Curcuminoids and Novel Opportunities for the Treatment of Alzheimer's Disease: Which Molecules are Actually Effective?

Author(s): Alexander V. Zholos*, Olesia F. Moroz, Maksim V. Storozhuk*.

Journal Name: Current Molecular Pharmacology

Volume 12 , Issue 1 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Abstract:

Background: Millions of people worldwide are suffering from Alzheimer's disease (AD), and there are only symptomatic treatments available for this disease. Thus, there is a great need to identify drugs capable of arresting or reversing AD. Constituents of the spice turmeric, in particular, curcuminoids, seem to be very promising, as evident from in vitro experiments and tests using animal models of AD. However, most of the clinical trials did not reveal any beneficial effects of curcuminoids in the treatment of AD. These controversies, including conflicting results of clinical trials, are thought to be related to bioavailability of curcuminoids, which is low unless it is enhanced by developing a special formulation. However, there is growing evidence suggesting that other reasons may be of even greater importance, but these avenues are less explored.

Objective: Review relevant literature, and analyze potential reasons for the controversial results.

Methodology: Recent in vitro and preclinical studies; clinical trials (without a limiting period) were searched in PubMed and Google Scholar.

Results: While recent in vitro and preclinical studies confirm the therapeutic potential of curcuminoids in the treatment of AD and cognitive dysfunctions, results of corresponding clinical trials remain rather controversial.

Conclusion: The controversial results obtained in the clinical trials may be in part due to particularities of the curcuminoid formulations other than bioavailability. Namely, it seems likely that the various formulations differ in terms of their minor turmeric constituent(s). We hypothesize that these distinctions may be of key importance for efficacy of the particular formulation in clinical trials. A testable approach addressing this hypothesis is suggested.

Keywords: Alzheimer disease, turmeric, curcuminoids, TRP channels, ferulic acid, clinical trials.

[1]
World Health Organization. 10 facts on dementia.. http://www.who.int/features/factfiles/dementia/en/ [Accessed September 14, 2018]
[2]
. Alzheimer's Association. 2016 Alzheimer's disease facts and figures. Alzheimers Dement., 2016, 12, 459-509.
[3]
Hynd, M.R.; Scott, H.L.; Dodd, P.R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem. Int., 2004, 45, 583-595.
[4]
Aisen, P.S.; Andrieu, S.; Sampaio, C.; Carrillo, M.; Khachaturian, Z.S.; Dubois, B.; Feldman, H.H.; Petersen, R.C.; Siemers, E.; Doody, R.S.; Hendrix, S.B.; Grundman, M.; Schneider, L.S.; Schindler, R.J.; Salmon, E.; Potter, W.Z.; Thomas, R.G.; Salmon, D.; Donohue, M.; Bednar, M.M.; Touchon, J.; Vellas, B. Report of the task force on designing clinical trials in early (predementia) AD. Neurology, 2011, 76, 280-286.
[5]
van Dyck, C.H. Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: Pitfalls and promise. Biol. Psychiatry, 2018, 83, 311-319.
[6]
Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; Khachaturian, Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain, 2018, 141, 1917-1933.
[7]
Yin, F.; Sancheti, H.; Patil, I.; Cadenas, E. Energy metabolism and inflammation in brain aging and Alzheimer’s disease. Free Radic. Biol. Med., 2016, 100, 108-122.
[8]
Francis, P.T. Altered glutamate neurotransmission and behaviour in dementia: Evidence from studies of memantine. Curr. Mol. Pharmacol., 2009, 2, 77-82.
[9]
Chapman, C.D.; Schioth, H.B.; Grillo, C.A.; Benedict, C. Intranasal insulin in Alzheimer’s disease: Food for thought. Neuropharmacology, 2018, 136, 196-201.
[10]
Guo, L.; Tian, J.; Du, H. Mitochondrial dysfunction and synaptic transmission failure in Alzheimer’s disease. J. Alzheimers Dis., 2017, 57, 1071-1086.
[11]
Chandra, V.; Pandav, R.; Dodge, H.H.; Johnston, J.M.; Belle, S.H.; DeKosky, S.T.; Ganguli, M. Incidence of Alzheimer’s disease in a rural community in India: The Indo-US study. Neurology, 2001, 57, 985-989.
[12]
Nalli, M.; Ortar, G.; Schiano, M.A.; Di, M.V.; De, P.L. Effects of curcumin and curcumin analogues on TRP channels. Fitoterapia, 2017, 122, 126-131.
[13]
Yamamoto, S.; Wajima, T.; Hara, Y.; Nishida, M.; Mori, Y. Transient receptor potential channels in Alzheimer’s disease. Biochim. Biophys. Acta, 2007, 1772, 958-967.
[14]
Kaneko, Y.; Szallasi, A. Transient receptor potential (TRP) channels: A clinical perspective. Br. J. Pharmacol., 2014, 171, 2474-2507.
[15]
Iannuzzi, C.; Borriello, M.; Irace, G.; Cammarota, M.; Di, M.A.; Sirangelo, I. Vanillin affects amyloid aggregation and non-enzymatic glycation in human insulin. Sci. Rep., 2017, 7, 15086.
