Brocard, J.S.; Basilico, N.; Olliaro, P.; Egan, T.J. Insights into the mechanism of action of ferroquine. relationship between physicochemical properties and antiplasmodial activity. Mol. Pharm., 2005, 2(3), 185-193.
[87]
Supan, C.; Mombo-Ngoma, G.; Dal-Bianco, M.; Ospina Salazar, C.L.; Mazuir, F.; Filali-Ansary, A.; Biot, C.; Ter-Minassian, D.; Ramharter, M.; Kremsner, P.G.; Lell, B. Pharmacokinetics of ferroquine, a novel 4-aminoquinoline, in asymptomatic carriers of plasmodium falciparum infections. Antimicrob. Agents Chemother., 2012, 56(6), 3165-3173.
[88]
Casini, A.; Gabbiani, C.; Sorrentino, F.; Rigobello, M.P.; Bindoli, A.; Geldbach, T.J.; Marrone, A.; Re, N.; Hartinger, C.G.; Dyson, P.J.; Messori, L. Emerging protein targets for anticancer metallodrugs: inhibition of thioredoxin reductase and cathepsin b by antitumor ruthenium(II)−arene compounds. J. Med. Chem., 2008, 51(21), 6773-6781.
[89]
Herrmann, C.; Salas, P.F.; Cawthray, J.F.; De Kock, C.; Patrick, B.O.; Smith, P.J.; Adam, M.J.; Orvig, C. 1,1′-Distributed ferrocenyl carbohydrate chloroquine conjugates as potential antimalarials. Organometallics, 2012, 31, 5736-5747.
[90]
Biot, C.; Pradines, B.; Sergeant, M-H.; Gut, J.; Rosenthal, P.J.; Chibale, K. Design, synthesis, and anti-malarial activity of structural chimeras of thiosemicarbazone ferroquine analogues. Bioorg. Med. Chem. Lett., 2007, 17, 6434-6438.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy