Adenosine as a Marker and Mediator of Cardiovascular Homeostasis: A Translational Perspective

Author(s): Trevor Simard, Richard Jung, Alisha Labinaz, Mohammad Ali Faraz, F. Daniel Ramirez, Pietro Di Santo, Ian Pitcher, Pouya Motazedian, Chantal Gaudet, Rebecca Rochman, Jeffrey Marbach, Paul Boland, Kiran Sarathy, Saleh Alghofaili, Juan J. Russo, Etienne Couture, Rob S. Beanlands, Benjamin Hibbert*.

Journal Name: Cardiovascular & Hematological Disorders-Drug Targets
(Formerly Current Drug Targets - Cardiovascular & Hematological Disorders)

Volume 19 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Adenosine, a purine nucleoside, is produced broadly and implicated in the homeostasis of many cells and tissues. It signals predominantly via 4 purinergic adenosine receptors (ADORs) – ADORA1, ADORA2A, ADORA2B and ADORA3 in addition to non-ADOR mediated effects. Through these signaling mechanisms, adenosine exerts effects on numerous cell types crucial to maintaining vascular homeostasis, especially following vascular injury. Both in vitro and in vivo models have provided considerable insights into adenosine signaling and identified targets for therapeutic intervention. Numerous pharmacologic agents have been developed that modulate adenosine signaling, both through design as specific ADOR agonists and antagonists and as offtarget effects of existing anti-platelet medications. Despite this, adenosine has yet to be firmly established as either a therapeutic or a prognostic tool in clinical medicine to date. Herein, we provide a bench-to-bedside review of adenosine biology, highlighting the key considerations for further translational development of this promising molecule.

Keywords: Adenosine, cardiovascular, translational, pre-clinical, restenosis, biomarker.

Daly, J.W. Adenosine receptors: Targets for future drugs. J. Med. Chem., 1982, 25(3), 197-207.
Eltzschig, H.K. Adenosine: An old drug newly discovered. Anesthesiology, 2009, 111(4), 904-915.
Loffler, M.; Morote-Garcia, J.C.; Eltzschig, S.A.; Coe, I.R.; Eltzschig, H.K. Physiological roles of vascular nucleoside transporters. Arterioscler. Thromb. Vasc. Biol., 2007, 27(5), 1004-1013.
Antonioli, L.; Blandizzi, C.; Csoka, B.; Pacher, P.; Hasko, G. Adenosine signalling in diabetes mellitus-pathophysiology and therapeutic considerations. Nat. Rev. Endocrinol., 2015, 11(4), 228-241.
Velasquez, S.; Eugenin, E.A. Role of Pannexin-1 hemichannels and purinergic receptors in the pathogenesis of human diseases. Front. Physiol., 2014, 5, 96.
Chen, Y.; Yao, Y.; Sumi, Y.; Li, A.; To, U.K.; Elkhal, A.; Inoue, Y.; Woehrle, T.; Zhang, Q.; Hauser, C.; Junger, W.G. Purinergic signaling: A fundamental mechanism in neutrophil activation. Sci. Signal., 2010, 3(125), ra45.
Junger, W.G. Immune cell regulation by autocrine purinergic signalling. Nat. Rev. Immunol., 2011, 11(3), 201-212.
Yegutkin, G.G. Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim. Biophys. Acta, 2008, 1783(5), 673-694.
Eckle, T.; Grenz, A.; Kohler, D.; Redel, A.; Falk, M.; Rolauffs, B.; Osswald, H.; Kehl, F.; Eltzschig, H.K. Systematic evaluation of a novel model for cardiac ischemic preconditioning in mice. Am. J. Physiol. Heart Circ. Physiol., 2006, 291(5), H2533-H2540.
Pollen, K.F.Y.; Jodi, T.; Dena, S. A pilot study to assess adenosine 5′-triphosphate metabolism in red blood cells as a drug target for potential cardiovascular protection. Cardiovasc. Hematol. Disord. Drug Targets, 2015, 15(3), 224-232.
Decking, U.K.; Schlieper, G.; Kroll, K.; Schrader, J. Hypoxia-induced inhibition of adenosine kinase potentiates cardiac adenosine release. Circ. Res., 1997, 81(2), 154-164.
Blackburn, M.R. Too much of a good thing: Adenosine overload in adenosine-deaminase-deficient mice. Trends Pharmacol. Sci., 2003, 24(2), 66-70.
Berne, R.M.; Rubio, R.; Dobson, J.G., Jr; Curnish, R.R. Adenosine and adenine nucleotides as possible mediators of cardiac and skeletal muscle blood flow regulation. Circ. Res., 1971, 28(1), 115.
Herlihy, J.T.; Bockman, E.L.; Berne, R.M.; Rubio, R. Adenosine relaxation of isolated vascular smooth muscle. Am. J. Physiol., 1976, 230(5), 1239-1243.
Achike, F.I.; Ballard, H.J. Influence of stimulation parameters on the release of adenosine, lactate and CO2 from contracting dog gracilis muscle. J. Physiol., 1993, 463, 107-121.
Brenner, B.; Eisenberg, E. The mechanism of muscle contraction. Biochemical, mechanical, and structural approaches to elucidate cross-bridge action in muscle. Basic Res. Cardiol., 1987, 82(2), 3-16.
Lynge, J.; Juel, C.; Hellsten, Y. Extracellular formation and uptake of adenosine during skeletal muscle contraction in the rat: role of adenosine transporters. J. Physiol., 2001, 537(Pt 2), 597-605.
North, R.A. Molecular physiology of P2X receptors. Physiol. Rev., 2002, 82(4), 1013-1067.
Cattaneo, M. The platelet P2Y(1)(2) receptor for adenosine diphosphate: Congenital and drug-induced defects. Blood, 2011, 117(7), 2102-2112.
Johnston-Cox, H.A.; Koupenova, M.; Ravid, K. A2 Adenosine receptors and vascular pathologies. Arterioscler. Thromb. Vasc. Biol., 2012, 32(4), 870-878.
Bruns, R.F.; Lu, G.H.; Pugsley, T.A. Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol. Pharmacol., 1986, 29(4), 331-346.
Schulte, G.; Fredholm, B.B. Signalling from adenosine receptors to mitogen-activated protein kinases. Cell. Signal., 2003, 15(9), 813-827.
Hasko, G.; Linden, J.; Cronstein, B.; Pacher, P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat. Rev. Drug Discov., 2008, 7(9), 759-770.
Conti, A.; Lozza, G.; Monopoli, A. Prolonged exposure to 5′-N-ethylcarboxamidoadenosine (NECA) does not affect the adenosine A2A-mediated vasodilation in porcine coronary arteries. Pharmacol. Res., 1997, 35(2), 123-128.
Pourdjabbar, A.; Hibbert, B.; Simard, T.; Ma, X. Pathogenesis of neointima formation following vascular injury. Cardiovasc. Hematol. Disord. Drug Targets, 2011, 11(1), 30-39.
Simard, T.; Hibbert, B.; Ramirez, F.D.; Froeschl, M.; Chen, Y.X.; O’Brien, E.R. The evolution of coronary stents: A brief review. Can. J. Cardiol., 2014, 30(1), 35-45.
Lynge, J.; Hellsten, Y. Distribution of adenosine A1, A2A and A2B receptors in human skeletal muscle. Acta Physiol. Scand., 2000, 169(4), 283-290.
Yang, D.; Zhang, Y.; Nguyen, H.G.; Koupenova, M.; Chauhan, A.K.; Makitalo, M.; Jones, M.R.; Hilaire, C.S.; Seldin, D.C.; Toselli, P.; Lamperti, E.; Schreiber, B.M.; Gavras, H.; Wagner, D.D.; Ravid, K. The A(2B) adenosine receptor protects against inflammation and excessive vascular adhesion. J. Clin. Invest., 2006, 116(7), 1913-1923.
Berzat, A.; Hall, A. Cellular responses to extracellular guidance cues. EMBO J., 2010, 29(16), 2734-2745.
Elliott, M.R.; Chekeni, F.B.; Trampont, P.C.; Lazarowski, E.R.; Kadl, A.; Walk, S.F.; Park, D.; Woodson, R.I.; Ostankovich, M.; Sharma, P.; Lysiak, J.J.; Harden, T.K.; Leitinger, N.; Ravichandran, K.S. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature, 2009, 461(7261), 282-286.
Bao, Y.; Chen, Y.; Ledderose, C.; Li, L.; Junger, W.G. Pannexin 1 channels link chemoattractant receptor signaling to local excitation and global inhibition responses at the front and back of polarized neutrophils. J. Biol. Chem., 2013, 288(31), 22650-22657.
Deaglio, S.; Dwyer, K.M.; Gao, W.; Friedman, D.; Usheva, A.; Erat, A.; Chen, J.F.; Enjyoji, K.; Linden, J.; Oukka, M.; Kuchroo, V.K.; Strom, T.B.; Robson, S.C. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med., 2007, 204(6), 1257-1265.
Romio, M.; Reinbeck, B.; Bongardt, S.; Huls, S.; Burghoff, S.; Schrader, J. Extracellular purine metabolism and signaling of CD73-derived adenosine in murine Treg and Teff cells. Am. J. Physiol. Cell Physiol., 2011, 301(2), C530-C539.
McPherson, J.A.; Barringhaus, K.G.; Bishop, G.G.; Sanders, J.M.; Rieger, J.M.; Hesselbacher, S.E.; Gimple, L.W.; Powers, E.R.; Macdonald, T.; Sullivan, G.; Linden, J.; Sarembock, I.J. Adenosine A<sub>2A</sub> receptor stimulation reduces inflammation and neointimal growth in a murine carotid ligation model. Arterioscler. Thromb. Vasc. Biol., 2001, 21(5), 791-796.
Yang, D.; Koupenova, M.; McCrann, D.J.; Kopeikina, K.J.; Kagan, H.M.; Schreiber, B.M.; Ravid, K. The A2b adenosine receptor protects against vascular injury. Proc. Natl. Acad. Sci. USA, 2008, 105(2), 792-796.
Dubey, R.K.; Fingerle, J.; Gillespie, D.G.; Mi, Z.; Rosselli, M.; Imthurn, B.; Jackson, E.K. Adenosine attenuates human coronary artery smooth muscle cell proliferation by inhibiting multiple signaling pathways that converge on cyclin D. Hypertension, 2015, 66(6), 1207-1219.
Edwards, J.M.; Alloosh, M.A.; Long, X.L.; Dick, G.M.; Lloyd, P.G.; Mokelke, E.A.; Sturek, M. Adenosine A1 receptors in neointimal hyperplasia and in-stent stenosis in Ossabaw miniature swine. Coron. Artery Dis., 2008, 19(1), 27-31.
Shen, J.; Halenda, S.P.; Sturek, M.; Wilden, P.A. Cell-signaling evidence for adenosine stimulation of coronary smooth muscle proliferation via the A1 adenosine receptor. Circ. Res., 2005, 97(6), 574-582.
Peyot, M-L.; Gadeau, A-P.; Dandré, F.; Belloc, I.; Dupuch, F.; Desgranges, C. Extracellular adenosine induces apoptosis of human arterial smooth muscle cells via A<sub>2b</sub>-purinoceptor. Circ. Res., 2000, 86(1), 76-85.
Bonello, L.; Kipson, N.; Mancini, J.; Frere, C.; Paganelli, F.; Dignat-George, F.; Guieu, R. Reply: adenosine plasma concentration increase by ticagrelor in patients with acute coronary syndrome: no cause for fear in clinical practice. J. Am. Coll. Cardiol., 2014, 63(22), 2436-2437.
Dubey, R.K.; Gillespie, D.G.; Mi, Z.; Jackson, E.K. Adenosine inhibits growth of human aortic smooth muscle cells via A2B receptors. Hypertension, 1998, 31(1 Pt 2), 516-521.
Feoktistov, I.; Goldstein, A.E.; Ryzhov, S.; Zeng, D.; Belardinelli, L.; Voyno-Yasenetskaya, T.; Biaggioni, I. Differential expression of adenosine receptors in human endothelial cells: Role of A2B receptors in angiogenic factor regulation. Circ. Res., 2002, 90(5), 531-538.
Nguyen, D.K.; Montesinos, M.C.; Williams, A.J.; Kelly, M.; Cronstein, B.N. Th1 cytokines regulate adenosine receptors and their downstream signaling elements in human microvascular endothelial cells. J. Immunol., 2003, 171(8), 3991-3998.
Sands, W.A.; Palmer, T.M. Adenosine receptors and the control of endothelial cell function in inflammatory disease. Immunol. Lett., 2005, 101(1), 1-11.
Narravula, S.; Lennon, P.F.; Mueller, B.U.; Colgan, S.P. Regulation of endothelial CD73 by adenosine: Paracrine pathway for enhanced endothelial barrier function. J. Immunol., 2000, 165(9), 5262-5268.
Pearson, J.D.; Gordon, J.L. Nucleotide metabolism by endothelium. Annu. Rev. Physiol., 1985, 47, 617-627.
Iwamoto, T.; Umemura, S.; Toya, Y.; Uchibori, T.; Kogi, K.; Takagi, N.; Ishii, M. Identification of adenosine A2 receptor-camp system in human aortic endothelial cells. Biochem. Biophys. Res. Commun., 1994, 199(2), 905-910.
Bouma, M.G.; Van Den Wildenberg, F.A.J.M.; Buurman, W.A. Adenosine inhibits cytokine release and expression of adhesion molecules by activated human endothelial cells. Am. J. Physiol. Cell Physiol., 1996, 270(2 39-2), C522-C529.
Olanrewaju, H.A.; Qin, W.; Feoktistov, I.; Scemama, J.L.; Mustafa, S.J. Adenosine A(2A) and A(2B) receptors in cultured human and porcine coronary artery endothelial cells. Am. J. Physiol. Heart Circ. Physiol., 2000, 279(2), H650-6.
Feoktistov, I.; Ryzhov, S.; Zhong, H.; Goldstein, A.E.; Matafonov, A.; Zeng, D.; Biaggioni, I. Hypoxia modulates adenosine receptors in human endothelial and smooth muscle cells toward an A2B angiogenic phenotype. Hypertension, 2004, 44(5), 649-654.
Eltzschig, H.K.; Ibla, J.C.; Furuta, G.T.; Leonard, M.O.; Jacobson, K.A.; Enjyoji, K.; Robson, S.C.; Colgan, S.R. Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: Role of ectonucleotidases and adenosine A 2B receptors. J. Exp. Med., 2003, 198(5), 783-796.
Umapathy, N.S.; Fan, Z.; Zemskov, E.A.; Alieva, I.B.; Black, S.M.; Verin, A.D. Molecular mechanisms involved in adenosine-induced endothelial cell barrier enhancement. Vascul. Pharmacol., 2010, 52(5), 199-206.
Thompson, L.F.; Eltzschig, H.K.; Ibla, J.C.; Van De Wiele, C.J.; Resta, R.; Morote-Garcia, J.C.; Colgan, S.P. Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J. Exp. Med., 2004, 200(11), 1395-1405.
Lennon, P.F.; Taylor, C.T.; Stahl, G.L.; Colgan, S.P. Neutrophil-derived 5′-adenosine monophosphate promotes endothelial barrier function via cd73-mediated conversion to adenosine and endothelial a<sub>2b </sub>receptor activation. J. Exp. Med., 1998, 188(8), 1433-1443.
Majumdar, S.; Aggarwal, B.B. Adenosine suppresses activation of nuclear factor-κB selectively induced by tumor necrosis factor in different cell types. Oncogene, 2003, 22(8), 1206-1218.
Sands, W.A.; Martin, A.F.; Strong, E.W.; Palmer, T.M. Specific inhibition of nuclear factor-κB-dependent inflammatory responses by cell type-specific mechanisms upon A2A adenosine receptor gene transfer. Mol. Pharmacol., 2004, 66(5), 1147-1159.
Jennings, L.K. Mechanisms of platelet activation: Need for new strategies to protect against platelet-mediated atherothrombosis. Thromb. Haemost., 2009, 102(2), 248-257.
Willoughby, S.; Holmes, A.; Loscalzo, J. Platelets and cardiovascular disease. Eur. J. Cardiovasc. Nurs., 2002, 1(4), 273-288.
Chakhtoura, E.Y.; Shamoon, F.E.; Haft, J.I.; Obiedzinski, G.R.; Cohen, A.J.; Watson, R.M. Comparison of platelet activation in unstable and stable angina pectoris and correlation with coronary angiographic findings. Am. J. Cardiol., 2000, 86(8), 835-839.
Gachet, C. P2 receptors, platelet function and pharmacological implications. Thromb. Haemost., 2008, 99(3), 466-472.
Patrono, C.; Baigent, C.; Hirsh, J.; Roth, G. Antiplatelet drugs: American college of chest physicians evidence-based clinical practice guidelines (8th Edition). Chest,, 2008, 133(6), 199S-233S.
Cusack, N.J.; Hourani, S.M. 5′-N-ethylcarboxamidoadenosine: a potent inhibitor of human platelet aggregation. Br. J. Pharmacol., 1981, 72(3), 443-447.
Haslam, R.J.; Rosson, G.M. Effects of adenosine on levels of adenosine cyclic 3′,5′-monophosphate in human blood platelets in relation to adenosine incorporation and platelet aggregation. Mol. Pharmacol., 1975, 11(5), 528-544.
Dionisotti, S.; Zocchi, C.; Varani, K.; Borea, P.A.; Ongini, E. Effects of adenosine derivatives on human and rabbit platelet aggregation. Correlation of adenosine receptor affinities and antiaggregatory activity. Naunyn Schmiedebergs Arch. Pharmacol., 1992, 346(6), 673-676.
Amisten, S.; Braun, O.Ö.; Bengtsson, A.; Erlinge, D. Gene expression profiling for the identification of G-protein coupled receptors in human platelets. Thromb. Res., 2008, 122(1), 47-57.
Fuentes, E.; Pereira, J.; Mezzano, D.; Alarcon, M.; Caballero, J.; Palomo, I. Inhibition of platelet activation and thrombus formation by adenosine and inosine: Studies on their relative contribution and molecular modeling. PLoS One, 2014, 9(11), e112741.
Signorello, M.G.; Leoncini, G. Regulation of cAMP Intracellular levels in human platelets stimulated by 2-arachidonoylglycerol. J. Cell. Biochem., 2016, 117(5), 1240-1249.
Kakouros, N.; Rade, J.J.; Kourliouros, A.; Resar, J.R. Platelet function in patients with diabetes mellitus: from a theoretical to a practical perspective. Int. J. Endocrinol., 2011, 2011, 742719.
Jung, R.G.; Simard, T.; Labinaz, A.; Ramirez, F.D.; Di Santo, P.; Motazedian, P.; Rochman, R.; Gaudet, C.; Faraz, M.A.; Beanlands, R.S.B.; Hibbert, B. Role of plasminogen activator inhibitor-1 in coronary pathophysiology. Thromb. Res., 2018, 164, 54-62.
Ma, Z.; Kwong, K.Y.; Tovar, J.P.; Paek, D. Cyclic adenosine monophosphate induces plasminogen activator inhibitor-1 expression in human mast cells. Biochem. Biophys. Res. Commun., 2010, 400(4), 569-574.
Sereda, M.J.; Bradding, P.; Vial, C. Adenosine potentiates human lung mast cell tissue plasminogen activator activity. J. Immunol., 2011, 186(2), 1209-1217.
Weissmuller, T.; Campbell, E.L.; Rosenberger, P.; Scully, M.; Beck, P.L.; Furuta, G.T.; Colgan, S.P. PMNs facilitate translocation of platelets across human and mouse epithelium and together alter fluid homeostasis via epithelial cell-expressed ecto-NTPDases. J. Clin. Invest., 2008, 118(11), 3682-3692.
Hart, M.L.; Kohler, D.; Eckle, T.; Kloor, D.; Stahl, G.L.; Eltzschig, H.K. Direct treatment of mouse or human blood with soluble 5′-nucleotidase inhibits platelet aggregation. Arterioscler. Thromb. Vasc. Biol., 2008, 28(8), 1477-1483.
Ramirez, F.D.; Motazedian, P.; Jung, R.G.; Di Santo, P.; MacDonald, Z.D.; Moreland, R.; Simard, T.; Clancy, A.A.; Russo, J.J.; Welch, V.A.; Wells, G.A.; Hibbert, B. Methodological rigor in preclinical cardiovascular studies: targets to enhance reproducibility and promote research translation. Circ. Res., 2017, 120(12), 1916-1926.
Hegedus, K.; Keresztes, T.; Fekete, I.; Molnar, L. Effect of i.v. dipyridamole on cerebral blood flow, blood pressure, plasma adenosine and cAMP levels in rabbits. J. Neurol. Sci., 1997, 148(2), 153-161.
Zhang, Y.; Geiger, J.D.; Lautt, W.W. Improved high-pressure liquid chromatographic-fluorometric assay for measurement of adenosine in plasma. Am. J. Physiol., 1991, 260(4 Pt 1), G658-G664.
Brown, R.; Ollerstam, A.; Johansson, B.; Skott, O.; Gebre-Medhin, S.; Fredholm, B.; Persson, A.E. Abolished tubuloglomerular feedback and increased plasma renin in adenosine A1 receptor-deficient mice. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2001, 281(5), R1362-7.
Johansson, B.; Halldner, L.; Dunwiddie, T.V.; Masino, S.A.; Poelchen, W.; Gimenez-Llort, L.; Escorihuela, R.M.; Fernandez-Teruel, A.; Wiesenfeld-Hallin, Z.; Xu, X.J.; Hardemark, A.; Betsholtz, C.; Herlenius, E.; Fredholm, B.B. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc. Natl. Acad. Sci. USA, 2001, 98(16), 9407-9712.
Ledent, C.; Vaugeois, J.M.; Schiffmann, S.N.; Pedrazzini, T.; El Yacoubi, M.; Vanderhaeghen, J.J.; Costentin, J.; Heath, J.K.; Vassart, G.; Parmentier, M. Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature, 1997, 388(6643), 674-678.
Morrison, R.R.; Talukder, M.A.; Ledent, C.; Mustafa, S.J. Cardiac effects of adenosine in A(2A) receptor knockout hearts: Uncovering A(2B) receptors. Am. J. Physiol. Heart Circ. Physiol., 2002, 282(2), H437-H444.
Salvatore, C.A.; Tilley, S.L.; Latour, A.M.; Fletcher, D.S.; Koller, B.H.; Jacobson, M.A. Disruption of the A(3) adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J. Biol. Chem., 2000, 275(6), 4429-4434.
Guo, Y.; Bolli, R.; Bao, W.; Wu, W.J.; Black, R.G., Jr; Murphree, S.S.; Salvatore, C.A.; Jacobson, M.A.; Auchampach, J.A. Targeted deletion of the A3 adenosine receptor confers resistance to myocardial ischemic injury and does not prevent early preconditioning. J. Mol. Cell. Cardiol., 2001, 33(4), 825-830.
Hirao, M.; Oku, H.; Goto, W.; Sugiyama, T.; Kobayashi, T.; Ikeda, T. Effects of adenosine on optic nerve head circulation in rabbits. Exp. Eye Res., 2004, 79(5), 729-735.
El-Kashef, H.; Elmazar, M.M.; Al-Shabanah, O.A.; Al-Bekairi, A.M. Effect of adenosine on pulmonary circulation of rabbits. Gen. Pharmacol., 1999, 32(3), 307-313.
West, G.A.; Belardinelli, L. Sinus slowing and pacemaker shift caused by adenosine in rabbit SA node. Pflugers Arch., 1985, 403(1), 66-74.
Lee, J.M.; Lee, J.; Jeong, H.; Choe, W.S.; Seo, W-W.; Lim, W-H.; Kim, Y-C.; Hur, J.; Lee, S.E.; Yang, H-M.; Cho, H-J.; Kim, H-S. Development of a rabbit model for a preclinical comparison of coronary stent types in-vivo. Korean Circ. J., 2013, 43(11), 713-722.
Fulcher, J.; Patel, S.; Nicholls, S.J.; Bao, S.; Celermajer, D. Optical coherence tomography for serial in vivo imaging of aortic plaque in the rabbit: A preliminary experience. Open Heart, 2015, 2(1), e000314.
Yuan, L.; Sui, T.; Chen, M.; Deng, J.; Huang, Y.; Zeng, J.; Lv, Q.; Song, Y.; Li, Z.; Lai, L. CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts. Sci. Rep., [Article]. 2016, 6, 22024.
Iqbal, J.; Chamberlain, J.; Francis, S.E.; Gunn, J. Role of Animal Models in Coronary Stenting. Ann. Biomed. Eng., 2016, 44(2), 453-465.
Long, X.; Mokelke, E.A.; Neeb, Z.P.; Alloosh, M.; Edwards, J.M.; Sturek, M. Adenosine receptor regulation of coronary blood flow in Ossabaw miniature swine. J. Pharmacol. Exp. Ther., 2010, 335(3), 781-787.
Burnstock, G. Purinergic signalling: Therapeutic developments. Front. Pharmacol., 2017, 8, 661.
Press, N.J.; Gessi, S.; Borea, P.A.; Polosa, R. Therapeutic potential of adenosine receptor antagonists and agonists. Expert Opin. Ther. Pat., 2007, 17(8), 979-991.
Gao, Z-G.; Jacobson, K.A. Emerging adenosine receptor agonists-an update. Expert Opin. Emerg. Drugs, 2011, 16(4), 597-602.
Chen, J-F.; Eltzschig, H.K.; Fredholm, B.B. Adenosine receptors as drug targets - what are the challenges? Nat. Rev. Drug Discov., 2013, 12(4), 265-286.
Samsel, M.; Dzierzbicka, K. Therapeutic potential of adenosine analogues and conjugates. Pharmacol. Rep., 2011, 63(3), 601-617.
Raberger, G.; Schutz, W.; Kraupp, O. Coronary dilatory action of adenosine analogues: a comparative study. Arch. Int. Pharmacodyn. Ther., 1977, 230(1), 140-149.
Abdel-Hamid, M.; Novotny, L.; Hamza, H. Stability study of selected adenosine nucleosides using LC and LC/MS analyses. J. Pharm. Biomed. Anal., 2000, 22(5), 745-755.
Gao, Z-G.; Jacobson, K.A. Emerging adenosine receptor agonists. Expert Opin. Emerg. Drugs, 2007, 12(3), 479-492.
Muller, C.E.; Stein, B. Adenosine receptor antagonists: structures and potential therapeutic applications. Curr. Pharm. Des., 1996, 2(5), 501-530.
Hein, T.W.; Wang, W.; Zoghi, B.; Muthuchamy, M.; Kuo, L. Functional and molecular characterization of receptor subtypes mediating coronary microvascular dilation to adenosine. J. Mol. Cell. Cardiol., 2001, 33(2), 271-282.
Al Jaroudi, W.; Iskandrian, A.E. Regadenoson: A new myocardial stress agent. J. Am. Coll. Cardiol., 2009, 54(13), 1123-1130.
Leaker, B.R.; O’Connor, B.; Hansel, T.T.; Barnes, P.J.; Meng, L.; Mathur, V.S.; Lieu, H.D. Safety of regadenoson, an adenosine A2A receptor agonist for myocardial perfusion imaging, in mild asthma and moderate asthma patients: A randomized, double-blind, placebo-controlled trial. J. Nucl. Cardiol., 2008, 15(3), 329-336.
Townsend, R.; Desai, A.; Rammelsberg, D.; Kowalski, D.; Simmons, N.; Kitt, T.M. Safety and tolerability of intravenous regadenoson in healthy subjects: A randomized, repeat-dose, placebo-controlled study. J. Nucl. Cardiol., 2017, 24(1), 57-65.
Trochu, J.N.; Zhao, G.; Post, H.; Xu, X.; Belardinelli, L.; Belloni, F.L.; Hintze, T.H. Selective a2a adenosine receptor agonist as a coronary vasodilator in conscious dogs: Potential for use in myocardial perfusion imaging. J. Cardiovasc. Pharmacol., 2003, 41(1), 132-139.
Lieu, H.D.; Shryock, J.C.; von Mering, G.O.; Gordi, T.; Blackburn, B.; Olmsted, A.W.; Belardinelli, L.; Kerensky, R.A. Regadenoson, a selective A2A adenosine receptor agonist, causes dose-dependent increases in coronary blood flow velocity in humans. J. Nucl. Cardiol., 2007, 14(4), 514-520.
Cerqueira, M.D.; Nguyen, P.; Staehr, P.; Underwood, S.R.; Iskandrian, A.E. Effects of Age, gender, obesity, and diabetes on the efficacy and safety of the selective a2a agonist regadenoson versus adenosine in myocardial perfusion imaging: integrated advance-mpi trial results. Cardiovasc. Imag., 2008, 1(3), 307-316.
Iskandrian, A.E.; Bateman, T.M.; Belardinelli, L.; Blackburn, B.; Cerqueira, M.D.; Hendel, R.C.; Lieu, H.; Mahmarian, J.J.; Olmsted, A.; Underwood, S.R.; Vitola, J.; Wang, W. Adenosine versus regadenoson comparative evaluation in myocardial perfusion imaging: Results of the ADVANCE phase 3 multicenter international trial. J. Nucl. Cardiol., 2007, 14(5), 645-658.
Packard, R.R.S.; Maddahi, J. Regadenoson-induced hyperemia for absolute myocardial blood flow quantitation by 13N-ammonia PET and detection of cardiac allograft vasculopathy. J. Nucl. Cardiol., 2017, 24(4), 1145-1148.
Onrot, J.; Goldberg, M.R.; Biaggioni, I.; Hollister, A.S.; Kingaid, D.; Robertson, D. Hemodynamic and humoral effects of caffeine in autonomic failure. Therapeutic implications for postprandial hypotension. N. Engl. J. Med., 1985, 313(9), 549-554.
Halker, R.B.; Demaerschalk, B.M.; Wellik, K.E.; Wingerchuk, D.M.; Rubin, D.I.; Crum, B.A.; Dodick, D.W. Caffeine for the prevention and treatment of postdural puncture headache: debunking the myth. The Neurologist, 2007, 13(5), 323-327.
Barnes, P.J. Theophylline. Am. J. Respir. Crit. Care Med., 2013, 188(8), 901-906.
Shukla, D.; Chakraborty, S.; Singh, S.; Mishra, B. Doxofylline: a promising methylxanthine derivative for the treatment of asthma and chronic obstructive pulmonary disease. Expert Opin. Pharmacother., 2009, 10(14), 2343-2356.
Paez Espinosa, E.V.; Murad, J.P.; Khasawneh, F.T. Aspirin: Pharmacology and clinical applications. Thrombosis, 2012, 2012, 173124.
Crutchley, D.J.; Ryan, U.S.; Ryan, J.W. Effects of aspirin and dipyridamole on the degradation of adenosine diphosphate by cultured cells derived from bovine pulmonary artery. The J. Clin. Invest., 1980, 66(1), 29-35.
Gurbel, P.A.; Jeong, Y.H.; Tantry, U.S. The dogged search for cryptic effects of ticagrelor: wishful thinking or real benefits beyond p2y12 inhibition? Circulation, 2016, 134(22), 1720-1723.
Kim, H-H.; Liao, J.K. Translational therapeutics of dipyridamole. Arterioscler. Thromb. Vasc. Biol., 2008, 28(3), s39-s42.
Diener, H.C.; Sacco, R.L.; Yusuf, S.; Cotton, D.; Ounpuu, S.; Lawton, W.A.; Palesch, Y.; Martin, R.H.; Albers, G.W.; Bath, P.; Bornstein, N.; Chan, B.P.; Chen, S.T.; Cunha, L.; Dahlof, B.; De Keyser, J.; Donnan, G.A.; Estol, C.; Gorelick, P.; Gu, V.; Hermansson, K.; Hilbrich, L.; Kaste, M.; Lu, C.; Machnig, T.; Pais, P.; Roberts, R.; Skvortsova, V.; Teal, P.; Toni, D.; VanderMaelen, C.; Voigt, T.; Weber, M.; Yoon, B.W. Effects of aspirin plus extended-release dipyridamole versus clopidogrel and telmisartan on disability and cognitive function after recurrent stroke in patients with ischaemic stroke in the Prevention Regimen for Effectively Avoiding Second Strokes (PRoFESS) trial: a double-blind, active and placebo-controlled study. The Lancet Neurol., 2008, 7(10), 875-884.
Sacco, R.L.; Diener, H.C.; Yusuf, S.; Cotton, D.; Ounpuu, S.; Lawton, W.A.; Palesch, Y.; Martin, R.H.; Albers, G.W.; Bath, P.; Bornstein, N.; Chan, B.P.; Chen, S.T.; Cunha, L.; Dahlof, B.; De Keyser, J.; Donnan, G.A.; Estol, C.; Gorelick, P.; Gu, V.; Hermansson, K.; Hilbrich, L.; Kaste, M.; Lu, C.; Machnig, T.; Pais, P.; Roberts, R.; Skvortsova, V.; Teal, P.; Toni, D.; Vandermaelen, C.; Voigt, T.; Weber, M.; Yoon, B.W. Aspirin and extended-release dipyridamole versus clopidogrel for recurrent stroke. N. Engl. J. Med., 2008, 359(12), 1238-2351.
Halkes, P.H.; van Gijn, J.; Kappelle, L.J.; Koudstaal, P.J.; Algra, A. Aspirin plus dipyridamole versus aspirin alone after cerebral ischaemia of arterial origin (ESPRIT): Randomised controlled trial. Lancet, 2006, 367(9523), 1665-1673.
Ranhosky, A.; Kempthorne-Rawson, J. The safety of intravenous dipyridamole thallium myocardial perfusion imaging. Intravenous Dipyridamole Thallium Imaging Study Group. Circulation, 1990, 81(4), 1205-1209.
Guideri, F.; Ferber, D.; Galgano, G.; Frigerio, C.; De Giorgi, L.; Laghi Pasini, F.; Di Perri, T. Calcium infusion induces myocardial ischaemia in patients with coronary artery disease by a mechanism possibly adenosine mediated. Eur. Heart J., 1994, 15(9), 1158-1163.
Biaggioni, I.; Onrot, J.; Hollister, A.S.; Robertson, D. Cardiovascular effects of adenosine infusion in man and their modulation by dipyridamole. Life Sci., 1986, 39(23), 2229-2236.
Pasini, F.L.; Guideri, F.; Ferber, D.; Galgano, G.; Bianchi, A.; Isidori, S.; De Giorgi, L.; Petri, S.; Capecchi, P.L.; Di Perri, T. Pharmacological preconditioning of ischemic heart disease by low-dose dipyridamole. Int. J. Cardiol., 1996, 56(1), 17-27.
German, D.C.; Kredich, N.M.; Bjornsson, T.D. Oral dipyridamole increases plasma adenosine levels in human beings. Clin. Pharmacol. Ther., 1989, 45(1), 80-84.
Nylander, S.; Femia, E.A.; Scavone, M.; Berntsson, P.; Asztely, A.K.; Nelander, K.; Lofgren, L.; Nilsson, R.G.; Cattaneo, M. Ticagrelor inhibits human platelet aggregation via adenosine in addition to P2Y12 antagonism. J. Thromb. Haemost., 2013, 11(10), 1867-1876.
Tommasi, S.; Carluccio, E.; Bentivoglio, M.; Corea, L.; Picano, E. Low-dose dipyridamole infusion acutely increases exercise capacity in angina pectoris: a double-blind, placebo controlled crossover stress echocardiographic study. J. Am. Coll. Cardiol., 2000, 35(1), 83-88.
De Potter, T.J.; Eisenberger, M.; McCann, C.; Peytchev, P.; Geelen, P. Adenosine plus dipyridamole: A novel strategy to enhance adenosine-induced conduction recovery after pulmonary vein isolation. Europace, 2012, 14(11), 1567-1571.
Miyazaki, S.; Taniguchi, H.; Uchiyama, T.; Kusa, S.; Nakamura, H.; Hachiya, H.; Hirao, K.; Iesaka, Y. Impact of low-dose dipyridamole injection on adenosine test after pulmonary vein isolation. Pacing Clin. Electrophysiol., 2013, 36(12), 1451-1459.
Faxon, D.P.; Sanborn, T.A.; Haudenschild, C.C.; Ryan, T.J. Effect of antiplatelet therapy on restenosis after experimental angioplasty. Am. J. Cardiol., 1984, 53(12), 72c-76c.
Singh, J.P.; Rothfuss, K.J.; Wiernicki, T.R.; Lacefield, W.B.; Kurtz, L.; Brown, R.F.; Brune, K.A.; Bailey, D.; Dubé, G.P. Dipyridamole directly inhibits vascular smooth muscle cell proliferation in vitro and in vivo: Implications in the treatment of restenosis after angioplasty. J. Am. Coll. Cardiol., 1994, 23(3), 665-671.
Dixon, B.S.; Beck, G.J.; Vazquez, M.A.; Greenberg, A.; Delmez, J.A.; Allon, M.; Dember, L.M.; Himmelfarb, J.; Gassman, J.J.; Greene, T.; Radeva, M.K.; Davidson, I.J.; Ikizler, T.A.; Braden, G.L.; Fenves, A.Z.; Kaufman, J.S.; Cotton, J.R.; Martin, K.J.; McNeil, J.W.; Rahman, A.; Lawson, J.H.; Whiting, J.F.; Hu, B.; Meyers, C.M.; Kusek, J.W.; Feldman, H.I. Effect of dipyridamole plus aspirin on hemodialysis graft patency. The New. Engl. J. Med., 2009, 360(21), 2191-2201.
Sreedhara, R.; Himmelfarb, J.; Lazarus, J.M.; Hakim, R.M. Anti-platelet therapy in graft thrombosis: results of a prospective, randomized, double-blind study. Kidney Int., 1994, 45(5), 1477-1483.
Tanner, N.C.; Da Silva, A. Medical adjuvant treatment to increase patency of arteriovenous fistulae and grafts. Cochrane Database Syst. Rev., 2015, (7), Cd002786.
Metke, M.; Lie, J.T.; Fuster, V.; Josa, M.; Kaye, M.P. Reduction of intimal thickening in canine coronary bypass vein grafts with dipyridamole and aspirin. Am. J. Cardiol., 1979, 43(6), 1144-1148.
Josa, M.; Lie, J.T.; Bianco, R.L.; Kaye, M.P. Reduction of thrombosis in canine coronary bypass vein grafts with dipyridamole and aspirin. Am. J. Cardiol., 1981, 47(6), 1248-1254.
Chesebro, J.H.; Clements, I.P.; Fuster, V.; Elveback, L.R.; Smith, H.C.; Bardsley, W.T.; Frye, R.L.; Holmes, D.R., Jr; Vlietstra, R.E.; Pluth, J.R.; Wallace, R.B.; Puga, F.J.; Orszulak, T.A.; Piehler, J.M.; Schaff, H.V.; Danielson, G.K. A platelet-inhibitor-drug trial in coronary-artery bypass operations: Benefit of perioperative dipyridamole and aspirin therapy on early postoperative vein-graft patency. N. Engl. J. Med., 1982, 307(2), 73-78.
Chesebro, J.H.; Fuster, V.; Elveback, L.R.; Clements, I.P.; Smith, H.C.; Holmes, D.R., Jr; Bardsley, W.T.; Pluth, J.R.; Wallace, R.B.; Puga, F.J. et al Effect of dipyridamole and aspirin on late vein-graft patency after coronary bypass operations. N. Engl. J. Med., 1984, 310(4), 209-214.
Savi, P.; Nurden, P.; Nurden, A.T.; Levy-Toledano, S.; Herbert, J.M. Clopidogrel: A review of its mechanism of action. Platelets, 1998, 9(3-4), 251-255.
Willoughby, S.R.; Luu, L-J.; Cameron, J.D.; Nelson, A.J.; Schultz, C.D.; Worthley, S.G.; Worthley, M.I. Clopidogrel improves microvascular endothelial function in subjects with stable coronary artery disease. Heart Lung Circ., 2014, 23(6), 534-541.
Rubinshtein, R.; Kuvin, J.T.; Soffler, M.; Lennon, R.J.; Lavi, S.; Nelson, R.E.; Pumper, G.M.; Lerman, L.O.; Lerman, A. Assessment of endothelial function by non-invasive peripheral arterial tonometry predicts late cardiovascular adverse events. Eur. Heart J., 2010, 31(9), 1142-1148.
Heitzer, T.; Rudolph, V.; Schwedhelm, E.; Karstens, M.; Sydow, K.; Ortak, M.; Tschentscher, P.; Meinertz, T.; Böger, R.; Baldus, S. Clopidogrel improves systemic endothelial nitric oxide bioavailability in patients with coronary artery disease: Evidence for antioxidant and antiinflammatory effects. Arterioscler. Thromb. Vasc. Biol., 2006, 26(7), 1648-1652.
Vivekananthan, D.P.; Bhatt, D.L.; Chew, D.P.; Zidar, F.J.; Chan, A.W.; Moliterno, D.J.; Ellis, S.G.; Topol, E.J. Effect of clopidogrel pretreatment on periprocedural rise in C-reactive protein after percutaneous coronary intervention. Am. J. Cardiol., 2004, 94(3), 358-360.
Mangiacapra, F.; Di Gioia, G.; Pellicano, M.; Di Serafino, L.; Bressi, E.; Peace, A.J.; Bartunek, J.; Wijns, W.; De Bruyne, B.; Barbato, E. Effects of prasugrel versus clopidogrel on coronary microvascular function in patients undergoing elective PCI. J. Am. Coll. Cardiol., 2016, 68(2), 235-237.
Fromonot, J.; Dignat-Georges, F.; Rossi, P.; Mottola, G.; Kipson, N.; Ruf, J.; Bonello, L.; Guieu, R.; Paganelli, F. Ticagrelor improves peripheral arterial function in acute coronary syndrome patients. JACC., 2016, 67(16), 1967-1968.
van Giezen, J.J.; Nilsson, L.; Berntsson, P.; Wissing, B.M.; Giordanetto, F.; Tomlinson, W.; Greasley, P.J. Ticagrelor binds to human P2Y(12) independently from ADP but antagonizes ADP-induced receptor signaling and platelet aggregation. J. Thromb. Haemost., 2009, 7(9), 1556-1565.
Husted, S.; van Giezen, J.J. Ticagrelor: the first reversibly binding oral P2Y12 receptor antagonist. Cardiovasc. Ther., 2009, 27(4), 259-274.
Wallentin, L.; Becker, R.C.; Budaj, A.; Cannon, C.P.; Emanuelsson, H.; Held, C.; Horrow, J.; Husted, S.; James, S.; Katus, H.; Mahaffey, K.W.; Scirica, B.M.; Skene, A.; Steg, P.G.; Storey, R.F.; Harrington, R.A.; Freij, A.; Thorsen, M. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med., 2009, 361(11), 1045-1057.
Michelson, A.D.; Frelinger, A.L., III; Braunwald, E.; Downey, W.E.; Angiolillo, D.J.; Xenopoulos, N.P.; Jakubowski, J.A.; Li, Y.; Murphy, S.A.; Qin, J.; McCabe, C.H.; Antman, E.M.; Wiviott, S.D. Pharmacodynamic assessment of platelet inhibition by prasugrel vs. clopidogrel in the TRITON-TIMI 38 trial. Eur. Heart J., 2009, 30(14), 1753-1763.
Wiviott, S.D.; Braunwald, E.; McCabe, C.H.; Montalescot, G.; Ruzyllo, W.; Gottlieb, S.; Neumann, F.J.; Ardissino, D.; De Servi, S.; Murphy, S.A.; Riesmeyer, J.; Weerakkody, G.; Gibson, C.M.; Antman, E.M. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med., 2007, 357(20), 2001-2015.
Nylander, S.; Schulz, R. Effects of P2Y12 receptor antagonists beyond platelet inhibition-comparison of ticagrelor with thienopyridines. Br. J. Pharmacol., 2016, 173(7), 1163-1178.
Van Giezen, J.J.J.; Sidaway, J.; Glaves, P.; Kirk, I.; Björkman, J.A. Ticagrelor inhibits adenosine uptake in vitro and enhances adenosine-mediated hyperemia responses in a canine model. J. Cardiovasc. Pharmacol. Ther., 2012, 17(2), 164-172.
Bonello, L.; Laine, M.; Kipson, N.; Mancini, J.; Helal, O.; Fromonot, J.; Gariboldi, V.; Condo, J.; Thuny, F.; Frere, C.; Camoin-Jau, L.; Paganelli, F.; Dignat-George, F.; Guieu, R. Ticagrelor increases adenosine plasma concentration in patients with an acute coronary syndrome. J. Am. Coll. Cardiol., 2014, 63(9), 872-877.
Li, X.; Wang, Q.; Xue, Y.; Chen, J.; Lv, Q. Ticagrelor compared with clopidogrel increased adenosine and cyclic adenosine monophosphate plasma concentration in acute coronary syndrome patients. Basic Clin. Pharmacol. Toxicol., 2017, 120(6), 610-614.
Öhman, J.; Kudira, R.; Albinsson, S.; Olde, B.; Erlinge, D. Ticagrelor induces adenosine triphosphate release from human red blood cells. Biochem. Biophys. Res. Commun., 2012, 418(4), 754-758.
Mahaffey, K.W.; Puma, J.A.; Barbagelata, N.A.; DiCarli, M.F.; Leesar, M.A.; Browne, K.F.; Eisenberg, P.R.; Bolli, R.; Casas, A.C.; Molina-Viamonte, V.; Orlandi, C.; Blevins, R.; Gibbons, R.J.; Califf, R.M.; Granger, C.B. Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: Results of a multicenter, randomized, placebo-controlled trial: the Acute Myocardial Infarction Study of Adenosine (AMISTAD) Trial. J. Am. Coll. Cardiol., 1999, 34(6), 1711-1720.
Ross, A.M.; Gibbons, R.J.; Stone, G.W.; Kloner, R.A.; Alexander, R.W. A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). J. Am. Coll. Cardiol., 2005, 45(11), 1775-1780.
Wittfeldt, A.; Emanuelsson, H.; Brandrup-Wognsen, G.; Van Giezen, J.J.J.; Jonasson, J.; Nylander, S.; Gan, L.M. Ticagrelor enhances adenosine-induced coronary vasodilatory responses in humans. J. Am. Coll. Cardiol., 2013, 61(7), 723-727.
Pelletier-Galarneau, M.; Hunter, C.; Ascah, K.J.; Beanlands, R.S.B.; Dwivedi, G.; deKemp, R.A.; Chow, B.J.W.; Ruddy, T.D. Randomized trial comparing the effects of ticagrelor versus clopidogrel on myocardial perfusion in patients with coronary artery disease. J. Am. Heart Assoc., 2017, 6(5), pii e005894.
Alexopoulos, D.; Moulias, A.; Koutsogiannis, N.; Xanthopoulou, I.; Kakkavas, A.; Mavronasiou, E.; Davlouros, P.; Hahalis, G. Differential effect of ticagrelor versus prasugrel on coronary blood flow velocity in patients with non-ST-elevation acute coronary syndrome undergoing percutaneous coronary intervention: An exploratory study. Circ. Cardiovasc. Interv., 2013, 6(3), 277-283.
Glover, D.K.; Ruiz, M.; Yang, J.Y.; Koplan, B.A.; Allen, T.R.; Smith, W.H.; Watson, D.D.; Barrett, R.J.; Beller, G.A. Pharmacological stress thallium scintigraphy with 2-cyclohexylmethylidenehydrazinoadenosine (WRC-0470). Circulation, 1996, 94(7), 1726-1732.
Hage, F.G.; Heo, J.; Franks, B.; Belardinelli, L.; Blackburn, B.; Wang, W.; Iskandrian, A.E. Differences in heart rate response to adenosine and regadenoson in patients with and without diabetes mellitus. Am. Heart J., 2009, 15(4), 771-776.
Cox, D.A.; Vita, J.A.; Treasure, C.B.; Fish, R.D.; Selwyn, A.P.; Ganz, P. Reflex increase in blood pressure during the intracoronary administration of adenosine in man. J. Clin. Invest., 1989, 84(2), 592-596.
Martin, P.L.; Ueeda, M.; Olsson, R.A. 2-Phenylethoxy-9-methyladenine: an adenosine receptor antagonist that discriminates between A2 adenosine receptors in the aorta and the coronary vessels from the guinea pig. J. Pharmacol. Exp. Ther., 1993, 265(1), 248-253.
Shryock, J.C.; Snowdy, S.; Baraldi, P.G.; Cacciari, B.; Spalluto, G.; Monopoli, A.; Ongini, E.; Baker, S.P.; Belardinelli, L.A. (2A)-adenosine receptor reserve for coronary vasodilation. Circulation, 1998, 98(7), 711-718.
Burki, N.K.; Dale, W.J.; Lee, L.Y. Intravenous adenosine and dyspnea in humans. J. Appl. Physiol., 2005, 98(1), 180-185.
Hong, J.L.; Ho, C.Y.; Kwong, K.; Lee, L.Y. Activation of pulmonary C fibres by adenosine in anaesthetized rats: role of adenosine A1 receptors. J. Physiol., 1998, 508(Pt 1), 109-118.
Storey, R.F.; Becker, R.C.; Harrington, R.A.; Husted, S.; James, S.K.; Cools, F.; Steg, P.G.; Khurmi, N.S.; Emanuelsson, H.; Cooper, A.; Cairns, R.; Cannon, C.P.; Wallentin, L. Characterization of dyspnoea in PLATO study patients treated with ticagrelor or clopidogrel and its association with clinical outcomes. Eur. Heart J., 2011, 32(23), 2945-2953.
Balan, K.K.; Critchley, M. Is the dyspnea during adenosine cardiac stress test caused by bronchospasm? Am. Heart J., 2001, 142(1), 142-145.
Fricke, E.; Esdorn, E.; Kammeier, A.; Fricke, H.; Preuss, R.; Burchert, W.; Lindner, O. Respiratory resistance of patients during cardiac stress testing with adenosine: Is dyspnea a sign of bronchospasm? J. Nucl. Cardiol., 2008, 15(1), 94-99.
Honey, R.M.; Ritchie, W.T.; Thomson, W.A.R. The action of adenosine upon the human heart. QJM: An Intern. J. Med., 1930, os-23(92), 485-489.
Jezer, A.; Oppenheimer, B.S.; Schwartz, S.P. The effect of adenosine on cardiac irregularities in man. Am. Heart J., 1933, 9(2), 252-258.
Calkins, H.; Kuck, K.H.; Cappato, R.; Brugada, J.; Camm, A.J.; Chen, S.A.; Crijns, H.J.; Damiano, R.J., Jr; Davies, D.W.; DiMarco, J.; Edgerton, J.; Ellenbogen, K.; Ezekowitz, M.D.; Haines, D.E.; Haissaguerre, M.; Hindricks, G.; Iesaka, Y.; Jackman, W.; Jalife, J.; Jais, P.; Kalman, J.; Keane, D.; Kim, Y.H.; Kirchhof, P.; Klein, G.; Kottkamp, H.; Kumagai, K.; Lindsay, B.D.; Mansour, M.; Marchlinski, F.E.; McCarthy, P.M.; Mont, J.L.; Morady, F.; Nademanee, K.; Nakagawa, H.; Natale, A.; Nattel, S.; Packer, D.L.; Pappone, C.; Prystowsky, E.; Raviele, A.; Reddy, V.; Ruskin, J.N.; Shemin, R.J.; Tsao, H.M.; Wilber, D. 2012 HRS/EHRA/ECAS Expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. Europace, 2012, 14(4), 528-606.
Dallaglio, P.D.; Betts, T.R.; Ginks, M.; Bashir, Y.; Anguera, I.; Rajappan, K. The Role of adenosine in pulmonary vein isolation: a critical review. Cardiol. Res. Pract., 2016, 2016, 13.
Macle, L.; Khairy, P.; Weerasooriya, R.; Novak, P.; Verma, A.; Willems, S.; Arentz, T.; Deisenhofer, I.; Veenhuyzen, G.; Scavee, C.; Jais, P.; Puererfellner, H.; Levesque, S.; Andrade, J.G.; Rivard, L.; Guerra, P.G.; Dubuc, M.; Thibault, B.; Talajic, M.; Roy, D.; Nattel, S. Adenosine-guided pulmonary vein isolation for the treatment of paroxysmal atrial fibrillation: an international, multicentre, randomised superiority trial. Lancet, 2015, 386(9994), 672-679.
Kobori, A.; Shizuta, S.; Inoue, K.; Kaitani, K.; Morimoto, T.; Nakazawa, Y.; Ozawa, T.; Kurotobi, T.; Morishima, I.; Miura, F.; Watanabe, T.; Masuda, M.; Naito, M.; Fujimoto, H.; Nishida, T.; Furukawa, Y.; Shirayama, T.; Tanaka, M.; Okajima, K.; Yao, T.; Egami, Y.; Satomi, K.; Noda, T.; Miyamoto, K.; Haruna, T.; Kawaji, T.; Yoshizawa, T.; Toyota, T.; Yahata, M.; Nakai, K.; Sugiyama, H.; Higashi, Y.; Ito, M.; Horie, M.; Kusano, K.F.; Shimizu, W.; Kamakura, S.; Kimura, T. Adenosine triphosphate-guided pulmonary vein isolation for atrial fibrillation: The UNmasking Dormant Electrical Reconduction by Adenosine TriPhosphate (UNDER-ATP) trial. Eur. Heart J., 2015, 36(46), 3276-3287.
Blandino, A.; Biondi-Zoccai, G.; Battaglia, A.; Grossi, S.; Bianchi, F.; Conte, M.R.; Rametta, F.; Gaita, F. Impact of targeting adenosine-induced transient venous reconnection in patients undergoing pulmonary vein isolation for atrial fibrillation: a meta-analysis of 3524 patients. J. Cardiovasc. Med. (Hagerstown), 2017, 18(7), 478-489.
Chen, Y.H.; Lin, H.; Xie, C.L.; Hou, J.W.; Li, Y.G. Role of adenosine-guided pulmonary vein isolation in patients undergoing catheter ablation for atrial fibrillation: A meta-analysis. Europace, 2017, 19(4), 552-559.
Afzal, M.R.; Kahaly, O.; Weiss, R.; Houmsse, M.; Daoud, E.G.; Hummel, J.D. Adenosine triphosphate/adenosine guided pulmonary vein isolation does not improve the outcomes of ablation: a meta-analysis of randomized controlled trials. Expert Rev. Cardiovasc. Ther., 2018, 16(5), 313-318.
Papageorgiou, N.; Providencia, R.; Srinivasan, N.; Bronis, K.; Costa, F.M.; Cavaco, D.; Adragao, P.; Tousoulis, D.; Hunter, R.J.; Schilling, R.J.; Segal, O.R.; Chow, A.; Rowland, E.; Lowe, M.; Lambiase, P.D. Adenosine-guided pulmonary vein isolation versus conventional pulmonary vein isolation in patients undergoing atrial fibrillation ablation: An updated meta-analysis. Int. J. Cardiol., 2017, 227, 151-160.
Sutton, R.; Deharo, J-C.; Brignole, M.; Hamdan, M.H. Emerging concepts in diagnosis and treatment of syncope by pacing. Trends in Cardiovascular Medicine., 2018.
Borea, P.A.; Gessi, S.; Merighi, S.; Varani, K. Adenosine as a multi-signalling guardian angel in human diseases: when, where and how does it exert its protective effects? Trends Pharmacol. Sci., 2016, 37(6), 419-434.
Aste, M.; Brignole, M. Syncope and paroxysmal atrioventricular block. J. Arrhythm., 2017, 33(6), 562-567.
Wansa, N.; Goethals, P.; DeRoy, L. Histamine, paroxysmal AV block and low adenosine syncope a case report. J. Electrocardiol., 2018, 51(1), 150-152.
Brignole, M.; Guieu, R.; Tomaino, M.; Iori, M.; Ungar, A.; Bertolone, C.; Unterhuber, M.; Bottoni, N.; Tesi, F.; Claude Deharo, J. Mechanism of syncope without prodromes with normal heart and normal electrocardiogram. Heart Rhythm, 2017, 14(2), 234-239.
Flammang, D.; Benditt, D.G.; Church, T.R.; Pelleg, A. Adenosine 5′-triphosphate test in the management of patients with syncope. Am. J. Ther., 2016, 23(6), e1347-e1352.
Fragakis, N.; Antoniadis, A.P.; Saviano, M.; Vassilikos, V.; Pappone, C. The use of adenosine and adenosine triphosphate testing in the diagnosis, risk stratification and management of patients with syncope: Current evidence and future perspectives. Int. J. Cardiol., 2015, 183, 267-273.
Brignole, M.; Auricchio, A.; Baron-Esquivias, G.; Bordachar, P.; Boriani, G.; Breithardt, O.A.; Cleland, J.; Deharo, J.C.; Delgado, V.; Elliott, P.M.; Gorenek, B.; Israel, C.W.; Leclercq, C.; Linde, C.; Mont, L.; Padeletti, L.; Sutton, R.; Vardas, P.E. 2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy: the task force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Europace, 2013, 15(8), 1070-1118.
Matthews, I.G.; Sutton, R.; Blanc, J.J.; Parry, S.W. The adenosine triphosphate test in the diagnosis of unexplained syncope: a test looking for a home. Europace, 2014, 16(12), 1703-1705.
Belardinelli, L.; Shryock, J. Does adenosine function as a retaliatory metabolite in the heart? Physiology., 1992, 7(2), 52-56.
Achenbach, S.; Rudolph, T.; Rieber, J.; Eggebrecht, H.; Richardt, G.; Schmitz, T.; Werner, N.; Boenner, F.; Mollmann, H. Performing and interpreting fractional flow reserve measurements in clinical practice: An expert consensus document. Interven. Cardiol. (London, England), 2017, 12(2), 97-109.
Reid, P.G.; Watt, A.H.; Penny, W.J.; Newby, A.C.; Smith, A.P.; Routledge, P.A. Plasma adenosine concentrations during adenosine-induced respiratory stimulation in man. Eur. J. Clin. Pharmacol., 1991, 40(2), 175-180.
DeAngelis, M.; Ferrara, A.; Gregory, K.; Zammit, K.; Zhao, F. Stability of 2 mg/mL Adenosine Solution in Polyvinyl Chloride and Polyolefin Infusion Bags. Hosp. Pharm., 2018, 53(2), 73-74.
Mustafa, S.J.; Morrison, R.R.; Teng, B.; Pelleg, A. Adenosine receptors and the heart: Role in regulation of coronary blood flow and cardiac electrophysiology. Handb. Exp. Pharmacol., 2009, (193), 161-188.
Crist, G.H.; Xu, B.; Lanoue, K.F.; Lang, C.H. Tissue-specific effects of in vivo adenosine receptor blockade on glucose uptake in Zucker rats. FASEB J., 1998, 12(13), 1301-1308.
Vergauwen, L.; Hespel, P.; Richter, E.A. Adenosine receptors mediate synergistic stimulation of glucose uptake and transport by insulin and by contractions in rat skeletal muscle. J. Clin. Invest., 1994, 93(3), 974-981.
Johansson, S.M.; Salehi, A.; Sandstrom, M.E.; Westerblad, H.; Lundquist, I.; Carlsson, P.O.; Fredholm, B.B.; Katz, A. A1 receptor deficiency causes increased insulin and glucagon secretion in mice. Biochem. Pharmacol., 2007, 74(11), 1628-1635.
Dong, Q.; Ginsberg, H.N.; Erlanger, B.F. Overexpression of the A1 adenosine receptor in adipose tissue protects mice from obesity-related insulin resistance. Diabetes Obes. Metab., 2001, 3(5), 360-366.
Joost, H.G.; Steinfelder, H.J. Modulation of insulin sensitivity by adenosine. Effects on glucose transport, lipid synthesis, and insulin receptors of the adipocyte. Mol. Pharmacol., 1982, 22(3), 614-618.
Rusing, D.; Muller, C.E.; Verspohl, E.J. The impact of adenosine and A(2B) receptors on glucose homoeostasis. J. Pharm. Pharmacol., 2006, 58(12), 1639-1645.
Nemeth, Z.H.; Bleich, D.; Csoka, B.; Pacher, P.; Mabley, J.G.; Himer, L.; Vizi, E.S.; Deitch, E.A.; Szabo, C.; Cronstein, B.N.; Hasko, G. Adenosine receptor activation ameliorates type 1 diabetes. FASEB J., 2007, 21(10), 2379-2388.
Jadhav, A.A.; Jain, A. Elevated adenosine deaminase activity in overweight and obese Indian subjects. Arch. Physiol. Biochem., 2012, 118(1), 1-5.
Khemka, V.K.; Bagchi, D.; Ghosh, A.; Sen, O.; Bir, A.; Chakrabarti, S.; Banerjee, A. Raised serum adenosine deaminase level in nonobese type 2 diabetes mellitus. ScientificWorldJournal., 2013, 2013, 404320.
Lee, J.G.; Kang, D.G.; Yu, J.R.; Kim, Y.; Kim, J.; Koh, G.; Lee, D. Changes in adenosine deaminase activity in patients with type 2 diabetes mellitus and effect of DPP-4 inhibitor treatment on ADA activity. Diabetes Metab. J., 2011, 35(2), 149-158.
Michele, M.C.; Chiara, B.; Enrico, G.; Patrizia, V.; Roberto, M.; Federico, L. Pharmacological interactions on blood pressure control in arterial hypertension, an issue not to be overlooked. Cardiovasc. Hematol. Disord. Drug Targets, 2015, 15(3), 210-223.
Padwal, R.; Straus, S.E.; McAlister, F.A. Cardiovascular risk factors and their effects on the decision to treat hypertension: evidence based review. BMJ: Brit. Med. J., 2001, 322(7292), 977-980.
Hellsten, Y.; Jensen, L.; Thaning, P.; Nyberg, M.; Mortensen, S. Impaired formation of vasodilators in peripheral tissue in essential hypertension is normalized by exercise training: role of adenosine and prostacyclin. J. Hypertens., 2012, 30(10), 2007-2014.
Ho, M-F.; Low, L.M. Rose’Meyer, R.B. Pharmacology of the adenosine A3 receptor in the vasculature and essential hypertension. PLoS One, 2016, 11(2), e0150021.
Ponnoth, D.S.; Sanjani, M.S.; Ledent, C.; Roush, K.; Krahn, T.; Mustafa, S.J. Absence of adenosine-mediated aortic relaxation in A(2A) adenosine receptor knockout mice. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(5), H1655-H1660.
Varani, K.; Manfredini, R.; Iannotta, V.; Pancaldi, C.; Cattabriga, E.; Uluoglu, C.; Borea, P.A.; Portaluppi, F. Effects of doxazosin and propranolol on A2A adenosine receptors in essential hypertension. Hypertension, 2002, 40(6), 909-913.
Zapata-Sudo, G.; Sudo, S.Z.; Alencar, A.K.Z.; Sudo, R.T. Targeting of the adenosine receptors as a novel strategy for the treatment of arterial hypertension. J. Neurol. Neurophysiol., 2014, 5(243), 31-40.
Saadjian, A.Y.; Paganelli, F.; Reynaud Gaubert, M.L.; Levy, S.; Guieu, R.P. Adenosine plasma concentration in pulmonary hypertension. Cardiovasc. Res., 1999, 43(1), 228-236.
Morgan, J.M.; McCormack, D.G.; Griffiths, M.J.; Morgan, C.J.; Barnes, P.J.; Evans, T.W. Adenosine as a vasodilator in primary pulmonary hypertension. Circulation, 1991, 84(3), 1145-1149.
Xu, M.H.; Gong, Y.S.; Su, M.S.; Dai, Z.Y.; Dai, S.S.; Bao, S.Z.; Li, N.; Zheng, R.Y.; He, J.C.; Chen, J.F.; Wang, X.T. Absence of the adenosine a<sub>2a</sub> receptor confers pulmonary arterial hypertension and increased pulmonary vascular remodeling in mice. J. Vasc. Res., 2011, 48(2), 171-183.
Bahreyni, A.; Khazaei, M.; Rajabian, M.; Ryzhikov, M.; Avan, A.; Hassanian, S.M. Therapeutic potency of pharmacological adenosine receptor agonist/antagonist in angiogenesis, current status and perspectives. J. Pharm. Pharmacol., 2018, 70(2), 191-196.
Lenoir, B.; Wagner, D.R.; Blacher, S.; Sala-Newby, G. B.
Newby, A.C.; Noel, A.; Devaux, Y. Effects of Adenosine on Lymphangiogenesis. PLoS One, 2014, 9(3), e92715.
Khayami, R.; Toroghian, Y.; Bahreyni, A.; Bahrami, A.; Khazaei, M.; Ferns, G.A.; Ebrahimi, S.; Soleimani, A.; Fiuji, H.; Avan, A.; Hassanian, S.M. Role of adenosine signaling in the pathogenesis of head and neck cancer. J. Cell. Biochem., 2018, 119(10), 7905-7912.
Du, X.; Ou, X.; Song, T.; Zhang, W.; Cong, F.; Zhang, S.; Xiong, Y. Adenosine A(2B) receptor stimulates angiogenesis by inducing VEGF and eNOS in human microvascular endothelial cells. Experimental Biology and Medicine., 2015, 240(11), 1472-1479.
Liu, Z.; Yan, S.; Wang, J.; Xu, Y.; Wang, