Synthesis and Biological Activity of 2-Amino- and 2-aryl (Heteryl) Substituted 1,3-Benzothiazin-4-ones

Author(s): Emiliya V. Nosova*, Galina N. Lipunova, Valery N. Charushin, Oleg N. Chupakhin.

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 19 , Issue 12 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Tuberculosis (TB) takes the second place among the reasons for mortality from infectious diseases. For this reason, the problem of tuberculosis treatment requires urgent attention all over the world. Some 2-amino substituted 1,3-benzothiazin-4-ones (2-amino-1,3-BTZs) represent a promising new class of antitubercular agents. Other 1,3-benzothiazin-4-one derivatives, mostly 2-aryl and 2- (pyridin-2-yl) ones, are attractive due to their ability to suppress oxidative stress-induced cardiomyocyte apoptosis. This review covers the synthetic approaches to 2-amino- and 2-aryl(heteryl) substituted 1,3-benzothiazin-4-ones (1,3-BTZs). A brief overview of structure-activity relationships is presented.

Keywords: Antitubercular agent, 1, 3-Benzothiazin-4-one, Cyclocondensation, 2-Mercaptobenzoic acid, 2-Halogenobenzoyl isothiocyanate, apoprosis.

[1]
(a)Hong, X.; Harmata, M. Recent progress in the chemistry of 2,1- benzothiazines. In Progress in Heterocyclic Chemistry, Chapter 1, Gribble G.W., Joule J.A., Eds; Pergamon Press: New York, , 2008; 19, pp. 1-43.
(b)Badshah, S.L.; Naeem, A. Bioactive thiazine and benzothiazine derivatives: Green synthesis methods and their medicinal importance. Molecules, 2016, 21, 1054-1073.
[2]
(a)Chetty, S.; Ramesh, M.; Singh-Pillay, A.; Soliman, M.E.S. recent advancements in the development of anti-tuberculosis drugs. Bioorg. Med. Chem. Lett., 2017, 27, 370-386.
(b)Makarov, V.; Manina, G.; Mikusova, K.; Möellmann, U.; Ryabova, O.; Saint-Joanis, B.; Dhar, N.; Pasca, M.R.; Buroni, S.; Lucarelli, A.; Milano, A.P.; De Rossi, E.; Belanova, M.; Bobovska, A.; Dianiskova, P.; Kordulakova, J.; Sala, C.; Fullam, E.; Schneider, P.; McKinney, J.D.; Brodin, P.; Christophe, T.; Waddell, S.; Butcher, P.; Albrethsen, J.; Rosenkrands, I.; Brosch, R.; Nandi, V.; Bharath, S.; Gaonkar, S.; Shandil, R.K.; Balasubramanian, V.; Balganesh, T.; Tyagi, S.; Grosset, J.; Riccardi, G.; Cole, S.T. Benzothiazinones kill mycobacterium tuberculosis by blocking arabinan synthesis. Science, 2009, 324, 801-804.
(c)Makarov, V.; Ryabova, O.B.; Yuschenko, A.; Urlyapova, N.; Daubova, A.; Zipfel, P.F.; Moellmann, U.J. Synthesis and antileprosy activity of some dialkyldithiocarbamates. Antumicrob. Chemother, 2006, 57, 1134-1138.
(d)Makarov, V.; Cole, S.; Moellmann, U. New benzothiazinone derivatives and their use as antibacterial agents., Patent EP2029583, March 04,. 2009.
(e)Villemagne, B.; Crauste, C.; Flipo, M.; Baulard, A.R.; Deprez, B.; Willand, N. Tuberculosis: The drug development pipeline at a glance. Eur. J. Med. Chem., 2012, 51, 1-16.
(f)Poce, C.; Cocozza, M.; Consalvi, S.; Biava, M. SAR analysis of new anti-TB drugs currently in pre-clinical and clinical development. Eur. J. Med. Chem., 2014, 86, 335-351.
(g)Joshi, S.D.; Kumar, D.; Dixit, S.R.; Joshi, A.S.; Aminabhavi, T.M. Drug resistance of antitubercular agents at the genetic level in mycobacterium species: A road map to drug development for counteracting the resistance. Mini Rev. Org. Chem., 2016, 13, 262-280.
[3]
Chitre, T.S.; Bothara, K.G. Pyrimidinedione: Pharmacophore optimization of selective thymidine monophosphate kinase inhibitors using group QSAR studies as potential antitubercular agents. J. Chem. Pharm. Res., 2011, 3, 479-488.
[4]
(a)Tiwari, R.; Mollmann, U.; Cho, S.; Franzblau, S.G.; Miller, P.A.; Miller, M.J. Design and syntheses of anti-tuberculosis agents inspired by BTZ043 using a scaffold simplification strategy. ACS Med. Chem. Lett., 2014, 5, 587-591.
(b)Batt, S.M.; Izquierdo, M.C.; Pichel, J.C.; Stubbs, C.J.; Peral, L.V.G.D.; Pérez-Herrán, E.; Dhar, N.; Mouzon, B.; Rees, M.; Hutchinson, J.P.; Young, R.J.; McKinney, J.D.; Aguirre, D.B.; Ballell, L.; Besra, G.S.; Argyrou, A. Whole cell target engagement identifies novel inhibitors of mycobacterium tuberculosis decaprenyl-phosphoryl-β-D-ribose oxidase. ACS Infect. Dis., 2015, 1, 615-626.
(c)Majewski, M.W.; Watson, K.D.; Cho, S.; Miller, P.A.; Franzblau, S.G.; Miller, M. Syntheses and biological evaluations of highly functionalized hydroxamate containing and N-methylthio monobactams as anti-tuberculosis and β-lactamase inhibitory agents. J. Med. Chem. Commun, 2016, 7, 141-147.
(d)Udwadia, Z.F.; Amale, R.A.; Ajbani, K.K.; Rodrigues, C. Totally drug-resistant tuberculosis in India. Clin. Infect. Dis., 2011, 54, 579-581.
(e)Umesiri, F.E.; Sanki, A.K.; Boucau, J.; Ronning, D.R.; Sucbeck, S.J. Recent advances toward the inhibition of mAG and LAM synthesis in mycobacterium tuberculosis. Med. Res. Rev., 2010, 30, 290-326.
(f)Rivers, E.C.; Mancera, R.L. New anti-tuberculosis drugs with novel mechanisms of action. Curr. Med. Chem., 2008, 15, 1956-1967.
(g)Tripathi, R.P.; Bisht, S.S.; Ajay, A.; Sharma, A.; Misra, M.; Gupt, M.P. Developments in chemical approaches to treat tuberculosis in the last decade. Curr. Med. Chem., 2012, 19, 488-517.
(h)Rawat, B.; Rawat, D.S. Antituberculosis drug research: A critical overview. Med. Res. Rev., 2013, 33, 693-764.
(i)Zumla, A.; Nahid, P.; Cole, S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov., 2013, 12, 388-404.
(j)Branco, F.S.C.; Pinto, A.C.; Boechat, N. An update on the chemistry and medicinal chemistry of novel antimycobacterial compounds. Curr. Top. Med. Chem., 2013, 13, 2808-2847.
[5]
(a)Kimura, H.; Sato, Y.; Tajima, Y.; Suzuki, H.; Yukitake, H.; Imaeda, T.; Kajino, M.; Oki, H.; Takizawa, M.; Tanida, S. BTZO-1, a cardioprotective agent, reveals that macrophage migration inhibitory factor regulates ARE-mediated gene expression. Chem. Biol., 2010, 17, 1282-1294.
(b)Kajino, M.; Imaeda, T. 1,3- Benzothiazinone derivative and use thereof. Patent EP1897880, March 12 2008.
(c)Kajino, M.; Kawada, A.; Nakayama, Y.; Kimura, H.; Twaraishi, T. 1,3-Benzothiazinone derivative and use thereof. Patent EP1424336, June 02 2004.
[6]
Li, S.; Hong, H.; Zhu, N.; Han, L.; Lu, J. Review about the synthesis of 1,3-benzothiazinone derivatives. Chin. J. Org. Chem.,, 2016, 36, 2024-2038.
[7]
(a)Sherif, S.M.; Mohareb, R.M.; Elgemeic, G.E.H.; Singh, R.P. Nitriles in heterocyclic synthesis: 1-cyanoformanilide as precursor for a variety of heterocyclic ring systems. Heterocycles, 1988, 27, 1579-1585.
Kretov, A.E.; Momsenko, A.P.; Levin, Y.A. Synthesis of dihydro-1,3-thiazine derivatives; Khim. Geterotsikl Soedin, 1973, pp. 644-650.
[8]
Shestakov, A.S.; Gusakova, N.V.; Shikhaliev, K.S.; Timoshkina, A.G. Cyanamides in the synthesis of 1,3-thiazole and 1,3-thiazine derivatives. Russ. J. Org. Chem., 2007, 43, 1825-1829.
[9]
Shestakov, A.S.; Prezent, M.A.; Zlatoustovskaya, E.O.; Shikhaliev, K.S.; Falaleev, A.V.; Sidorenko, O.E. Alkylation of 1,3-benzothiazin-4-one 2-oxo-, 2-arylimino-, and 2-thioxo derivatives. Chem. Het. Comp, 2015, 51, 370-376.
[10]
Korzhavina, O.B.; Ryabukhin, Y.I.; Garnovskii, A.D.; Shavel, I.I. Synthesis of 4-oxo-1,3-benzothiazines and their salts; Khimiya Geterotsiklicheskikh Soedinenii, 1985, pp. 562-563.
bKajino, M.; Kawada, A.; Nakayama, Y.; Kimura, H. 1,3-Benzothiazinone derivative and use thereof. Patent WO 2003020719, March 13 2003.
[11]
aGe, Z.; Li, R.; Cheng, T. An efficient synthesis of formylmethyl piperidine-1-carbodithioate diethyl acetal and analogs. Synth. Commun., 1999, 29, 3191-3196.
bMakarov, V.; Cole, S.T.; Moellmann, U. New benzothiazinone derivatives and their use as antibacterial agents. Patent WO 2007134625, November 29 2007.
cMoellmann, U.; Makarov, V.A.; Cole, S.T. New antimicrobial compounds, their synthesis and their use for treatment of mammalian infections.Patent WO 2009010163, January 22 2009.
dMoellmann, U.; Makarov, V.A.; Cole, S.T. New antimicrobial compounds, their synthesis and their use for treatment of mammalian infection. Patent EP2020406, February 04 2009.
[12]
aMakarov, V.A. Process for the preparation of 2-aminosubstituted 1,3-benzothiazine-4-ones. Patent WO 2011132070, October 27, 2011.
bCooper, M.; Zuegg, J.; Becker, B.; Karoli, T. Novel anti-tuberculosis agents.Patent WO 2012085654, June 06, 2012.
[13]
aGao, C.; Ye, T.H.; Wang, N.Y.; Zeng, X.X.; Zhang, L.D.; Xiong, Y.; You, X.Y.; Xia, Y.; Xu, Y.; Peng, C.T.; Zuo, W.Q.; Wei, Y.; Yu, L.T. Synthesis and structure-activity relationships evaluation of benzothiazinone derivatives as potential anti-tubercular agents. Bioorg. Med. Chem. Lett., 2013, 23, 4919-4922.
bPeng, C.T.; Gao, C.; Wang, N.Y.; You, X.Y.; Zhang, L.D.; Zhu, Y.X.; Xv, Y.; Zuo, W.Q.; Ran, K.; Deng, H.X.; Lei, Q.; Xiao, K.J.; Yu, L.T. Synthesis and tuberculostatic activity of fluorine-containing derivatives of quinolone, quinazolinone, and benzothiazinone. Bioorg. Med. Chem. Lett., 2015, 25, 1373-1376.
[14]
aNosova, E.V.; Lipunova, G.N.; Laeva, A.A.; Charushin, V.N. Fluorine-containing heterocycles: XV. Reactions of polyfluorobenzoyl isothiocyanates with aminoazines and aminoazoles. Russ. J. Org. Chem., 2006, 42, 1544-1550.
bNosova, E.V.; Lipunova, G.N.; Laeva, A.A.; Charushin, V.N. Polyfluorobenzoyl chlorides and isothiocyanates in reactions with CH-reactive benzimidazoles. Russ. Chem. Bull., 2005, 54, 733-737.
cNosova, E.V.; Laeva, A.A.; Trashakhova, T.V.; Golovchenko, A.V.; Lipunova, G.N.; Slepukhin, P.A.; Charushin, V.N. Fluorine-containing heterocycles: XVIII. Monofluoro derivatives of quinazolines and 1,3-benzothiazin-4-ones. Russ. J. Org. Chem., 2009, 45, 904-912.
dLipunova, G.N.; Nosova, E.V.; Laeva, A.A.; Trashakhova, T.V.; Slepukhin, P.A.; Charushin, V.N. Fluorine-containing heterocycles: XVII. (Tetrafluorobenzoyl)-thioureas in the synthesis of fluorine-containing azaheterocycles. Russ. J. Org. Chem., 2008, 44, 741-749.
eNosova, E.V.; Lipunova, G.N.; Laeva, A.A.; Sidorova, L.P.; Charushin, V.N. Fluorine-containing heterocycles: XVI. Reactions of tetrafluorobenzoyl isothiocyanate with hydrazines and their derivatives. Russ. J. Org. Chem., 2007, 43, 68-76.
[15]
Lipunova, G.N.; Nosova, E.V.; Mokrushina, G.A.; Ogloblina, E.G.; Aleksandrov, G.G.; Charushin, V.N. Fluorocontaining Heterocycles: IX. Derivatives of imidazo[2,1-b] [1,3] benzothiazine. Russ. J. Org. Chem., 2003, 39, 248-256.
[16]
aLaeva, A.A.; Nosova, E.V.; Lipunova, G.N.; Charushin, V.N. Fluoroarenes in the synthesis of benzoannulated nitrogen-containing heterocycles. Russ. Chem. Bull., 2009, 57, 947-984.
bNosova, E.V.; Lipunova, G.N.; Kravchenko, M.A.; Laeva, A.A.; Charushin, V.N. Synthesis and tuberculostatic activity of fluorine-containing derivatives of quinolone, quinazolinone, and benzothiazinone. Pharm. Chem. J., 2008, 42, 169-174.
[17]
Dolbier, W.R.; Burkholder, J.C.; Abboud, K.A.; Loehle, D. Synthesis of new tetrafluorobenzo heteroaromatic compounds. J. Org. Chem., 1994, 59, 7688-7694.
[18]
Simche, G.; Wenzelburger, J. Reaktionen mit halogenwasser-stoffaddukten der nitrile, VI synthese von derivaten der 1.3-benzothiazionone-(4) und des 1.3-benzoselenazinons-(4). Chem. Ber., 1970, 103, 413-425.
[19]
aSzabo, J.; Bani-Akoto, E.; Dombi, G.; Gunther, G.; Bernath, G.; Fodor, L. Ring-closure reaction of N-arylthiomethylaroylamides to 1,3-benzothiazines. J. Heterocycl. Chem., 1992, 29, 1321-1324.
bFodor, L.; Bernath, G.; Sinkkonen, J.; Pihlaja, K. Synthesis and structural characterisation of 4H-1,3-benzothiazine derivatives. J. Heterocycl. Chem., 2002, 39, 927-931.
[20]
Tiwari, R.; Miller, P.A.; Cho, S.; Franzblau, S.G.; Miller, M.J. Syntheses and antituberculosis activity of 1,3-benzothiazinone sulfoxide and sulfone derived from BTZ043. ACS Med. Chem. Lett., 2015, 6, 128-133.
[21]
Makarov, V.; Neres, J.; Hartkoorn, R.C.; Ryabova, O.B.; Kazakova, E.; Šarkan, M.; Huszár, S.; Piton, J.; Kolly, G.S.; Vocat, A.; Conroy, T.M.; Mikušová, K.; Cole, S.T. The 8-pyrrole-benzothiazinones are noncovalent inhibitors of DprE1 from mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2015, 59, 4446-4452.
[22]
Tiwari, R.; Miller, P.A.; Chiarelli, L.R.; Mori, G.; Sarkan, M.; Centarova, I.; Cho, S.; Mikusova, K.; Franzblau, S.G.; Oliver, A.G.; Miller, M.J. Design, syntheses, and anti-TB activity of 1,3-benzothiazinone azide and click chemistry products inspired by BTZ043. ACS Med. Chem. Lett., 2016, 7, 266-270.
[23]
aCooper, M.; Zuegg, J.; Becker, B.; Karoli, T. Benzothiazinone compounds and their use as anti-tuberculosis agents. Patent EP2468746, June 27, 2012.
bCooper, M.; Zuegg, J.; Becker, B.; Karoli, T. Benzothiazinone derivatives as anti-tuberculosis agents.Patent WO2013038259, March 21, 2014.
c Yu, L.; Wei, Y. Benzothiazinethione derivatives and their preparative methods and uses. Patent EP2719691, April 16, 2014.
[24]
Pasca, M.R.; Degiacomi, G.; Ribeiro, A.L.; Zara, F.; De Mori, P.; Heym, B.; Mirrione, M.; Brerra, R.; Pagani, L.; Pucillo, L.; Troupioti, P.; Makarov, V.; Cole, S.T.; Riccardi, G. Clinical isolates of Mycobacterium tuberculosis in four European hospitals are uniformly susceptible to benzothiazinones. Antimicrob. Agents Chemother., 2010, 54, 1616-1618.
[25]
Majewski, M.W.; Tiwari, R.; Miller, P.A.; Cho, S.; Franzblau, S.G.; Miller, M.J. Design, syntheses, and anti-tuberculosis activities of conjugates of piperazino-1,3-benzothiazin-4-ones (pBTZs) with 2,7-dimethylimidazo [1,2-a]pyridine-3-carboxylic acids and 7-phenylacetyl cephalosporins. Bioorg. Med. Chem. Lett., 2016, 26, 2068-2071.
[26]
Karoli, T.; Becker, B.; Zuegg, J.; Moelmann, U.; Ramu, S.; Huang, J.X.; Cooper, M.A. Identification of antitubercular benzothiazinone compounds by ligand-based design. J. Med. Chem., 2012, 55, 7940-7944.
[27]
Mikusova, K.; Makarov, V.; Neres, J. DprE1 - from the discovery to the promising tuberculosis drug target. Curr. Pharm. Des., 2014, 20, 4379-4403.
[28]
aMakarov, V.; Cole, S. -piperazin-1-yl-4h-1,3-benzothiazin-4- one derivatives and their use for the treatment of mammalian infections. Patent US 2013245007, September 19 2013.
bMakarov, V.; Lechartier, B.; Zhang, M.; Neres, J.; Van der Sar, A.M.; Raadsen, S.A.; Hartkoorn, R.C.; Ryabova, O.B.; Vocat, A.; Decosterd, L.A.; Widmer, N.; Buclin, T.; Bitter, W.; Andries, K.; Pojer, F.; Dyson, P.J.; Cole, S.T. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol. Med., 2014, 6, 372-383.
[29]
Glover, S.; Alderwick, L.J.; Mishra, A.K.; Krumbach, K.; Marienhagen, J.; Eggeling, L.; Bhatt, A.; Besra, G.S. J. Biol. Chem., 2014, 289, 6177-6187.
[30]
Vera-Cabrera, L.; Campos-Rivera, M.P.; Gonzalez-Martinez, N.A.; Ocampo-Candiani, J.; Cole, S.T. In vitro activities of the new antitubercular agents PA-824 and BTZ043 against Nocardia brasiliensis. Antimicrob. Agents Chemother., 2012, 56, 3984-3985.
[31]
aTrefzer, C.; Rengifo-Gonzalez, M.; Hinner, M.J.; Schneider, P.; Makarov, V.; Cole, S.T.; Johnsson, K. Benzothiazinones: Prodrugs that covalently modify the decaprenylphosphoryl-β-D-ribose 2′-epimerase dpre1 of mycobacterium tuberculosis. J. Am. Chem. Soc., 2010, 132, 13663-13665.
bManina, G.; Bellinzoni, M.; Pasca, M.R.; Neres, J.; Milano, A.; Ribeiro, A.L.; Buroni, S.; Skovierova, H.; Dianiskova, P.; Mikusova, K.; Marak, J.; Makarov, V.; Giganti, D.; Haouz, A.; Lucarelli, A.; Degiacomi, G.; Plazza, A.; Chiarelli, L.R.; De Rossi, E.; Salina, E.; Cole, S.T.; Alzari, P.M.; Riccardi, G. Biological and structural characterisation oft he Micobacterium smegmatis nitroreductase NfnB, and ist role in benzothiazinone resistance. Mol. Microbiol., 2010, 77, 1172-1185.
cTrefzer, C.; Skovierova, H.; Buroni, S.; Bobovska, A.; Nenci, S.; Molteni, E.; Pojer, F.; Pasca, M.R.; Makarov, V.; Cole, S.T.; Riccardi, G.; Mikusova, K.; Johnsson, K. Benzothiazinones are suicide inhibitors of mycobacterial decaprenylphosphoryl-β-D-ribofuranose 2′-oxidase DprE1. J. Am. Chem. Soc., 2012, 134, 912-915.
dTiwari, R.; Moraski, G.C.; Krchnak, V.; Miller, P.A.; Colon-Martinez, M.; Herrero, E.; Oliver, A.G.; Miller, M.J. Thiolates chemically induce redox activation of BTZ043 and related potent nitroaromatic anti-tuberculosis agents. J. Am. Chem. Soc., 2013, 135, 3539-3549.
eXu, Z.; Peng, W.; Wan, K.; Luo, C.; Zeng, H.; Zhang, P.; Liu, Z.; Zhang, Y.; Wang, X. In vitro interactions between R207910 and second-line anti-TB drugs or BTZ043 against Mycobacterium tuberculosis by microplate alamar blue assay. Int. J. Clin. Exp. Med., 2016, 9, 6336-6341.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 12
Year: 2019
Page: [999 - 1014]
Pages: 16
DOI: 10.2174/1389557518666181015151801
Price: $58

Article Metrics

PDF: 13
HTML: 2