[16]
Yeo, E.T.Y.; Wong, K.W.L.; See, M.L.; Wong, K.Y.; Gan, S.Y.; Chan, E.W.L. Piper sarmentosum Roxb. confers neuroprotection on β-amyloid (Aβ)-induced microglia-mediated neuroinflammation and attenuates tau hyperphosphorylation in SH-SY5Y cells. J. Ethnopharmacol., 2018, 217, 187-194.
[17]
Bigford, G.E.; Del, R.G. Supplemental substances derived from foods as adjunctive therapeutic agents for treatment of neurodegenerative diseases and disorders. Adv. Nutr., 2014, 5, 394-403.
[18]
Davinelli, S.; Sapere, N.; Zella, D.; Bracale, R.; Intrieri, M.; Scapagnini, G. Pleiotropic protective effects of phytochemicals in Alzheimer’s disease. Oxid. Med. Cell. Longev., 2012, 2012, 386527.
[19]
Calcul, L.; Zhang, B.; Jinwal, U.K.; Dickey, C.A.; Baker, B.J. Natural products as a rich source of tau-targeting drugs for Alzheimer’s disease. Future Med. Chem., 2012, 4, 1751-1761.
[20]
Hamaguchi, T.; Ono, K.; Yamada, M. REVIEW: Curcumin and Alzheimer’s disease. CNS Neurosci. Ther., 2010, 16, 285-297.
[21]
Wang, Z.Y.; Liu, J.G.; Li, H.; Yang, H.M. Pharmacological effects of active components of chinese herbal medicine in the treatment of Alzheimer’s disease: A Review. Am. J. Chin. Med., 2016, 44, 1525-1541.
[22]
Shytle, R.D.; Tan, J.; Bickford, P.C.; Rezai-Zadeh, K.; Hou, L.; Zeng, J.; Sanberg, P.R.; Sanberg, C.D.; Alberte, R.S.; Fink, R.C.; Roschek, B., Jr Optimized turmeric extract reduces β-amyloid and phosphorylated Tau protein burden in Alzheimer’s transgenic mice. Curr. Alzheimer Res., 2012, 9, 500-506.
[23]
Huang, H.C.; Zheng, B.W.; Guo, Y.; Zhao, J.; Zhao, J.Y.; Ma, X.W.; Jiang, Z.F. Antioxidative and neuroprotective effects of curcumin in an Alzheimer’s disease rat model co-treated with intracerebroventricular streptozotocin and subcutaneous D-galactose. J. Alzheimers Dis., 2016, 52, 899-911.
[24]
Tello-Franco, V.; Lozada-Garcia, M.C.; Soriano-Garcia, M. Experimental and computational studies on the inhibition of acetylcholinesterase by curcumin and some of its derivatives. Curr. Comput. Aided Drug Des., 2013, 9, 289-298.
[25]
Mithu, V.S.; Sarkar, B.; Bhowmik, D.; Das, A.K.; Chandrakesan, M.; Maiti, S.; Madhu, P.K. Curcumin alters the salt bridge-containing turn region in amyloid β1-42 aggregates. J. Biol. Chem., 2014, 289, 11122-11131.
[26]
Chandra, B.; Mithu, V.S.; Bhowmik, D.; Das, A.K.; Sahoo, B.; Maiti, S.; Madhu, P.K. Curcumin dictates divergent fates for the central salt bridges in amyloid-β40 and amyloid- β42. Biophys. J., 2017, 112, 1597-1608.
[27]
Xiao, Z.; Zhang, A.; Lin, J.; Zheng, Z.; Shi, X.; Di, W.; Qi, W.; Zhu, Y.; Zhou, G.; Fang, Y. Telomerase: A target for therapeutic effects of curcumin and a curcumin derivative in Aβ1-42 insult in vitro. PLoS One, 2014, 9, e101251.
[28]
Zhang, Y.; Yong, H.Y.; Shi, X.T.; Zhou, J.; Ma, Q.; Lian, Q.Q.; Cao, H.; Li, J. Protective effect of curcumin against Aβ25-35-induced neurotoxicity in differentiated PC12 cells. Zhonghua Yi Xue Za Zhi, 2013, 93, 2826-2829.
[29]
Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Kandimalla, R.; Kuruva, C.S. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimer’s disease. J. Investig. Med., 2016, 64, 1220-1234.
[30]
Meng, J.; Li, Y.; Camarillo, C.; Yao, Y.; Zhang, Y.; Xu, C.; Jiang, L. The anti-tumor histone deacetylase inhibitor SAHA and the natural flavonoid curcumin exhibit synergistic neuroprotection against amyloid-β toxicity. PLoS One, 2014, 9, e85570.
[31]
Uguz, A.C.; Oz, A.; Naziroglu, M. Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells. J. Recept. Signal Transduct. Res., 2016, 36, 395-401.
[32]
Khan, S.; Ahmad, K.; Alshammari, E.M.; Adnan, M.; Baig, M.H.; Lohani, M.; Somvanshi, P.; Haque, S. Implication of caspase-3 as a common therapeutic target for multineurodegenerative disorders and its inhibition using nonpeptidyl natural compounds. BioMed Res. Int., 2015, 2015, 379817.
[33]
Sun, J.; Zhang, X.; Wang, C.; Teng, Z.; Li, Y. Curcumin decreases hyperphosphorylation of tau by down-regulating caveolin-1/GSK-3β in N2a/APP695swe cells and APP/PS1 double transgenic Alzheimer’s disease mice. Am. J. Chin. Med., 2017, 45, 1667-1682.
[34]
Widyowati, R.; Agil, M. Chemical constituents and bioactivities of several Indonesian plants typically used in Jamu. Chem. Pharm. Bull. (Tokyo), 2018, 66, 506-518.
[35]
Ahmed, T.; Gilani, A.H. Therapeutic potential of turmeric in Alzheimer’s disease: Curcumin or curcuminoids? Phytother. Res., 2014, 28, 517-525.
[36]
Kalaycioglu, Z.; Gazioglu, I.; Erim, F.B. Comparison of antioxidant, anticholinesterase, and antidiabetic activities of three curcuminoids isolated from Curcuma longa L. Nat. Prod. Res., 2017, 31, 2914-2917.
[37]
Ahmed, T.; Gilani, A.H. Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer’s disease. Pharmacol. Biochem. Behav., 2009, 91, 554-559.
[38]
Jiang, Y.; Gao, H.; Turdu, G. Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer’s disease: A review. Bioorg. Chem., 2017, 75, 50-61.
[39]
Barbara, R.; Belletti, D.; Pederzoli, F.; Masoni, M.; Keller, J.; Ballestrazzi, A.; Vandelli, M.A.; Tosi, G.; Grabrucker, A.M. Novel Curcumin loaded nanoparticles engineered for blood-brain barrier crossing and able to disrupt Aβ aggregates. Int. J. Pharm., 2017, 526, 413-424.
[40]
Liu, Z.; Fang, L.; Zhang, H.; Gou, S.; Chen, L. Design, synthesis and biological evaluation of multifunctional tacrine-curcumin hybrids as new cholinesterase inhibitors with metal ions-chelating and neuroprotective property. Bioorg. Med. Chem., 2017, 25, 2387-2398.
[41]
Yan, J.; Hu, J.; Liu, A.; He, L.; Li, X.; Wei, H. Design, synthesis, and evaluation of multitarget-directed ligands against Alzheimer’s disease based on the fusion of donepezil and curcumin. Bioorg. Med. Chem., 2017, 25, 2946-2955.
[42]
Feng, H.L.; Fan, H.; Dang, H.Z.; Chen, X.P.; Ren, Y.; Yang, J.D.; Wang, P.W. Neuroprotective effect of curcumin to Aβ of double transgenic mice with Alzheimer’s disease. Zhongguo Zhongyao Zazhi, 2014, 39, 3846-3849.
[43]
Maiti, P.; Paladugu, L.; Dunbar, G.L. Solid lipid curcumin particles provide greater anti-amyloid, anti-inflammatory and neuroprotective effects than curcumin in the 5xFAD mouse model of Alzheimer’s disease. BMC Neurosci., 2018, 19, 7.
[http://dx.doi.org/10.1186/s12868-018-0406-3]
[44]
Ghosh, S.; Basak, P.; Dutta, S.; Chowdhury, S.; Sil, P.C. New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food Chem. Toxicol., 2017, 103, 41-55.
[45]
Yanagisawa, D.; Ibrahim, N.F.; Taguchi, H.; Morikawa, S.; Hirao, K.; Shirai, N.; Sogabe, T.; Tooyama, I. Curcumin derivative with the substitution at C-4 position, but not curcumin, is effective against amyloid pathology in APP/PS1 mice. Neurobiol. Aging, 2015, 36, 201-210.
[46]
Quitschke, W.W.; Steinhauff, N.; Rooney, J. The effect of cyclodextrin-solubilized curcuminoids on amyloid plaques in Alzheimer transgenic mice: brain uptake and metabolism after intravenous and subcutaneous injection. Alzheimers Res. Ther., 2013, 5, 16.
[47]
Wang, P.; Su, C.; Li, R.; Wang, H.; Ren, Y.; Sun, H.; Yang, J.; Sun, J.; Shi, J.; Tian, J.; Jiang, S. Mechanisms and effects of curcumin on spatial learning and memory improvement in APPswe/PS1dE9 mice. J. Neurosci. Res., 2014, 92, 218-231.
[48]
Wang, C.; Zhang, X.; Teng, Z.; Zhang, T.; Li, Y. Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice. Eur. J. Pharmacol., 2014, 740, 312-320.
[49]
Tai, Y.H.; Lin, Y.Y.; Wang, K.C.; Chang, C.L.; Chen, R.Y.; Wu, C.C.; Cheng, I.H. Curcuminoid submicron particle ameliorates cognitive deficits and decreases amyloid pathology in Alzheimer’s disease mouse model. Oncotarget, 2018, 9, 10681-10697.
[50]
Maiti, P.; Hall, T.C.; Paladugu, L.; Kolli, N.; Learman, C.; Rossignol, J.; Dunbar, G.L. A comparative study of dietary curcumin, nanocurcumin, and other classical amyloid-binding dyes for labeling and imaging of amyloid plaques in brain tissue of 5x-familial Alzheimer’s disease mice. Histochem. Cell Biol., 2016, 146, 609-625.
[51]
Song, J.X.; Sun, Y.R.; Peluso, I.; Zeng, Y.; Yu, X.; Lu, J.H.; Xu, Z.; Wang, M.Z.; Liu, L.F.; Huang, Y.Y.; Chen, L.L.; Durairajan, S.S.; Zhang, H.J.; Zhou, B.; Zhang, H.Q.; Lu, A.; Ballabio, A.; Medina, D.L.; Guo, Z.; Li, M. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy, 2016, 12, 1372-1389.
[52]
He, Y.; Wang, P.; Wei, P.; Feng, H.; Ren, Y.; Yang, J.; Rao, Y.; Shi, J.; Tian, J. Effects of curcumin on synapses in APPswe/PS1dE9 mice. Int. J. Immunopathol. Pharmacol., 2016, 29, 217-225.
[53]
Huang, H.C.; Zheng, B.W.; Guo, Y.; Zhao, J.; Zhao, J.Y.; Ma, X.W.; Jiang, Z.F. Antioxidative and neuroprotective effects of curcumin in an Alzheimer’s disease rat model co-treated with intracerebroventricular streptozotocin and subcutaneous D-galactose. J. Alzheimers Dis., 2016, 52, 899-911.
[54]
Samy, D.M.; Ismail, C.A.; Nassra, R.A.; Zeitoun, T.M.; Nomair, A.M. Downstream modulation of extrinsic apoptotic pathway in streptozotocin-induced Alzheimer’s dementia in rats: Erythropoietin versus curcumin. Eur. J. Pharmacol., 2016, 770, 52-60.
[55]
Bassani, T.B.; Turnes, J.M.; Moura, E.L.R.; Bonato, J.M.; Coppola-Segovia, V.; Zanata, S.M.; Oliveira, R.M.M.W.; Vital, M.A.B.F. Effects of curcumin on short-term spatial and recognition memory, adult neurogenesis and neuroinflammation in a streptozotocin-induced rat model of dementia of Alzheimer’s type. Behav. Brain Res., 2017, 335, 41-54.
[56]
Kuo, Y.C.; Lin, C.Y.; Li, J.S.; Lou, Y.I. Wheat germ agglutinin-conjugated liposomes incorporated with cardiolipin to improve neuronal survival in Alzheimer’s disease treatment. Int. J. Nanomedicine, 2017, 12, 1757-1774.
[57]
Teixeira, C.C.; Mendonca, L.M.; Bergamaschi, M.M.; Queiroz, R.H.; Souza, G.E.; Antunes, L.M.; Freitas, L.A. Microparticles containing curcumin solid dispersion: Stability, bioavailability and anti-inflammatory activity. AAPS PharmSciTech, 2016, 17, 252-261.
[58]
Liu, Z.J.; Li, Z.H.; Liu, L.; Tang, W.X.; Wang, Y.; Dong, M.R.; Xiao, C. Curcumin attenuates β-amyloid-induced neuroinflammation via activation of peroxisome proliferator-activated receptor-γ function in a rat model of Alzheimer’s disease. Front. Pharmacol., 2016, 7, 261.
[59]
Zaky, A.; Bassiouny, A.; Farghaly, M.; El-Sabaa, B.M. A combination of resveratrol and curcumin is effective against aluminum chloride-induced neuroinflammation in rats. J. Alzheimers Dis., 2017, 60, S221-S235.
[60]
Prior, M.; Goldberg, J.; Chiruta, C.; Farrokhi, C.; Kopynets, M.; Roberts, A.J.; Schubert, D. Selecting for neurogenic potential as an alternative for Alzheimer’s disease drug discovery. Alzheimers Dement., 2016, 12, 678-686.
[61]
Feng, H.L.; Dang, H.Z.; Fan, H.; Chen, X.P.; Rao, Y.X.; Ren, Y.; Yang, J.D.; Shi, J.; Wang, P.W.; Tian, J.Z. Curcumin ameliorates insulin signalling pathway in brain of Alzheimer’s disease transgenic mice. Int. J. Immunopathol. Pharmacol., 2016, 29, 734-741.
[62]
Dang, H.Z.; Li, R.S.; Wang, H.; Ren, Y.; Sun, H.Y.; Yang, J.D.; Wang, P.W. Effects of curcumin on expression of PI3K and p-pI3K in hippocampus of AD mice. Zhongguo Zhongyao Zazhi, 2013, 38, 1295-1299.
[63]
Agrawal, R.; Mishra, B.; Tyagi, E.; Nath, C.; Shukla, R. Effect of curcumin on brain insulin receptors and memory functions in STZ (ICV) induced dementia model of rat. Pharmacol. Res., 2010, 61, 247-252.
[64]
Wang, P.; Su, C.; Feng, H.; Chen, X.; Dong, Y.; Rao, Y.; Ren, Y.; Yang, J.; Shi, J.; Tian, J.; Jiang, S. Curcumin regulates insulin pathways and glucose metabolism in the brains of APPswe/PS1dE9 mice. Int. J. Immunopathol. Pharmacol., 2017, 30, 25-43.
[65]
Moore, T.L.; Bowley, B.; Shultz, P.; Calderazzo, S.; Shobin, E.; Killiany, R.J.; Rosene, D.L.; Moss, M.B. Chronic curcumin treatment improves spatial working memory but not recognition memory in middle-aged rhesus monkeys. Geroscience, 2017, 39, 571-584.
[66]
Zhang, L.; Fang, Y.; Xu, Y.; Lian, Y.; Xie, N.; Wu, T.; Zhang, H.; Sun, L.; Zhang, R.; Wang, Z. Curcumin improves amyloid β-peptide1-42 induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One, 2015, 10, e0131525.
[67]
Yin, H.L.; Wang, Y.L.; Li, J.F.; Han, B.; Zhang, X.X.; Wang, Y.T.; Geng, S. Effects of curcumin on hippocampal expression of NgR and axonal regeneration in Aβ-induced cognitive disorder rats. Genet. Mol. Res., 2014, 13, 2039-2047.
[68]
Barber, T.A.; Edris, E.M.; Levinsky, P.J.; Williams, J.M.; Brouwer, A.R.; Gessay, S.A. Amelioration of scopolamine-induced amnesia by phosphatidylserine and curcumin in the day-old chick. Behav. Pharmacol., 2016, 27, 536-541.
[69]
Head, E.; Murphey, H.L.; Dowling, A.L.; McCarty, K.L.; Bethel, S.R.; Nitz, J.A.; Pleiss, M.; Vanrooyen, J.; Grossheim, M.; Smiley, J.R.; Murphy, M.P.; Beckett, T.L.; Pagani, D.; Bresch, F.; Hendrix, C. A combination cocktail improves spatial attention in a canine model of human aging and Alzheimer’s disease. J. Alzheimers Dis., 2012, 32, 1029-1042.
[70]
Jia, T.; Sun, Z.; Lu, Y.; Gao, J.; Zou, H.; Xie, F.; Zhang, G.; Xu, H.; Sun, D.; Yu, Y.; Zhong, Y. A dual brain-targeting curcumin-loaded polymersomes ameliorated cognitive dysfunction in intrahippocampal amyloid-β1-42-injected mice. Int. J. Nanomedicine, 2016, 11, 3765-3775.
[71]
Zheng, K.; Dai, X.; Xiao, N.; Wu, X.; Wei, Z.; Fang, W.; Zhu, Y.; Zhang, J.; Chen, X. Curcumin ameliorates memory decline via inhibiting BACE1 expression and β-amyloid pathology in 5xFAD transgenic mice. Mol. Neurobiol., 2017, 54, 1967-1977.
[72]
Wang, Y.; Yin, H.; Li, J.; Zhang, Y.; Han, B.; Zeng, Z.; Qiao, N.; Cui, X.; Lou, J.; Li, J. Amelioration of β-amyloid-induced cognitive dysfunction and hippocampal axon degeneration by curcumin is associated with suppression of CRMP-2 hyperphosphorylation. Neurosci. Lett., 2013, 557 Pt B, 112-117.
[73]
Sundaram, J.R.; Poore, C.P.; Sulaimee, N.H.B.; Pareek, T.; Cheong, W.F.; Wenk, M.R.; Pant, H.C.; Frautschy, S.A.; Low, C.M.; Kesavapany, S. Curcumin ameliorates neuroinflammation, neurodegeneration, and memory deficits in p25 transgenic mouse model that bears hallmarks of Alzheimer’s disease. J. Alzheimers Dis., 2017, 60, 1429-1442.
[74]
McClure, R.; Ong, H.; Janve, V.; Barton, S.; Zhu, M.; Li, B.; Dawes, M.; Jerome, W.G.; Anderson, A.; Massion, P.; Gore, J.C.; Pham, W. Aerosol delivery of curcumin reduced amyloid-β deposition and improved cognitive performance in a transgenic model of Alzheimer’s disease. J. Alzheimers Dis., 2017, 55, 797-811.
[75]
Shen, L.; Liu, C.C.; An, C.Y.; Ji, H.F. How does curcumin work with poor bioavailability? Clues from experimental and theoretical studies. Sci. Rep., 2016, 6
[http://dx.doi.org/10.1038/srep20872]
[76]
Elmegeed, G.A.; Ahmed, H.H.; Hashash, M.A.; Abd-Elhalim, M.M.; El-kady, D.S. Synthesis of novel steroidal curcumin derivatives as anti-Alzheimer’s disease candidates: Evidences-based on in vivo study. Steroids, 2015, 101, 78-89.
[77]
Tiwari, S.K.; Agarwal, S.; Seth, B.; Yadav, A.; Nair, S.; Bhatnagar, P.; Karmakar, M.; Kumari, M.; Chauhan, L.K.; Patel, D.K.; Srivastava, V.; Singh, D.; Gupta, S.K.; Tripathi, A.; Chaturvedi, R.K.; Gupta, K.C. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/ β-catenin pathway. ACS Nano, 2014, 8, 76-103.
[78]
Chojnacki, J.E.; Liu, K.; Saathoff, J.M.; Zhang, S. Bivalent ligands incorporating curcumin and diosgenin as multifunctional compounds against Alzheimer’s disease. Bioorg. Med. Chem., 2015, 23, 7324-7331.
[79]
Liu, K.; Chojnacki, J.E.; Wade, E.E.; Saathoff, J.M.; Lesnefsky, E.J.; Chen, Q.; Zhang, S. Bivalent compound 17MN exerts neuroprotection through Interaction at multiple sites in a cellular model of Alzheimer’s disease. J. Alzheimers Dis., 2015, 47, 1021-1033.
[80]
Chojnacki, J.E.; Liu, K.; Yan, X.; Toldo, S.; Selden, T.; Estrada, M.; Rodriguez-Franco, M.I.; Halquist, M.S.; Ye, D.; Zhang, S. Discovery of 5-(4-hydroxyphenyl)-3-oxo-pentanoic acid [2-(5-methoxy-1H-indol-3-yl)-ethyl]-amide as a neuroprotectant for Alzheimer’s disease by hybridization of curcumin and melatonin. ACS Chem. Neurosci., 2014, 5, 690-699.
[81]
Fang, L.; Gou, S.; Liu, X.; Cao, F.; Cheng, L. Design, synthesis and anti-Alzheimer properties of dimethylaminomethyl-substituted curcumin derivatives. Bioorg. Med. Chem. Lett., 2014, 24, 40-43.
[82]
Kuo, Y.C.; Lin, C.C. Rescuing apoptotic neurons in Alzheimer’s disease using wheat germ agglutinin-conjugated and cardiolipin-conjugated liposomes with encapsulated nerve growth factor and curcumin. Int. J. Nanomedicine, 2015, 10, 2653-2672.
[83]
Tang, M.; Taghibiglou, C. The mechanisms of action of curcumin in Alzheimer’s disease. J. Alzheimers Dis., 2017, 58, 1003-1016.
[84]
Pluta, R.; Bogucka-Kocka, A.; Ulamek-Koziol, M.; Furmaga-Jablonska, W.; Januszewski, S.; Brzozowska, J.; Jablonski, M.; Kocki, J. Neurogenesis and neuroprotection in postischemic brain neurodegeneration with Alzheimer phenotype: is there a role for curcumin? Folia Neuropathol., 2015, 53, 89-99.
[85]
Goozee, K.G.; Shah, T.M.; Sohrabi, H.R.; Rainey-Smith, S.R.; Brown, B.; Verdile, G.; Martins, R.N. Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer’s disease. Br. J. Nutr., 2016, 115, 449-465.
[86]
Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin. J. Med. Chem., 2017, 60, 1620-1637.
[87]
Bahadori, F.; Demiray, M. A realistic view on “The essential medicinal chemistry of curcumin”. ACS Med. Chem. Lett., 2017, 8, 893-896.
[88]
Heger, M. Drug screening: Don’t discount all curcumin trial data. Nature, 2017, 543, 40.
[89]
Baum, L.; Lam, C.W.; Cheung, S.K.; Kwok, T.; Lui, V.; Tsoh, J.; Lam, L.; Leung, V.; Hui, E.; Ng, C.; Woo, J.; Chiu, H.F.; Goggins, W.B.; Zee, B.C.; Cheng, K.F.; Fong, C.Y.; Wong, A.; Mok, H.; Chow, M.S.; Ho, P.C.; Ip, S.P.; Ho, C.S.; Yu, X.W.; Lai, C.Y.; Chan, M.H.; Szeto, S.; Chan, I.H.; Mok, V. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J. Clin. Psychopharmacol., 2008, 28, 110-113.
[90]
Ringman, J.M.; Frautschy, S.A.; Teng, E.; Begum, A.N.; Bardens, J.; Beigi, M.; Gylys, K.H.; Badmaev, V.; Heath, D.D.; Apostolova, L.G.; Porter, V.; Vanek, Z.; Marshall, G.A.; Hellemann, G.; Sugar, C.; Masterman, D.L.; Montine, T.J.; Cummings, J.L.; Cole, G.M. Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res. Ther., 2012, 4, 43.
[91]
Hishikawa, N.; Takahashi, Y.; Amakusa, Y.; Tanno, Y.; Tuji, Y.; Niwa, H.; Murakami, N.; Krishna, U.K. Effects of turmeric on Alzheimer’s disease with behavioral and psychological symptoms of dementia. Ayu, 2012, 33, 499-504.
[92]
Cox, K.H.; Pipingas, A.; Scholey, A.B. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J. Psychopharmacol., 2015, 29, 642-651.
[93]
Gota, V.S.; Maru, G.B.; Soni, T.G.; Gandhi, T.R.; Kochar, N.; Agarwal, M.G. Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers. J. Agric. Food Chem., 2010, 58, 2095-2099.
[94]
Rainey-Smith, S.R.; Brown, B.M.; Sohrabi, H.R.; Shah, T.; Goozee, K.G.; Gupta, V.B.; Martins, R.N. Curcumin and cognition: a randomised, placebo-controlled, double-blind study of community-dwelling older adults. Br. J. Nutr., 2016, 115, 2106-2113.
[95]
Small, G.W.; Siddarth, P.; Li, Z.; Miller, K.J.; Ercoli, L.; Emerson, N.D.; Martinez, J.; Wong, K.P.; Liu, J.; Merrill, D.A.; Chen, S.T.; Henning, S.M.; Satyamurthy, N.; Huang, S.C.; Heber, D.; Barrio, J.R. Memory and brain amyloid and Tau effects of a bioavailable form of curcumin in non-demented adults: A double-blind, placebo-controlled 18-month trial. Am. J. Geriatr. Psychiatry, 2018, 26, 266-277.
[96]
Jankun, J.; Wyganowska-Swiatkowska, M.; Dettlaff, K.; Jelinska, A.; Surdacka, A.; Watrobska-Swietlikowska, D.; Skrzypczak-Jankun, E. Determining whether curcumin degradation/condensation is actually bioactivation.(Review) Int. J. Mol. Med., 2016, 37, 1151-1158.
[97]
Martin, R.C.; Aiyer, H.S.; Malik, D.; Li, Y. Effect on pro-inflammatory and antioxidant genes and bioavailable distribution of whole turmeric vs curcumin: Similar root but different effects. Food Chem. Toxicol., 2012, 50, 227-231.
[98]
Sasaki, H.; Sunagawa, Y.; Takahashi, K.; Imaizumi, A.; Fukuda, H.; Hashimoto, T.; Wada, H.; Katanasaka, Y.; Kakeya, H.; Fujita, M.; Hasegawa, K.; Morimoto, T. Innovative preparation of curcumin for improved oral bioavailability. Biol. Pharm. Bull., 2011, 34, 660-665.
[99]
Braga, M.E.; Leal, P.F.; Carvalho, J.E.; Meireles, M.A. Comparison of yield, composition, and antioxidant activity of turmeric (Curcuma longa L.) extracts obtained using various techniques. J. Agric. Food Chem., 2003, 51, 6604-6611.
[100]
Sgarbossa, A.; Giacomazza, D. di, C.M. Ferulic acid: A hope for Alzheimer’s disease therapy from plants. Nutrients, 2015, 7, 5764-5782.
[101]
Moran, M.M.; Xu, H.; Clapham, D.E. TRP ion channels in the nervous system. Curr. Opin. Neurobiol., 2004, 14, 362-369.
[102]
Venkatachalam, K.; Montell, C. TRP channels. Annu. Rev. Biochem., 2007, 76, 387-417.
[103]
Wu, L.J.; Sweet, T.B.; Clapham, D.E. International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol. Rev., 2010, 62, 381-404.
[104]
Nilius, B. Transient Receptor Potential (TRP) channels in the brain: the good and the ugly 2012, 20(3), 343-355.
[105]
Lee, K.I.; Lee, H.T.; Lin, H.C.; Tsay, H.J.; Tsai, F.C.; Shyue, S.K.; Lee, T.S. Role of transient receptor potential ankyrin 1 channels in Alzheimer’s disease. J. Neuroinflammation, 2016, 13, 92.
[http://dx.doi.org/10.1186/s12974-016-0557-z]
[106]
Bosson, A.; Paumier, A.; Boisseau, S.; Jacquier-Sarlin, M.; Buisson, A.; Albrieux, M. TRPA1 channels promote astrocytic Ca2+ hyperactivity and synaptic dysfunction mediated by oligomeric forms of amyloid-β peptide. Mol. Neurodegener., 2017, 12, 53.
[107]
Zhang, L.; Fang, Y.; Cheng, X.; Lian, Y.; Xu, H.; Zeng, Z.; Zhu, H. TRPML1 participates in the progression of Alzheimer’s disease by regulating the PPARgamma/AMPK/Mtor signalling pathway. Cell. Physiol. Biochem., 2017, 43, 2446-2456.
[108]
Gasperini, R.J.; Hou, X.; Parkington, H.; Coleman, H.; Klaver, D.W.; Vincent, A.J.; Foa, L.C.; Small, D.H. TRPM8 and Nav1.8 sodium channels are required for transthyretin-induced calcium influx in growth cones of small-diameter TrkA-positive sensory neurons. Mol. Neurodegener., 2011, 6 19
[http://dx.doi.org/ doi: [10.1186/1750-1326-6- 19.]
[109]
Leamy, A.W.; Shukla, P.; McAlexander, M.A.; Carr, M.J.; Ghatta, S. Curcumin ((E, E)-1, 7-bis(4-hydroxy-3-methoxyphenyl)-1, 6-heptadiene-3, 5-dione) activates and desensitizes the nociceptor ion channel TRPA1. Neurosci. Lett., 2011, 503, 157-162.
