Alkylphospholipids are Signal Transduction Modulators with Potential for Anticancer Therapy

Author(s): Ferda Kaleağasıoğlu, Maya M. Zaharieva, Spiro M. Konstantinov, Martin R. Berger*.

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 19 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Alkylphospholipids (APLs) are synthetically derived from cell membrane components, which they target and thus modify cellular signalling and cause diverse effects. This study reviews the mechanism of action of anticancer, antiprotozoal, antibacterial and antiviral activities of ALPs, as well as their clinical use.

Methods: A literature search was used as the basis of this review.

Results: ALPs target lipid rafts and alter phospholipase D and C signalling cascades, which in turn will modulate the PI3K/Akt/mTOR and RAS/RAF/MEK/ERK pathways. By feedback coupling, the SAPK/JNK signalling chain is also affected. These changes lead to a G2/M phase cell cycle arrest and subsequently induce programmed cell death. The available knowledge on inhibition of AKT phosphorylation, mTOR phosphorylation and Raf down-regulation renders ALPs as attractive candidates for modern medical treatment, which is based on individualized diagnosis and therapy. Corresponding to their unusual profile of activities, their side effects result from cholinomimetic activity mainly and focus on the gastrointestinal tract. These aspects together with their bone marrow sparing features render APCs well suited for modern combination therapy. Although the clinical success has been limited in cancer diseases so far, the use of miltefosine against leishmaniosis is leading the way to better understanding their optimized use.

Conclusion: Recent synthetic programs generate congeners with the increased therapeutic ratio, liposomal formulations, as well as diapeutic (or theranostic) derivatives with optimized properties. It is anticipated that these innovative modifications will pave the way for the further successful development of ALPs.

Keywords: Mode of action, modulation of cell signalling, pharmacodynamics, anticancer activities, pharmacokinetics, clinical trials.

[1]
Andreesen, R.; Modolell, M.; Weltzien, H.U.; Eibl, H.; Common, H.H.; Lohr, G.W.; Munder, P.G. Selective destruction of human leukemic cells by alkyl-lysophospholipids. Cancer Res., 1978, 38(11 Pt 1), 3894-3899.
[2]
Berdel, W.E.; Bausert, W.R.; Weltzien, H.U.; Modolell, M.L.; Widmann, K.H.; Munder, P.G. The influence of alkyl-lysophospholipids and lysophospholipid-activated macrophages on the development of metastasis of 3-Lewis lung carcinoma. Eur. J. Cancer, 1980, 16(9), 1199-1204.
[3]
Berger, M.R.; Munder, P.G.; Schmahl, D.; Westphal, O. Influence of the alkyllysophospholipid ET-18-OCH3 on methylnitrosourea-induced rat mammary carcinomas. Oncology, 1984, 41(2), 109-113.
[4]
Grunicke, H.; Hofmann, J. Cytotoxic and cytostatic effects of antitumor agents induced at the plasma membrane level. Pharmacol. Ther., 1992, 55(1), 1-30.
[5]
Berdel, W.E.; Fink, U.; Rastetter, J. Clinical phase I pilot study of the alkyl lysophospholipid derivative ET-18-OCH3. Lipids, 1987, 22(11), 967-969.
[6]
Berger, M.R.; Schmahl, D. Modulation of chemical carcinogenesis in rats by alkyl lysophospholipids. Lipids, 1987, 22(11), 935-942.
[7]
Woolley, P.V.; Schultz, C.J.; Rodriguez, G.I.; Gams, R.A.; Rowe, K.W., Jr; Dadey, M.L.; Von Hoff, D.D.; McPhillips, J.J. A phase II trial of ilmofosine in non-small cell bronchogenic carcinoma. Invest. New Drugs, 1996, 14(2), 219-222.
[8]
Herrmann, D.B.; Opitz, H.G.; Munder, P.G. Antitumor activity of Ilmofosine (BM 41.440) in the 3Lewis-lung carcinoma model. Lipids, 1991, 26(12), 1431-1436.
[9]
Berger, M.R.; Muschiol, C.; Eibl, H.J. New cytostatics with experimentally different toxic profiles. cancer Treat. Rev., 1987, 14, 307-317.
[10]
Breiser, A.; Kim, D.J.; Fleer, E.A.; Damenz, W.; Drube, A.; Berger, M.; Nagel, G.A.; Eibl, H.; Unger, C. Distribution and metabolism of hexadecylphosphocholine in mice. Lipids, 1987, 22(11), 925-926.
[11]
Verweij, J.; Planting, A.; van der Burg, M.; Stoter, G. A dose-finding study of miltefosine (hexadecylphosphocholine) in patients with metastatic solid tumours. J. Cancer Res. Clin. Oncol., 1992, 118(8), 606-608.
[12]
Zeisig, R.; Jungmann, S.; Arndt, D.; Schutt, A.; Nissen, E. Antineoplastic activity in vitro of free and liposomal alkylphosphocholines. Anticancer Drugs, 1993, 4(1), 57-64.
[13]
Unger, C.; Berdel, W.; Hanauske, A.R.; Sindermann, H.; Engel, J.; Mross, K. First-time-in-man and pharmacokinetic study of weekly oral perifosine in patients with solid tumours. Eur. J. Cancer, 2010, 46(5), 920-925.
[14]
Bendell, J.C.; Nemunaitis, J.; Vukelja, S.J.; Hagenstad, C.; Campos, L.T.; Hermann, R.C.; Sportelli, P.; Gardner, L.; Richards, D.A. Randomized placebo-controlled phase II trial of perifosine plus capecitabine as second- or third-line therapy in patients with metastatic colorectal cancer. J. Clin. Oncol., 2011, 29(33), 4394-4400.
[15]
Konigs, S.K.; Pallasch, C.P.; Lindner, L.H.; Schwamb, J.; Schulz, A.; Brinker, R.; Claasen, J.; Veldurthy, A.; Eibl, H.; Hallek, M.; Wendtner, C.M. Erufosine, a novel alkylphosphocholine, induces apoptosis in CLL through a caspase-dependent pathway. Leuk. Res., 2010, 34(8), 1064-1069.
[16]
Kapoor, V.; Zaharieva, M.M.; Das, S.N.; Berger, M.R. Erufosine simultaneously induces apoptosis and autophagy by modulating the Akt-mTOR signaling pathway in oral squamous cell carcinoma. Cancer Lett., 2012, 319(1), 39-48.
[17]
Fiegl, M.; Lindner, L.H.; Juergens, M.; Eibl, H.; Hiddemann, W.; Braess, J. Erufosine, a novel alkylphosphocholine, in acute myeloid leukemia: single activity and combination with other antileukemic drugs. Cancer Chemother. Pharmacol., 2008, 62(2), 321-329.
[18]
Martelli, A.M.; Papa, V.; Tazzari, P.L.; Ricci, F.; Evangelisti, C.; Chiarini, F.; Grimaldi, C.; Cappellini, A.; Martinelli, G.; Ottaviani, E.; Pagliaro, P.; Horn, S.; Basecke, J.; Lindner, L.H.; Eibl, H.; McCubrey, J.A. Erucylphosphohomocholine, the first intravenously applicable alkylphosphocholine, is cytotoxic to acute myelogenous leukemia cells through JNK- and PP2A-dependent mechanisms. Leukemia, 2010, 24(4), 687-698.
[19]
Henke, G.; Lindner, L.H.; Vogeser, M.; Eibl, H.J.; Worner, J.; Muller, A.C.; Bamberg, M.; Wachholz, K.; Belka, C.; Jendrossek, V. Pharmacokinetics and biodistribution of Erufosine in nude mice--implications for combination with radiotherapy. Radiat. Oncol., 2009, 4, 46.
[20]
Clark, P.A.; Al-Ahmad, A.J.; Qian, T.; Zhang, R.R.; Wilson, H.K.; Weichert, J.P.; Palecek, S.P.; Kuo, J.S.; Shusta, E.V. Analysis of cancer-targeting alkylphosphocholine analogue permeability characteristics using a human induced pluripotent stem cell blood-brain barrier model. Mol. Pharm., 2016, 13(9), 3341-3349.
[21]
Pinchuk, A.N.; Rampy, M.A.; Longino, M.A.; Skinner, R.W.; Gross, M.D.; Weichert, J.P.; Counsell, R.E. Synthesis and structure-activity relationship effects on the tumor avidity of radioiodinated phospholipid ether analogues. J. Med. Chem., 2006, 49(7), 2155-3265.
[22]
Weichert, J.P.; Clark, P.A.; Kandela, I.K.; Vaccaro, A.M.; Clarke, W.; Longino, M.A.; Pinchuk, A.N.; Farhoud, M.; Swanson, K.I.; Floberg, J.M.; Grudzinski, J.; Titz, B.; Traynor, A.M.; Chen, H.E.; Hall, L.T.; Pazoles, C.J.; Pickhardt, P.J.; Kuo, J.S. Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy. Sci. Transl. Med., 2014, 6(240), 240ra75.
[23]
Swanson, K.I.; Clark, P.A.; Zhang, R.R.; Kandela, I.K.; Farhoud, M.; Weichert, J.P.; Kuo, J.S. Fluorescent cancer-selective alkylphosphocholine analogs for intraoperative glioma detection. Neurosurgery, 2015, 76(2), 115-123.
[24]
Garland, M.; Yim, J.J.; Bogyo, M. A bright future for precision medicine: advances in fluorescent chemical probe design and their clinical application. Cell Chem. Biol., 2016, 23(1), 122-136.
[25]
Korb, M.L.; Warram, J.M.; Grudzinski, J.; Weichert, J.; Jeffery, J.; Rosenthal, E.L. Breast cancer imaging using the near-infrared fluorescent agent, CLR1502. Mol. Imaging, 2014, 13.
[26]
Zhang, R.R.; Schroeder, A.B.; Grudzinski, J.J.; Rosenthal, E.L.; Warram, J.M.; Pinchuk, A.N.; Eliceiri, K.W.; Kuo, J.S.; Weichert, J.P. Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat. Rev. Clin. Oncol., 2017, 14(6), 347-364.
[27]
Zhang, R.R.; Swanson, K.I.; Hall, L.T.; Weichert, J.P.; Kuo, J.S. Diapeutic cancer-targeting alkylphosphocholine analogs may advance management of brain malignancies. CNS Oncol., 2016, 5(4), 223-231.
[28]
Fleer, E.A.; Unger, C.; Kim, D.J.; Eibl, H. Metabolism of ether phospholipids and analogs in neoplastic cells. Lipids, 1987, 22(11), 856-861.
[29]
Eibl, H.; Unger, C. Phospholipide als antitumormittel: Moeglichkeiten einer selektiven therapie. Die Zellmembran als angriffspunt der tumortherapie. zuckerschwerdt: Muenchen. 1987, pp 1-18.
[30]
Berger, M.R.; Yanapirut, P.; Reinhardt, M.; Klenner, T.; Scherf, H.R.; Schmeiser, H.H.; Eibl, H. Antitumor activity of alkylphosphocholines and analogues in methylnitrosourea-induced rat mammary carcinomas. Prog. Exp. Tumor Res., 1992, 34, 98-115.
[31]
Konstantinov, S.M.; Topashka-Ancheva, M.; Benner, A.; Berger, M.R. Alkylphosphocholines: Effects on human leukemic cell lines and normal bone marrow cells. Int. J. Cancer, 1998, 77(5), 778-786.
[32]
Konstantinov, S.M.; Eibl, H.; Berger, M.R. BCR-ABL influences the antileukaemic efficacy of alkylphosphocholines. Br. J. Haematol., 1999, 107(2), 365-380.
[33]
Konstantinov, S.M.; Berger, M.R. Human urinary bladder carcinoma cell lines respond to treatment with alkylphosphocholines. Cancer Lett., 1999, 144(2), 153-160.
[34]
Konstantinov, S.M.; Eibl, H.; Berger, M.R. Alkylphosphocholines induce apoptosis in HL-60 and U-937 leukemic cells. Cancer Chemother. Pharmacol., 1998, 41(3), 210-216.
[35]
Bagley, R.G.; Kurtzberg, L.; Rouleau, C.; Yao, M.; Teicher, B.A. Erufosine, an alkylphosphocholine, with differential toxicity to human cancer cells and bone marrow cells. Cancer Chemother. Pharmacol., 2011, 68(6), 1537-1546.
[36]
Yosifov, D.Y.; Todorov, P.T.; Zaharieva, M.M.; Georgiev, K.D.; Pilicheva, B.A.; Konstantinov, S.M.; Berger, M.R. Erucylphospho-N,N,N-trimethylpropylammonium (erufosine) is a potential antimyeloma drug devoid of myelotoxicity. Cancer Chemother. Pharmacol., 2010, 67(1), 13-25.
[37]
Martinova, Y.; Topashka-Ancheva, M.; Konstantinov, S.; Petkova, S.; Karaivanova, M.; Berger, M. Miltefosine decreases the cytotoxic effect of Epirubicine and Cyclophosphamide on mouse spermatogenic, thymic and bone marrow cells. Arch. Toxicol., 2006, 80(1), 27-33.
[38]
Koetting, J.; Berger, M.R.; Unger, C.; Eibl, H. Alkylphosphocholines: influence of structural variation on biodistribution at antineoplastically active concentrations. Cancer Chemother. Pharmacol., 1992, 30(2), 105-112.
[39]
Sobottka, S.B.; Berger, M.R.; Eibl, H. Structure-activity relationships of four anti-cancer alkylphosphocholine derivatives in vitro and in vivo. Int. J. Cancer, 1993, 53(3), 418-425.
[40]
Papazafiri, P.; Avlonitis, N.; Angelou, P.; Calogeropoulou, T.; Koufaki, M.; Scoulica, E.; Fragiadaki, I. Structure-activity relationships of antineoplastic ring-substituted ether phospholipid derivatives. Cancer Chemother. Pharmacol., 2005, 56(3), 261-270.
[41]
Vink, S.R.; Schellens, J.H.; van Blitterswijk, W.J.; Verheij, M. Tumor and normal tissue pharmacokinetics of perifosine, an oral anti-cancer alkylphospholipid. Invest. New Drugs, 2005, 23(4), 279-286.
[42]
Hideshima, T.; Catley, L.; Yasui, H.; Ishitsuka, K.; Raje, N.; Mitsiades, C.; Podar, K.; Munshi, N.C.; Chauhan, D.; Richardson, P.G.; Anderson, K.C. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood, 2006, 107(10), 4053-4062.
[43]
Pitter, K.L.; Galban, C.J.; Galban, S.; Tehrani, O.S.; Li, F.; Charles, N.; Bradbury, M.S.; Becher, O.J.; Chenevert, T.L.; Rehemtulla, A.; Ross, B.D.; Holland, E.C.; Hambardzumyan, D. Perifosine and CCI 779 co-operate to induce cell death and decrease proliferation in PTEN-intact and PTEN-deficient PDGF-driven murine glioblastoma. PLoS One, 2011, 6(1), e14545.
[44]
Celeghini, C.; Voltan, R.; Rimondi, E.; Gattei, V.; Zauli, G. Perifosine selectively induces cell cycle block and modulates retinoblastoma and E2F1 protein levels in p53 mutated leukemic cell lines. Invest. New Drugs, 2010, 29(2), 392-395.
[45]
Voltan, R.; Celeghini, C.; Melloni, E.; Secchiero, P.; Zauli, G. Perifosine plus nutlin-3 combination shows a synergistic anti-leukaemic activity. Br. J. Haematol., 2009, 148(6), 957-961.
[46]
Elrod, H.A.; Lin, Y.D.; Yue, P.; Wang, X.; Lonial, S.; Khuri, F.R.; Sun, S.Y. The alkylphospholipid perifosine induces apoptosis of human lung cancer cells requiring inhibition of Akt and activation of the extrinsic apoptotic pathway. Mol. Cancer Ther., 2007, 6(7), 2029-2038.
[47]
Catley, L.; Hideshima, T.; Chauhan, D.; Neri, P.; Tassone, P.; Bronson, R.; Song, W.; Tai, Y.T.; Munshi, N.C.; Anderson, K.C. Alkyl phospholipid perifosine induces myeloid hyperplasia in a murine myeloma model. Exp. Hematol., 2007, 35(7), 1038-1046.
[48]
Nyakern, M.; Cappellini, A.; Mantovani, I.; Martelli, A.M. Synergistic induction of apoptosis in human leukemia T cells by the Akt inhibitor perifosine and etoposide through activation of intrinsic and Fas-mediated extrinsic cell death pathways. Mol. Cancer Ther., 2006, 5(6), 1559-1570.
[49]
Jendrossek, V.; Hammersen, K.; Erdlenbruch, B.; Kugler, W.; Kruegener, R.; Eibl, H.; Lakomek, M. Structure-activity relationships of alkylphosphocholine derivates: antineoplastic action on brain tumor cell lines in vitro. Cancer Chemother. Pharmacol., 2002, 50, 71-79.
[50]
Thaler, A.; Hottkowitz, T.; Eibl, H. Separation and quantification of alkylphosphocholines by reversed phase high performance liquid chromatography. Chem. Phys. Lipids, 2000, 107(1), 131-139.
[51]
Grosman, N. Similar effects of ether phospholipids, PAF and lyso-PAF on the Ca(2+)-ATPase activity of rat brain synaptosomes and leukocyte membranes. Int. Immunopharmacol., 2001, 1(7), 1321-1329.
[52]
Eibl, H.; Kaufmann-Kolle, P. Medical application of synthetic phospholipids as liposomes and drugs. J. Liposome Res., 1995, 5, 131.
[53]
Kaufmann-Kolle, P.; Koetting, J.; Drevs, J.; Berger, M.; Unger, C.; Eibl, H. Intravenous application of alkylphosphocholines: Comparison of different homologues in lamellar structures. J. Cancer Res. Clin. Oncol., 1992, 120, R14.
[54]
Georgieva, M.C.; Konstantinov, S.M.; Topashka-Ancheva, M.; Berger, M.R. Combination effects of alkylphosphocholines and gemcitabine in malignant and normal hematopoietic cells. Cancer Lett., 2002, 182(2), 163-174.
[55]
Erdlenbruch, B.; Jendrossek, V.; Marx, M.; Hunold, A.; Eibl, H.; Lakomek, M. Antitumor effects of erucylphosphocholine on brain tumor cells in vitro and in vivo. Anticancer Res., 1998, 18(4A), 2551-2557.
[56]
Erdlenbruch, B.; Jendrossek, V.; Gerriets, A.; Vetterlein, F.; Eibl, H.; Lakomek, M. Erucylphosphocholine: Pharmacokinetics, biodistribution and CNS-accumulation in the rat after intravenous administration. Cancer Chemother. Pharmacol., 1999, 44(6), 484-490.
[57]
Jendrossek, V.; Erdlenbruch, B.; Hunold, A.; Kugler, W.; Eibl, H.; Lakomek, M. Erucylphosphocholine, a novel antineoplastic ether lipid, blocks growth and induces apoptosis in brain tumor cell lines in vitro. Int. J. Oncol., 1999, 14(1), 15-22.
[58]
Rubel, A.; Handrick, R.; Lindner, L.H.; Steiger, M.; Eibl, H.; Budach, W.; Belka, C.; Jendrossek, V. The membrane targeted apoptosis modulators erucylphosphocholine and erucylphosphohomocholine increase the radiation response of human glioblastoma cell lines in vitro. Radiat. Oncol., 2006, 1, 6.
[59]
Martelli, A.M.; Evangelisti, C.; Chiarini, F.; Grimaldi, C.; Manzoli, L.; McCubrey, J.A. Targeting the PI3K/AKT/mTOR signaling network in acute myelogenous leukemia. Expert Opin. Investig. Drugs, 2009, 18(9), 1333-1349.
[60]
Yosifov, D.Y.; Konstantinov, S.M.; Berger, M.R.; Erucylphospho-N, N. N-trimethylpropylammonium shows substantial cytotoxicity in multiple myeloma cells. Ann. N. Y. Acad. Sci., 2009, 1171, 350-358.
[61]
Zaharieva, M.M.; Konstantinov, S.M.; Pilicheva, B.; Karaivanova, M.; Berger, M.R. Erufosine: A membrane targeting antineoplastic agent with signal transduction modulating effects. Ann. N. Y. Acad. Sci., 2007, 1095, 182-192.
[62]
Henke, G.; Meier, V.; Lindner, L.H.; Eibl, H.; Bamberg, M.; Belka, C.; Budach, W.; Jendrossek, V. Effects of ionizing radiation in combination with Erufosine on T98G glioblastoma xenograft tumours: A study in NMRI nu/nu mice. Radiat. Oncol., 2012, 7, 172.
[63]
Dineva, I.K.; Zaharieva, M.M.; Konstantinov, S.M.; Eibl, H.; Berger, M.R. Erufosine suppresses breast cancer in vitro and in vivo for its activity on PI3K, c-Raf and Akt proteins. J. Cancer Res. Clin. Oncol., 2012, 138(11), 1909-1917.
[64]
Rudner, J.; Ruiner, C.E.; Handrick, R.; Eibl, H.J.; Belka, C.; Jendrossek, V. The Akt-inhibitor erufosine induces apoptotic cell death in prostate cancer cells and increases the short term effects of ionizing radiation. Radiat. Oncol., 2010, 5, 108.
[65]
Zaharieva, M.M.; Kirilov, M.; Chai, M.; Berger, S.M.; Konstantinov, S.; Berger, M.R. Reduced expression of the retinoblastoma protein shows that the related signaling pathway is essential for mediating the antineoplastic activity of erufosine. PLoS One, 2014, 9(7), e100950.
[66]
Yosifov, D.Y.; Kaloyanov, K.A.; Guenova, M.L.; Prisadashka, K.; Balabanova, M.B.; Berger, M.R.; Konstantinov, S.M. Alkylphosphocholines and curcumin induce programmed cell death in cutaneous T-cell lymphoma cell lines. Leuk. Res., 2014, 38(1), 49-56.
[67]
Kaleagasioglu, F.; Berger, M.R. Differential effects of erufosine on proliferation, wound healing and apoptosis in colorectal cancer cell lines. Oncol. Rep., 2014, 31(3), 1407-1416.
[68]
Chometon, G.; Cappuccini, F.; Raducanu, A.; Aumailley, M.; Jendrossek, V. The membrane-targeted alkylphosphocholine erufosine interferes with survival signals from the extracellular matrix. Anticancer. Agents Med. Chem., 2014, 14(4), 578-591.
[69]
Veenman, L.; Alten, J.; Linnemannstons, K.; Shandalov, Y.; Zeno, S.; Lakomek, M.; Gavish, M.; Kugler, W. Potential involvement of F0F1-ATP(synth)ase and reactive oxygen species in apoptosis induction by the antineoplastic agent erucylphosphohomocholine in glioblastoma cell lines: A mechanism for induction of apoptosis via the 18 kDa mitochondrial translocator protein. Apoptosis, 2010, 15(7), 753-768.
[70]
Berger, M.R.; Sobottka, S.B.; Konstantinov, S.; Eibl, H. Erucylphosphocholine is the prototype of i.v. injectable alkylphosphocholines. Drugs Today., 1998, 34, 73-81.
[71]
Fiegl, M.; Lindner, L.H.; Juergens, M.; Eibl, H.; Hiddemann, W.; Braess, J. Erufosine, a novel alkylphosphocholine, in acute myeloid leukemia: Single activity and combination with other antileukemic drugs. Cancer Chemother. Pharmacol., 2008, 62(2), 321-329.
[72]
Baas, T. New route for old cancer agents. Science–Business eXChange, 2014, 7(27), 2.
[73]
Hilgard, P.; Klenner, T.; Stekar, J.; Unger, C. Alkylphosphocholines: A new class of membrane-active anticancer agents. Cancer Chemother. Pharmacol., 1993, 32(2), 90-95.
[74]
Ruiter, G.A.; Zerp, S.F.; Bartelink, H.; van Blitterswijk, W.J.; Verheij, M. Alkyl-lysophospholipids activate the SAPK/JNK pathway and enhance radiation-induced apoptosis. Cancer Res., 1999, 59(10), 2457-2463.
[75]
Rybczynska, M.; Spitaler, M.; Knebel, N.G.; Boeck, G.; Grunicke, H.; Hofmann, J. Effects of miltefosine on various biochemical parameters in a panel of tumor cell lines with different sensitivities. Biochem. Pharmacol., 2001, 62(6), 765-772.
[76]
Naumann, U.; Wischhusen, J.; Weit, S.; Rieger, J.; Wolburg, H.; Massing, U.; Weller, M. Alkylphosphocholine-induced glioma cell death is BCL-X(L)-sensitive, caspase-independent and characterized by massive cytoplasmic vacuole formation. Cell Death Differ., 2004, 11(12), 1326-1341.
[77]
Jendrossek, V.; Handrick, R. Membrane targeted anticancer drugs: Potent inducers of apoptosis and putative radiosensitisers. Curr. Med. Chem. Anticancer Agents, 2003, 3(5), 343-353.
[78]
Oberle, C.; Massing, U.; Krug, H.F. On the mechanism of alkylphosphocholine (APC)-induced apoptosis in tumour cells. Biol. Chem., 2005, 386(3), 237-245.
[79]
Gajate, C.; Mollinedo, F. Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood, 2007, 109(2), 711-719.
[80]
Gajate, C.; Mollinedo, F. The antitumor ether lipid ET-18-OCH (3) induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood, 2001, 98, 3860-3863.
[81]
Ward, P.D.; Ouyang, H.; Thakker, D.R. Role of phospholipase C-beta in the modulation of epithelial tight junction permeability. J. Pharmacol. Exp. Ther., 2003, 304(2), 689-698.
[82]
Lucas, L.; Hernandez-Alcoceba, R.; Penalva, V.; Lacal, J.C. Modulation of phospholipase D by hexadecylphosphorylcholine: A putative novel mechanism for its antitumoral activity. Oncogene, 2001, 20(9), 1110-1117.
[83]
Ruiter, G.A.; Zerp, S.F.; Bartelink, H.; van Blitterswijk, W.J.; Verheij, M. Anti-cancer alkyl-lysophospholipids inhibit the phosphatidylinositol 3-kinase-Akt/PKB survival pathway. Anticancer Drugs, 2003, 14(2), 167-173.
[84]
Kumar, A.; Fillmore, H.L.; Kadian, R.; Broaddus, W.C.; Tye, G.W.; Van Meter, T.E. The alkylphospholipid perifosine induces apoptosis and p21-mediated cell cycle arrest in medulloblastoma. Mol. Cancer Res., 2009, 7(11), 1813-1821.
[85]
Berger, M.; Tsoneva, I.; Konstantinov, S.; Eibl, H. Induction of apoptosis by Erucylphospho-N, N, N,-trimethylammonium is associated with changes in signal molecule expression and location. Ann. N. Y. Acad. Sci., 2003, 1010, 307-310.
[86]
Ruiter, G.A.; Verheij, M.; Zerp, S.F.; van Blitterswijk, W.J. Alkyl-lysophospholipids as anticancer agents and enhancers of radiation-induced apoptosis. Int. J. Radiat. Oncol. Biol. Phys., 2001, 49(2), 415-419.
[87]
Cuvillier, O.; Janoff, E.M.; Liposomal, A.S. ET-18-OCH(3) induces cytochrom c-mediated apoptosis independently of CD95 (APO-1/Fas) signaling. Blood, 1999, 94, 3583-3592.
[88]
Ansari, S.S.; Sharma, A.K.; Soni, H.; Ali, D.M.; Tews, B.; Konig, R.; Eibl, H.; Berger, M.R. Induction of ER and mitochondrial stress by the alkylphosphocholine erufosine in oral squamous cell carcinoma cells. Cell Death Dis., 2018, 9(3), 296.
[89]
Matzke, A.; Massing, U.; Krug, H.F. Killing tumour cells by alkylphosphocholines: Evidence for involvement of CD95. Eur. J. Cell Biol., 2001, 80(1), 1-10.
[90]
Jendrossek, V.; Kugler, W.; Erdlenbruch, B.; Eibl, H.; Lakomek, M. Induction of differentiation and tetraploidy by long-term treatment of C6 rat glioma cells with erucylphosphocholine. Int. J. Oncol., 2001, 19(4), 673-680.
[91]
Jendrossek, V.; Mueller, I.; Eibl, H. Intracellular mediators of erucylphosphocholine-induced apoptosis. Oncogene, 2003, 22, 2621-2632.
[92]
Fu, L.; Kim, Y.A.; Wang, X.; Wu, X.; Yue, P.; Lonial, S.; Khuri, F.R.; Sun, S.Y. Perifosine inhibits mammalian target of rapamycin signaling through facilitating degradation of major components in the mTOR axis and induces autophagy. Cancer Res., 2009, 69(23), 8967-8976.
[93]
Jung, C.H.; Jun, C.B.; Ro, S-H.; Kim, Y-M.; Otto, N.M.; Cao, J.; Kundu, M.; Kim, D-H. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell, 2009, 20(7), 1992-2003.
[94]
Kapoor, V.; Zaharieva, M.M.; Berger, M.R. Erufosine Induces Autophagy and Apoptosis in Oral Squamous Cell Carcinoma: Role of the Akt-mTOR Signaling Pathway. In. Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging, 1st ed.; Hayat, M.A., Ed. Academic Press - Elsevier Inc.: Amsterdam, 2014, 3, pp 229-245
[95]
Xin, Y.; Shen, X.D.; Cheng, L.; Hong, D.F.; Chen, B. Perifosine inhibits S6K1-Gli1 signaling and enhances gemcitabine-induced anti-pancreatic cancer efficiency. Cancer Chemother. Pharmacol., 2014, 73(4), 711-719.
[96]
Grosman, N. Influence of probes for calcium-calamodulin and protein kinase C signalling on the plasma membrane Ca2+-ATPase activity of rat synaptosomes and leukocyte membranes. Immunopharmacology, 1998, 40, 163-171.
[97]
Houlihan, W.J.; Lohmeyer, M.; Workman, P.; Cheon, S.H. Phospholipid antitumor agents. Med. Res. Rev., 1995, 15, 157-223.
[98]
Carafoli, E.; Stauffer, T. The plasma membrane calcium pump: Functional domains, regulation of the activity, and tissue specificity of isoform expression. J. Neurobiol., 1994, 25(3), 312-324.
[99]
van Blitterswijk, W.J.; Verheij, M. Anticancer mechanisms and clinical application of alkylphospholipids. Biochim. Biophys. Acta, 2013, 1831(3), 663-674.
[100]
van der Luit, A.H.; Budde, M.; Ruurs, P.; Verheij, M.; van Blitterswijk, W.J. Alkyl-lysophospholipid accumulates in lipid rafts and induces apoptosis via raft-dependent endocytosis and inhibition of phosphatidylcholine synthesis. J. Biol. Chem., 2002, 277(42), 39541-39547.
[101]
Nieto-Miguel, T.; Gajate, C.; Mollinedo, F. Differential targets and subcellular localization of antitumor alkyl-lysophospholipid in leukemic versus solid tumor cells. J. Biol. Chem., 2006, 281(21), 14833-14840.
[102]
Van der Luit, A.H.; Budde, M.; Zerp, S.; Caan, W.; Klarenbeek, J.B.; Verheij, M.; Van Blitterswijk, W.J. Resistance to alkyl-lysophospholipid-induced apoptosis due to downregulated sphingomyelin synthase 1 expression with consequent sphingomyelin- and cholesterol-deficiency in lipid rafts. Biochem. J., 2007, 401(2), 541-549.
[103]
van der Luit, A.H.; Vink, S.R.; Klarenbeek, J.B.; Perrissoud, D.; Solary, E.; Verheij, M.; van Blitterswijk, W.J. A new class of anticancer alkylphospholipids uses lipid rafts as membrane gateways to induce apoptosis in lymphoma cells. Mol. Cancer Ther., 2007, 6(8), 2337-2345.
[104]
Vink, S.R.; van der Luit, A.H.; Klarenbeek, J.B.; Verheij, M.; van Blitterswijk, W.J. Lipid rafts and metabolic energy differentially determine uptake of anti-cancer alkylphospholipids in lymphoma versus carcinoma cells. Biochem. Pharmacol., 2007, 74(10), 1456-1465.
[105]
Jaffrés, P-A.; Gajate, C.; Bouchet, A.M.; Couthon-Gourvés, H.; Chantome, A.; Potier-Cartereau, M.; Besson, P.; Bougnoux, P.; Mollinedo, F.; Vandier, C. Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy. Pharmacol. Ther., 2016, 165, 114-131.
[106]
Munoz-Martinez, F.; Torres, C.; Castanys, S.; Gamarro, F. CDC50A plays a key role in the uptake of the anticancer drug perifosine in human carcinoma cells. Biochem. Pharmacol., 2010, 80(6), 793-800.
[107]
Carrasco, M.P.; Jimenez-Lopez, J.M.; Rios-Marco, P.; Segovia, J.L.; Marco, C. Disruption of cellular cholesterol transport and homeostasis as a novel mechanism of action of membrane-targeted alkylphospholipid analogues. Br. J. Pharmacol., 2010, 160(2), 355-366.
[108]
Jimenez-Lopez, J.M.; Rios-Marco, P.; Marco, C.; Segovia, J.L.; Carrasco, M.P. Alterations in the homeostasis of phospholipids and cholesterol by antitumor alkylphospholipids. Lipids Health Dis., 2010, 9, 33.
[109]
Pehlivanova, V.; Uzunova, V.; Tsoneva, I.; Berger, M.R.; Ugrinova, I.; Tzoneva, R. Effect of erufosine on the reorganization of cytoskeleton and cell death in adherent tumor and non-tumorigenic cells. Biotechnol. Biotechnol. Equip., 2014, 27(2), 3695-3699.
[110]
Follo, M.Y.; Manzoli, L.; Poli, A.; McCubrey, J.A.; Cocco, L. PLC and PI3K/Akt/mTOR signalling in disease and cancer. Adv. Biol. Regul., 2015, 57, 10-16.
[111]
Berkovic, D.; Goeckenjan, M.; Luders, S.; Hiddemann, W.; Fleer, E.A. Hexadecylphosphocholine inhibits phosphatidylinositol and phosphatidylcholine phospholipase C in human leukemia cells. J. Exp. Ther. Oncol., 1996, 1(5), 302-311.
[112]
Berkovic, D.; Berkovic, K.; Fleer, E.A.; Eibl, H.; Unger, C. Inhibition of calcium-dependent protein kinase C by hexadecylphosphocholine and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine do not correlate with inhibition of proliferation of HL60 and K562 cell lines. Eur. J. Cancer, 1994, 30A(4), 509-515.
[113]
Uberall, F.; Oberhuber, H.; Maly, K.; Zaknun, J.; Demuth, L.; Grunicke, H.H. Hexadecylphosphocholine inhibits inositol phosphate formation and protein kinase C activity. Cancer Res., 1991, 51(3), 807-812.
[114]
Maly, K.; Uberall, F.; Schubert, C.; Kindler, E.; Stekar, J.; Brachwitz, H.; Grunicke, H.H. Interference of new alkylphospholipid analogues with mitogenic signal transduction. Anticancer Drug Des., 1995, 10(5), 411-425.
[115]
Eibl, K.H.; Banas, B.; Kook, D.; Ohlmann, A.V.; Priglinger, S.; Kampik, A.; Welge-Luessen, U.C. Alkylphosphocholines: A new therapeutic option in glaucoma filtration surgery. Invest. Ophthalmol. Vis. Sci., 2004, 45(8), 2619-2624.
[116]
Eibl, K.H.; Kook, D.; Priglinger, S.; Haritoglou, C.; Yu, A.; Kampik, A.; Welge-Lussen, U. Inhibition of human retinal pigment epithelial cell attachment, spreading, and migration by alkylphosphocholines. Invest. Ophthalmol. Vis. Sci., 2006, 47(1), 364-370.
[117]
Ansari, S.S.; Akgun, N.; Berger, M.R. Erufosine increases RhoB expression in oral squamous carcinoma cells independent of its tumor suppressive mode of action - a short report. Cell Oncol. (Dordr.), 2017, 40(1), 89-96.
[118]
Pinton, G.; Manente, A.G.; Angeli, G.; Mutti, L.; Moro, L. Perifosine as a potential novel anti-cancer agent inhibits EGFR/MET-AKT axis in malignant pleural mesothelioma. PLoS One, 2012, 7(5), e36856.
[119]
Dasmahapatra, G.P.; Didolkar, P.; Alley, M.C.; Ghosh, S.; Sausville, E.A.; Roy, K.K. In vitro combination treatment with perifosine and UCN-01 demonstrates synergism against prostate (PC-3) and lung (A549) epithelial adenocarcinoma cell lines. Clin. Cancer Res., 2004, 10(15), 5242-5252.
[120]
Rahmani, M.; Reese, E.; Dai, Y.; Bauer, C.; Payne, S.G.; Dent, P.; Spiegel, S.; Grant, S. Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res., 2005, 65(6), 2422-2432.
[121]
Kondapaka, S.B.; Singh, S.S.; Dasmahapatra, G.P.; Sausville, E.A.; Roy, K.K. Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol. Cancer Ther., 2003, 2(11), 1093-1103.
[122]
Handrick, R.; Rubel, A.; Faltin, H.; Eibl, H.; Belka, C.; Jendrossek, V. Increased cytotoxicity of ionizing radiation in combination with membrane-targeted apoptosis modulators involves downregulation of protein kinase B/Akt-mediated survival-signaling. Radiother. Oncol., 2006, 80(2), 199-206.
[123]
Li, X.; Luwor, R.; Lu, Y.; Liang, K.; Fan, Z. Enhancement of antitumor activity of the anti-EGF receptor monoclonal antibody cetuximab/C225 by perifosine in PTEN-deficient cancer cells. Oncogene, 2006, 25(4), 525-535.
[124]
Gradziel, C.S.; Wang, Y.; Stec, B.; Redfield, A.G.; Roberts, M.F. Cytotoxic amphiphiles and phosphoinositides bind to two discrete sites on the Akt1 PH domain. Biochemistry, 2014, 53(3), 462-472.
[125]
Yosifov, D.Y.; Reufsteck, C.; Konstantinov, S.M.; Berger, M.R. Interleukin-6, osteopontin and Raf/MEK/ERK signaling modulate the sensitivity of human myeloma cells to alkylphosphocholines. Leuk. Res., 2012, 36(6), 764-772.
[126]
Hideshima, T.; Nakamur, N.; Chauhan, D.; Anderson, K.C. Biologic sequele of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene, 2001, 20, 5991-6000.
[127]
McCubrey, J.A.; Steelman, L.S.; Abrams, S.L.; Lee, J.T.; Chang, F.; Bertrand, F.E.; Navolanic, P.M.; Terrian, D.M.; Franklin, R.A.; D’Assoro, A.B.; Salisbury, J.L.; Mazzarino, M.C.; Stivala, F.; Libra, M. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv. Enzyme Regul., 2006, 46, 249-279.
[128]
van Blitterswijk, W.J.; Verheij, M. Anticancer alkylphospholipids: Mechanisms of action, cellular sensitivity and resistance, and clinical prospects. Curr. Pharm. Des., 2008, 14(21), 2061-2074.
[129]
McCubrey, J.A.; Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Wong, E.W.; Chang, F.; Lehmann, B.; Terrian, D.M.; Milella, M.; Tafuri, A.; Stivala, F.; Libra, M.; Basecke, J.; Evangelisti, C.; Martelli, A.M.; Franklin, R.A. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta, 2007, 1773(8), 1263-1284.
[130]
Wada, T.; Penninger, J.M. Mitogen-activated protein kinases in apoptosis regulation. Oncogene, 2004, 23(16), 2838-2849.
[131]
Lu, Z.; Xu, S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life, 2006, 58(11), 621-631.
[132]
Patel, V.; Lahusen, T.; Sy, T.; Sausville, E.A.; Gutkind, J.S.; Senderowicz, A.M. Perifosine, a novel alkylphospholipid, induces p21(WAF1) expression in squamous carcinoma cells through a p53-independent pathway, leading to loss in cyclin-dependent kinase activity and cell cycle arrest. Cancer Res., 2002, 62(5), 1401-1409.
[133]
De Siervi, A.; Marinissen, M.; Diggs, J.; Wang, X.F.; Pages, G.; Senderowicz, A. Transcriptional activation of p21(waf1/cip1) by alkylphospholipids: Role of the mitogen-activated protein kinase pathway in the transactivation of the human p21(waf1/cip1) promoter by Sp1. Cancer Res., 2004, 64(2), 743-750.
[134]
Tomiyasu, H.; Goto-Koshino, Y.; Fujino, Y.; Ohno, K.; Tsujimoto, H. Antitumour effect and modulation of expression of the ABCB1 gene by perifosine in canine lymphoid tumour cell lines. Vet. J., 2014, 201(1), 83-90.
[135]
Wang, F.Z.; Fei, H.R.; Li, X.Q.; Shi, R. Wang de, C. Perifosine as potential anti-cancer agent inhibits proliferation, migration, and tube formation of human umbilical vein endothelial cells. Mol. Cell. Biochem., 2012, 368(1-2), 1-8.
[136]
Zaharieva, M.M.; Amudov, G.; Konstantinov, S.M.; Guenova, M. Modern Therapy of Chronic Myeloid Leukemia.In Leukemia; Guenova, M.; Balatsenko, G., Eds.; InTech, 2013, pp. 227-244.
[137]
Konstantinov, S.; Georgieva, M.C.; Topashka-Ancheva, M.; Eibl, H.; Berger, M. Combination with antisense oligonucleotide synergistically improves the antileukemic efficacy of Erucylphospho-N, N, N-trimethylammonium in chronic myeloid leukemia cell lines. Mol. Cancer Ther., 2002, 1, 877-884.
[138]
Zaharieva, M.M.; Konstantinov, S.M.; Berger, M.R. The antineoplastic activity of erufosine in a panel of leukemia and lymphoma cell lines is related to selected signal proteins. Int. J. Curr. Chem., 2010, 1(4), 249-257.
[139]
Browaeys-Poly, E.; Perdereau, D.; Lescuyer, A.; Burnol, A.F.; Cailliau, K. Akt interaction with PLC(gamma) regulates the G(2)/M transition triggered by FGF receptors from MDA-MB-231 breast cancer cells. Anticancer Res., 2009, 29(12), 4965-4969.
[140]
Yosifov, D.Y.; Dineva, I.K.; Zaharieva, M.M.; Konstantinov, S.M.; Berger, M.R. The expression level of the tumor suppressor retinoblastoma protein (Rb) influences the antileukemic efficacy of erucylphospho-N, N, N-trimethylpropylammonium (ErPC3). Cancer Biol. Ther., 2007, 6(6), 930-935.
[141]
Ansari, S.S.; Sharma, A.K.; Zepp, M.; Ivanova, E.; Bergmann, F.; König, R.; Berger, M.R. Upregulation of cell cycle genes in head and neck cancer patients may be antagonized by erufosine’s down regulation of cell cycle processes in OSCC cells. Oncotarget, 2018, 9(5), 5797-5810.
[142]
Fleer, E.A.; Berkovic, D.; Grunwald, U.; Hiddemann, W. Induction of resistance to hexadecylphosphocholine in the highly sensitive human epidermoid tumour cell line KB. Eur. J. Cancer, 1996, 32A(3), 506-511.
[143]
Muschiol, C.; Berger, M.R.; Schuler, B.; Scherf, H.R.; Garzon, F.T.; Zeller, W.J.; Unger, C.; Eibl, H.J.; Schmahl, D. Alkyl phosphocholines: Toxicity and anticancer properties. Lipids, 1987, 22(11), 930-934.
[144]
Zaharieva, M.M.; Petkov, N.; Konstantinov, S.M.; Berger, M.R. The New Alkylphosphocholine Erufosine Ameliorates Bone Marrow Toxicity of Classical Cytostatics.In Resources of Danubian Region: The Possibility of Cooperation and Utilization; Popović, L.Č.; Vidaković, M.; Kostić, D.S., Eds.; Humboldt-Club Serbien: Belgrade, 2013, pp. 376-388.
[145]
Berkovic, D.; Bensch, M.; Bertram, J.; Wille, T.; Haase, D.; Binder, C.; Fleer, E.A. Effects of hexadecylphosphocholine on thrombocytopoiesis. Eur. J. Cancer, 2001, 37(4), 503-511.
[146]
Berkovic, D.; Luders, S.; Goeckenjan, M.; Hiddemann, W.; Fleer, E.A. Differential regulation of phospholipase A2 in human leukemia cells by the etherphospholipid analogue hexadecylphosphocholine. Biochem. Pharmacol., 1997, 53(11), 1725-1733.
[147]
Kaufmann-Kolle, P.; Drevs, J.; Berger, M.; Koetting, J.; Marschner, N.W.; Unger, C.; Eibl, H. Pharmacocinetic behavior and antineoplastic activity of liposomal hexadecylphosphocholine. Cancer Chemother. Pharmacol., 1994, 34, 393.
[148]
Hilgard, P.; Klenner, T.; Stekar, J.; Nossner, G.; Kutscher, B.; Engel, J. D-21266, a new heterocyclic alkylphospholipid with antitumour activity. Eur. J. Cancer, 1997, 33(3), 442-446.
[149]
Planting, A.S.; Stoter, G.; Verweij, J. Phase II study of daily oral miltefosine (hexadecylphosphocholine) in advanced colorectal cancer. Eur. J. Cancer, 1993, 29A(4), 518-519.
[150]
Verweij, J.; Krzemieniecki, K.; Kok, T.; Poveda, A.; van Pottelsberghe, C.; van Glabbeke, M.; Mouridsen, H. Phase II study of miltefosine (hexadecylphosphocholine) in advanced soft tissue sarcomas of the adult--an EORTC soft tissue and bone sarcoma group study. Eur. J. Cancer, 1993, 29A(2), 208-209.
[151]
Verweij, J.; Gandia, D.; Planting, A.S.; Stoter, G.; Armand, J.P. Phase II study of oral miltefosine in patients with squamous cell head and neck cancer. Eur. J. Cancer, 1993, 29A(5), 778-779.
[152]
Unger, C.; Damenz, W.; Fleer, E.A.; Kim, D.J.; Breiser, A.; Hilgard, P.; Engel, J.; Nagel, G.; Eibl, H. Hexadecylphosphocholine, a new ether lipid analogue. Studies on the antineoplastic activity in vitro and in vivo. Acta Oncol., 1989, 28(2), 213-217.
[153]
Kaminsky, R. Miltefosine Zentaris. Curr. Opin. Investig. Drugs, 2002, 3(4), 550-554.
[154]
Dorlo, T.P.; Huitema, A.D.; Beijnen, J.H.; de Vries, P.J. Optimal dosing of miltefosine in children and adults with visceral leishmaniasis. Antimicrob. Agents Chemother., 2012, 56(7), 3864-3872.
[155]
German Drug Registration Authorities. Impavido 10/50 mg Kapseln-Fachinformation. Available at. http://www.pharmnet-bund.de/dynamic/de/index.html2008.
[156]
Dorlo, T.P.; van Thiel, P.P.; Huitema, A.D.; Keizer, R.J.; de Vries, H.J.; Beijnen, J.H.; de Vries, P.J. Pharmacokinetics of miltefosine in old world cutaneous leishmaniasis patients. Antimicrob. Agents Chemother., 2008, 52(8), 2855-2860.
[157]
Knebel, N.G.; Grieb, S.; Winkler, M.; Locher, M.; van der Vlis, E.; Verheij, E.R. Quantification of perifosine, an alkylphosphocholine anti-tumour agent, in plasma by pneumatically assisted electrospray tandem mass spectrometry coupled with high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl., 1999, 721(2), 257-269.
[158]
Crul, M.; Rosing, H.; de Klerk, G.J.; Dubbelman, R.; Traiser, M.; Reichert, S.; Knebel, N.G.; Schellens, J.H.; Beijnen, J.H.; Huinink, B.W.W. Phase I and pharmacological study of daily oral administration of perifosine (D-21266) in patients with advanced solid tumours. Eur. J. Cancer, 2002, 38(12), 1615-1621.
[159]
Van Ummersen, L.; Binger, K.; Volkman, J.; Marnocha, R.; Tutsch, K.; Kolesar, J.; Arzoomanian, R.; Alberti, D.; Wilding, G. A phase I trial of perifosine (NSC 639966) on a loading dose/maintenance dose schedule in patients with advanced cancer. Clin. Cancer Res., 2004, 10(22), 7450-7456.
[160]
Ernst, D.S.; Eisenhauer, E.; Wainman, N.; Davis, M.; Lohmann, R.; Baetz, T.; Belanger, K.; Smylie, M. Phase II study of perifosine in previously untreated patients with metastatic melanoma. Invest. New Drugs, 2005, 23(6), 569-575.
[161]
Posadas, E.M.; Gulley, J.; Arlen, P.M.; Trout, A.; Parnes, H.L.; Wright, J.; Lee, M.J.; Chung, E.J.; Trepel, J.B.; Sparreboom, A.; Chen, C.; Jones, E.; Steinberg, S.M.; Daniels, A.; Figg, W.D.; Dahut, W.L. A phase II study of perifosine in androgen independent prostate cancer. Cancer Biol. Ther., 2005, 4(10), 1133-1137.
[162]
Jakubowiak, A.J.; Richardson, P.G.; Zimmerman, T.; Alsina, M.; Kaufman, J.L.; Kandarpa, M.; Kraftson, S.; Ross, C.W.; Harvey, C.; Hideshima, T.; Sportelli, P.; Poradosu, E.; Gardner, L.; Giusti, K.; Anderson, K.C. Perifosine plus lenalidomide and dexamethasone in relapsed and relapsed/refractory multiple myeloma: A phase I multiple myeloma research consortium study. Br. J. Haematol., 2012, 158(4), 472-480.
[163]
Marschner, N.W.; Koetting, J.; Eibl, H.; Unger, C. Distribution of hexadecylphosphocholine and octadecyl-methyl-glycero-3-phosphocholine in rat tissues during steady-state treatment. Cancer Chemother. Pharmacol., 1995, 31(18), 18-22.
[164]
Menez, C.; Buyse, M.; Dugave, C.; Farinotti, R.; Barratt, G. Intestinal absorption of miltefosine: contribution of passive paracellular transport. Pharm. Res., 2007, 24(3), 546-554.
[165]
Menez, C.; Buyse, M.; Farinotti, R.; Barratt, G. Inward translocation of the phospholipid analogue miltefosine across Caco-2 cell membranes exhibits characteristics of a carrier-mediated process. Lipids, 2007, 42(3), 229-240.
[166]
Menez, C.; Buyse, M.; Chacun, H.; Farinotti, R.; Barratt, G. Modulation of intestinal barrier properties by miltefosine. Biochem. Pharmacol., 2006, 71(4), 486-496.
[167]
Unger, C.; Eibl, H.; Breiser, A.; von Heyden, H.W.; Engel, J.; Hilgard, P.; Sindermann, H.; Peukert, M.; Nagel, G.A. Hexadecylphosphocholine (D 18506) in the topical treatment of skin metastases: a phase-I trial. Onkologie, 1988, 11(6), 295-296.
[168]
Terwogt, J.M.; Mandjes, I.A.; Sindermann, H.; Beijnen, J.H.; Huinink, B.W.W. Phase II trial of topically applied miltefosine solution in patients with skin-metastasized breast cancer. Br. J. Cancer, 1999, 79(7-8), 1158-1161.
[169]
Smorenburg, C.H.; Seynaeve, C.; Bontenbal, M.; Planting, A.S.; Sindermann, H.; Verweij, J. Phase II study of miltefosine 6% solution as topical treatment of skin metastases in breast cancer patients. Anticancer Drugs, 2000, 11(10), 825-828.
[170]
Dumontet, C.; Thomas, L.; Berard, F.; Gimonet, J.F.; Coiffier, B. A phase II trial of miltefosine in patients with cutaneous T-cell lymphoma. Bull. Cancer, 2006, 93(11), E115-E118.
[171]
Lindner, L.H.; Eibl, H.; Hossann, M.; Vogeser, M. Quantification of erufosine, the first intravenously applicable alkylphosphocholine, in human plasma by isotope dilution liquid chromatography-tandem mass spectrometry using a deuterated internal standard. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 869(1-2), 16-19.
[172]
Sindermann, H.; Engel, J. Development of miltefosine as an oral treatment for leishmaniasis. Trans. R. Soc. Trop. Med. Hyg., 2006, 100(Suppl. 1), S17-S20.
[173]
Dorlo, T.P.; Balasegaram, M.; Beijnen, J.H.; de Vries, P.J. Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother., 2012, 67(11), 2576-2597.
[174]
Drings, P.; Günther, I.; Gatzemeier, U.; Ulbrich, F.; Khanavkar, B.; Schreml, W.; Lorenz, J.; Brugger, W.; Schick, H.D.; Pawel, J.V.; Nordström, R. Final evaluation of a phase ii study on the effect of edelfosine (an ether lipid) in advanced non-small-cell bronchogenic carcinoma. Onkologie, 1992, 15(5), 375-382.
[175]
Vogler, W.R.; Berdel, W.E.; Geller, R.B.; Brochstein, J.A.; Beveridge, R.A.; Dalton, W.S.; Miller, K.B.; Lazarus, H.M. A phase II trial of Autologous Bone Marrow Transplantation (ABMT) in acute leukemia with edelfosine purged bone marrow. Adv. Exp. Med. Biol., 1996, 416, 389-396.
[176]
Herrmann, D.B.; Neumann, H.A.; Berdel, W.E.; Heim, M.E.; Fromm, M.; Boerner, D.; Bicker, U. Phase I trial of the thioether phospholipid analogue BM 41.440 in cancer patients. Lipids, 1987, 22(11), 962-966.
[177]
von Mehren, M.; Giantonio, B.J.; McAleer, C.; Schilder, R.; McPhillips, J.; O’Dwyer, P.J. Phase I trial of ilmofosine as a 24hour infusion weekly. Inv. N. Drugs, 1995, 13(3), 205-210.
[178]
Giantonio, B.J.; Derry, C.; McAleer, C.; McPhillips, J.J.; O’Dwyer, P.J. Phase I and pharmacokinetic study of the cytotoxic ether lipid ilmofosine administered by weekly two-hour infusion in patients with advanced solid tumors. Clin. Cancer Res., 2004, 10(4), 1282-1288.
[179]
Winkelmann, M.; Ebeling, K.; Strohmeyer, G.; Hottenrott, G.; Mechl, Z.; Berges, W.; Scholten, T.; Westerhausen, M.; Schlimok, G.; Sterz, R. Treatment results of the thioether lipid ilmofosine in patients with malignant tumours. J. Cancer Res. Clin. Oncol., 1992, 118(6), 405-407.
[180]
Dorlo, T.P.; Balasegaram, M.; Lima, M.A.; de Vries, P.J.; Beijnen, J.H.; Huitema, A.D. Translational pharmacokinetic modelling and simulation for the assessment of duration of contraceptive use after treatment with miltefosine. J. Antimicrob. Chemother., 2012, 67(8), 1996-2004.
[181]
Altomare, D.A.; Testa, J.R. Perturbations of the AKT signaling pathway in human cancer. Oncogene, 2005, 24(50), 7455-7464.
[182]
Ghobrial, I.M.; Roccaro, A.; Hong, F.; Weller, E.; Rubin, N.; Leduc, R.; Rourke, M.; Chuma, S.; Sacco, A.; Jia, X.; Azab, F.; Azab, A.K.; Rodig, S.; Warren, D.; Harris, B.; Varticovski, L.; Sportelli, P.; Leleu, X.; Anderson, K.C.; Richardson, P.G. Clinical and translational studies of a phase II trial of the novel oral Akt inhibitor perifosine in relapsed or relapsed/refractory Waldenstrom’s macroglobulinemia. Clin. Cancer Res., 2010, 16(3), 1033-1041.
[183]
Keane, N.A.; Glavey, S.V.; Krawczyk, J.; O’Dwyer, M. AKT as a therapeutic target in multiple myeloma. Expert Opin. Ther. Targets, 2014, 18(8), 897-915.
[184]
Danielsen, S.A.; Eide, P.W.; Nesbakken, A.; Guren, T.; Leithe, E.; Lothe, R.A. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim. Biophys. Acta, 2015, 1855(1), 104-121.
[185]
Leonard, R.; Hardy, J.; van Tienhoven, G.; Houston, S.; Simmonds, P.; David, M.; Mansi, J. Randomized, double-blind, placebo-controlled, multicenter trial of 6% miltefosine solution, a topical chemotherapy in cutaneous metastases from breast cancer. J. Clin. Oncol., 2001, 19(21), 4150-4159.
[186]
Dummer, R.; Krasovec, M.; Roeger, J.; Sindermann, H.; Burg, G. Topical administration of hexadecylphosphocholine in patients with cutaneous lymphomas: Results of a phase I/II study. J. Am. Acad. Dermatol., 1993, 29, 963-970.
[187]
Dummer, R.; Roger, J.; Vogt, T.; Becker, J.; Hefner, H.; Sindermann, H.; Burg, G. Topical application of hexadecylphosphocholine in patients with cutaneous lymphomas. Prog. Exp. Tumor Res., 1992, 34, 160-169.
[188]
Theischen, M.; Bornfeld, N.; Becher, R.; Kellner, U.; Wessing, A. Hexadecylphosphocholine may produce reversible functional defects of the retinal pigment epithelium. Ger. J. Ophthalmol., 1993, 2(2), 113-115.
[189]
Pronk, L.C.; Planting, A.S.; Oosterom, R.; Drogendijk, T.E.; Stoter, G.; Verweij, J. Increases in leucocyte and platelet counts induced by the alkyl phospholipid hexadecylphosphocholine. Eur. J. Cancer, 1994, 30A(7), 1019-1022.
[190]
Figg, W.D.; Monga, M.; Headlee, D.; Shah, A.; Chau, C.H.; Peer, C.; Messman, R.; Elsayed, Y.A.; Murgo, A.J.; Melillo, G.; Ryan, Q.C.; Kalnitskiy, M.; Senderowicz, A.M.; Hollingshead, M.; Arbuck, S.G.; Sausville, E.A. A phase I and pharmacokinetic study of oral perifosine with different loading schedules in patients with refractory neoplasms. Cancer Chemother. Pharmacol., 2014, 74(5), 955-967.
[191]
Vink, S.R.; Schellens, J.H.; Beijnen, J.H.; Sindermann, H.; Engel, J.; Dubbelman, R.; Moppi, G.; Hillebrand, M.J.; Bartelink, H.; Verheij, M. Phase I and pharmacokinetic study of combined treatment with perifosine and radiation in patients with advanced solid tumours. Radiother. Oncol., 2006, 80(2), 207-213.
[192]
Richardson, P.G.; Wolf, J.; Jakubowiak, A.; Zonder, J.; Lonial, S.; Irwin, D.; Densmore, J.; Krishnan, A.; Raje, N.; Bar, M.; Martin, T.; Schlossman, R.; Ghobrial, I.M.; Munshi, N.; Laubach, J.; Allerton, J.; Hideshima, T.; Colson, K.; Poradosu, E.; Gardner, L.; Sportelli, P.; Anderson, K.C. Perifosine plus bortezomib and dexamethasone in patients with relapsed/refractory multiple myeloma previously treated with bortezomib: Results of a multicenter phase I/II trial. J. Clin. Oncol., 2011, 29(32), 4243-4249.
[193]
Fu, S.; Hennessy, B.T.; Ng, C.S.; Ju, Z.; Coombes, K.R.; Wolf, J.K.; Sood, A.K.; Levenback, C.F.; Coleman, R.L.; Kavanagh, J.J.; Gershenson, D.M.; Markman, M.; Dice, K.; Howard, A.; Li, J.; Li, Y.; Stemke-Hale, K.; Dyer, M.; Atkinson, E.; Jackson, E.; Kundra, V.; Kurzrock, R.; Bast, R.C., Jr; Mills, G.B. Perifosine plus docetaxel in patients with platinum and taxane resistant or refractory high-grade epithelial ovarian cancer. Gynecol. Oncol., 2012, 126(1), 47-53.
[194]
Kaley, T.J.; Pentsova, E.; Omuro, A.M.; Mellinghoff, I.K.; Nolan, C.; Gavrilovic, I.T.; DeAngelis, L.M.; Lacouture, M.E.; Holland, E.C.; Lassman, A.B. Phase I trial of Temsirolimus (TEM) and Perifosine (PER) for recurrent or progressive Malignant Glioma (MG). J. Clin. Oncol.,, 2013, 31, abstr 2095.
[195]
Gojo, I.; Perl, A.; Luger, S.; Baer, M.R.; Norsworthy, K.J.; Bauer, K.S.; Tidwell, M.; Fleckinger, S.; Carroll, M.; Sausville, E.A. Phase I study of UCN-01 and perifosine in patients with relapsed and refractory acute leukemias and high-risk myelodysplastic syndrome. Inv. N. Drugs, 2013, 31(5), 1217-1227.
[196]
Knowling, M.; Blackstein, M.; Tozer, R.; Bramwell, V.; Dancey, J.; Dore, N.; Matthews, S.; Eisenhauer, E. A phase II study of perifosine (D-21226) in patients with previously untreated metastatic or locally advanced soft tissue sarcoma: A National Cancer Institute of Canada Clinical Trials Group trial. Inv. N. Drugs, 2006, 24(5), 435-439.
[197]
Bailey, H.H.; Mahoney, M.R.; Ettinger, D.S.; Maples, W.J.; Fracasso, P.M.; Traynor, A.M.; Erlichman, C.; Okuno, S.H. Phase II study of daily oral perifosine in patients with advanced soft tissue sarcoma. Cancer, 2006, 107(10), 2462-2467.
[198]
Argiris, A.; Cohen, E.; Karrison, T.; Esparaz, B.; Mauer, A.; Ansari, R.; Wong, S.; Lu, Y.; Pins, M.; Dancey, J.; Vokes, E. A phase II trial of perifosine, an oral alkylphospholipid, in recurrent or metastatic head and neck cancer. Cancer Biol. Ther., 2006, 5(7), 766-770.
[199]
Chee, K.G.; Longmate, J.; Quinn, D.I.; Chatta, G.; Pinski, J.; Twardowski, P.; Pan, C.X.; Cambio, A.; Evans, C.P.; Gandara, D.R.; Lara, P.N., Jr The AKT inhibitor perifosine in biochemically recurrent prostate cancer: A phase II California/Pittsburgh cancer consortium trial. Clin. Genitourin. Cancer, 2007, 5(7), 433-437.
[200]
Marsh-Rde, W.; Lima, R.C.M.; Levy, D.E.; Mitchell, E.P.; Rowland, K.M., Jr; Benson, A.B., III A phase II trial of perifosine in locally advanced, unresectable, or metastatic pancreatic adenocarcinoma. Am. J. Clin. Oncol., 2007, 30(1), 26-31.
[201]
Leighl, N.B.; Dent, S.; Clemons, M.; Vandenberg, T.A.; Tozer, R.; Warr, D.G.; Crump, R.M.; Hedley, D.; Pond, G.R.; Dancey, J.E.; Moore, M.J. A Phase 2 study of perifosine in advanced or metastatic breast cancer. Breast Cancer Res. Treat., 2008, 108(1), 87-92.
[202]
Friedman, D.R.; Lanasa, M.C.; Davis, P.H.; Allgood, S.D.; Matta, K.M.; Brander, D.M.; Chen, Y.; Davis, E.D.; Volkheimer, A.D.; Moore, J.O.; Gockerman, J.P.; Sportelli, P.; Weinberg, J.B. Perifosine treatment in chronic lymphocytic leukemia: results of a phase II clinical trial and in vitro studies. Leuk. Lymphoma, 2014, 55(5), 1067-1075.
[203]
Cho, D.C.; Hutson, T.E.; Samlowski, W.; Sportelli, P.; Somer, B.; Richards, P.; Sosman, J.A.; Puzanov, I.; Michaelson, M.D.; Flaherty, K.T.; Figlin, R.A.; Vogelzang, N.J. Two phase 2 trials of the novel Akt inhibitor perifosine in patients with advanced renal cell carcinoma after progression on vascular endothelial growth factor-targeted therapy. Cancer, 2012, 118(24), 6055-6062.
[204]
Guidetti, A.; Carlo-Stella, C.; Locatelli, S.L.; Malorni, W.; Mortarini, R.; Viviani, S.; Russo, D.; Marchiano, A.; Sorasio, R.; Dodero, A.; Farina, L.; Giordano, L.; Di Nicola, M.; Anichini, A.; Corradini, P.; Gianni, A.M. Phase II study of perifosine and sorafenib dual-targeted therapy in patients with relapsed or refractory lymphoproliferative diseases. Clin. Cancer Res., 2014, 20(22), 5641-5651.
[205]
Becher, O.J.; Gilheeney, S.W.; Khakoo, Y.; Lyden, D.C.; Haque, S.; De Braganca, K.C.; Kolesar, J.M.; Huse, J.T.; Modak, S.; Wexler, L.H.; Kramer, K.; Spasojevic, I.; Dunkel, I.J. A phase I study of perifosine with temsirolimus for recurrent pediatric solid tumors. Pediatr. Blood Cancer, 2017, 64(7)
[206]
Bendell, J.C.; Ervin, T.; Senzer, N.; Richards, D.A.; Firdaus, I.; Lockhart, C.; Cohn, A.; Saleh, M.; Gardner, L.; Sportelli, P.; Eng, C. Results of the X-PECT study: A phase III randomized double-blind, placebo-controlled study of perifosine plus capecitabine (P-CAP) versus placebo plus capecitabine (CAP) in patients (pts) with refractory metastatic colorectal cancer (mCRC). Clin. Oncol., 2012, 30
[207]
Richardson, P.G.; Nagler, A.; Ben-Yehuda, D.; Badros, A.; Hari, P.; Hajek, R.; Spicka, I.; Kaya, H.; Le Blanc, R.; Yoon, S-S.; Kim, K.; Martinez-Lopez, J.; Mittelman, M.; Shpilberg, O.; Tothova, E.; Laubach, J.P.; Ghobrial, I.M.; Leiba, M.; Gatt, M.E.; Sportell, P.; Chen, M.; Anderson, K.C. In Randomized placebo-controlled phase III study of perifosine combined with bortezomib and dexamethasone in relapsed, refractory multiple myeloma patients previously treated with bortezomib, 55 th ASH Annual Meeting and Exposition. 2013, p 3189.
[208]
Shome, D.; Trent, J.; Espandar, L.; Hatef, E.; Araujo, D.M.; Song, C.D.; Kim, S.K.; Esmaeli, B. Ulcerative keratitis in gastrointestinal stromal tumor patients treated with perifosine. Ophthalmology, 2008, 115(3), 483-487.
[209]
Keenan, J.D.; Fram, N.R.; McLeod, S.D.; Strauss, E.C.; Margolis, T.P. Perifosine-related rapidly progressive corneal ring infiltrate. Cornea, 2010, 29(5), 583-585.
[210]
Grudzinski, J.J.; Titz, B.; Kozak, K.; Clarke, W.; Allen, E.; Trembath, L.; Stabin, M.; Marshall, J.; Cho, S.Y.; Wong, T.Z.; Mortimer, J.; Weichert, J.P. A phase 1 study of 131I-CLR1404 in patients with relapsed or refractory advanced solid tumors: dosimetry, biodistribution, pharmacokinetics, and safety. PLoS One, 2014, 9(11), e111652.
[211]
Lubner, S.J.; Mullvain, J.; Perlman, S.; Pishvaian, M.; Mortimer, J.; Oliver, K.; Heideman, J.; Hall, L.; Weichert, J.; Liu, G. A phase 1, multi-center, open-label, dose-escalation study of 131I-CLR1404 in subjects with relapsed or refractory advanced solid malignancies. Cancer Invest., 2015, 33(10), 483-489.
[212]
WHO Model List of Essential Medicines - 17th List. Available at. http://www.who.int/medicines/publications/essentialmedicines/en/index.html
[213]
Sundar, S.; Rosenkaimer, F.; Makharia, M.K.; Goyal, A.K.; Mandal, A.K.; Voss, A.; Hilgard, P.; Murray, H.W. Trial of oral miltefosine for visceral leishmaniasis. Lancet, 1998, 352(9143), 1821-1823.
[214]
Jha, T.K.; Sundar, S.; Thakur, C.P.; Bachmann, P.; Karbwang, J.; Fischer, C.; Voss, A.; Berman, J. Miltefosine, an oral agent, for the treatment of Indian visceral leishmaniasis. N. Engl. J. Med., 1999, 341(24), 1795-1800.
[215]
Sundar, S.; Gupta, L.B.; Makharia, M.K.; Singh, M.K.; Voss, A.; Rosenkaimer, F.; Engel, J.; Murray, H.W. Oral treatment of visceral leishmaniasis with miltefosine. Ann. Trop. Med. Parasitol., 1999, 93(6), 589-597.
[216]
Cojean, S.; Houze, S.; Haouchine, D.; Huteau, F.; Lariven, S.; Hubert, V.; Michard, F.; Bories, C.; Pratlong, F.; Le Bras, J.; Loiseau, P.M.; Matheron, S. Leishmania resistance to miltefosine associated with genetic marker. Emerg. Infect. Dis., 2012, 18(4), 704-706.
[217]
Sundar, S.; Sinha, P.K.; Rai, M.; Verma, D.K.; Nawin, K.; Alam, S.; Chakravarty, J.; Vaillant, M.; Verma, N.; Pandey, K.; Kumari, P.; Lal, C.S.; Arora, R.; Sharma, B.; Ellis, S.; Strub-Wourgaft, N.; Balasegaram, M.; Olliaro, P.; Das, P.; Modabber, F. Comparison of short-course multidrug treatment with standard therapy for visceral leishmaniasis in India: an open-label, non-inferiority, randomised controlled trial. Lancet, 2011, 377(9764), 477-486.
[218]
Sundar, S.; Rai, M.; Chakravarty, J.; Agarwal, D.; Agrawal, N.; Vaillant, M.; Olliaro, P.; Murray, H.W. New treatment approach in Indian visceral leishmaniasis: single-dose liposomal amphotericin B followed by short-course oral miltefosine. Clin. Infect. Dis., 2008, 47(8), 1000-1006.
[219]
Croft, S.L.; Engel, J. Miltefosine-discovery of the antileishmanial activity of phospholipid derivatives. Trans. R. Soc. Trop. Med. Hyg., 2006, 100(Suppl. 1), S4-S8.
[220]
Avlonitis, N.; Lekka, E.; Detsi, A.; Koufaki, M.; Calogeropoulou, T.; Scoulica, E.; Siapi, E.; Kyrikou, I.; Mavromoustakos, T.; Tsotinis, A.; Grdadolnik, S.G.; Makriyannis, A. Antileishmanial ring-substituted ether phospholipids. J. Med. Chem., 2003, 46(5), 755-767.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 1
Year: 2019
Page: [66 - 91]
Pages: 26
DOI: 10.2174/1871520618666181012093056
Price: $58

Article Metrics

PDF: 35
HTML: 4