[110]
Zhang, L.; Fang, Y.; Cheng, X.; Lian, Y.J.; Xu, H.L.; Zeng, Z.S.; Zhu, H.C. Curcumin exerts effects on the pathophysiology of Alzheimer’s disease by regulating PI(3, 5)P2 and Transient Receptor Potential Mucolipin-1 expression. Front. Neurol., 2017, 8, 531.
[111]
Oz, A.; Celik, O. Curcumin inhibits oxidative stress-induced TRPM2 channel activation, calcium ion entry and apoptosis values in SH-SY5Y neuroblastoma cells: Involvement of transfection procedure. Mol. Membr. Biol., 2016, 33, 76-88.
[112]
Obi, S.; Nakajima, T.; Hasegawa, T.; Kikuchi, H.; Oguri, G.; Takahashi, M.; Nakamura, F.; Yamasoba, T.; Sakuma, M.; Toyoda, S.; Tei, C.; Inoue, T. Heat induces interleukin-6 in skeletal muscle cells via TRPV1/PKC/CREB pathways. J. Appl. Physiol., 2017, 122, 683-694.
[113]
Zhang, X.; Chen, Q.; Wang, Y.; Peng, W.; Cai, H. Effects of curcumin on ion channels and transporters. Front. Physiol., 2014, 5, 94.
[114]
Wu, Y.; Qin, D.; Yang, H.; Fu, H. Evidence for the participation of acid-sensing ion channels (ASICs) in the antinociceptive effect of curcumin in a formalin-induced orofacial inflammatory model. Cell. Mol. Neurobiol., 2017, 37, 635-642.
[115]
Du, J.; Reznikov, L.R.; Price, M.P.; Zha, X.M.; Lu, Y.; Moninger, T.O.; Wemmie, J.A.; Welsh, M.J. Protons are a neurotransmitter that regulates synaptic plasticity in the lateral amygdala. Proc. Natl. Acad. Sci. USA, 2014, 111, 8961-8966.
[116]
Storozhuk, M.; Kondratskaya, E.; Nikolaenko, L.; Krishtal, O. A modulatory role of ASICs on GABAergic synapses in rat hippocampal cell cultures. Mol. Brain, 2016, 9, 90.
[117]
Gonzales, E.B.; Sumien, N. Acidity and acid-sensing ion channels in the normal and Alzheimer’s disease brain. J. Alzheimers Dis., 2017, 57, 1137-1144.
[118]
Stohs, S.J.; Ji, J.; Bucci, L.R.; Preuss, H.G. A comparative pharmacokinetic assessment of a novel highly bioavailable curcumin formulation with 95% curcumin: A randomized, double-blind, crossover study. J. Am. Coll. Nutr., 2018, 37, 51-59.
[119]
Dosoky, N.S.; Setzer, W.N. Chemical composition and biological activities of essential oils of curcuma species. Nutrients, 2018, 10
[http://dx.doi.org/10.3390/nu10091196]
[120]
Li, S.; Yuan, W.; Deng, G.; Wang, P.; Yang, P.; Aggarwal, B.B. Chemical composition and product quality control of turmeric (Curcuma longa L.). Pharmaceutical Crops, 2011, 2, 28-54.
[121]
Srinivas, L.; Shalini, V.K.; Shylaja, M. Turmerin: A water soluble antioxidant peptide from turmeric (Curcuma longa). Arch. Biochem. Biophys., 1992, 292, 617-623.
[122]
Lekshmi, P.C.; Arimboor, R.; Raghu, K.G.; Menon, A.N. Turmerin, the antioxidant protein from turmeric (Curcuma longa) exhibits antihyperglycaemic effects. Nat. Prod. Res., 2012, 26, 1654-1658.
[123]
Antony, B.; Merina, B.; Iyer, V.S.; Judy, N.; Lennertz, K.; Joyal, S. A pilot cross-over study to evaluate human oral bioavailability of BCM-95CG (Biocurcumax), a novel bioenhanced preparation of curcumin. Indian J. Pharm. Sci., 2008, 70, 445-449.
[124]
Sunagawa, Y.; Hirano, S.; Katanasaka, Y.; Miyazaki, Y.; Funamoto, M.; Okamura, N.; Hojo, Y.; Suzuki, H.; Doi, O.; Yokoji, T.; Morimoto, E.; Takashi, T.; Ozawa, H.; Imaizumi, A.; Ueno, M.; Kakeya, H.; Shimatsu, A.; Wada, H.; Hasegawa, K.; Morimoto, T. Colloidal submicron-particle curcumin exhibits high absorption efficiency-a double-blind, 3-way crossover study. J. Nutr. Sci. Vitaminol. (Tokyo), 2015, 61, 37-44.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 12
ISSUE: 1
Year: 2019
Page: [12 - 26]
Pages: 15
DOI: 10.2174/1874467211666181012150847
Price: $58

Article Metrics

PDF: 30
HTML: 3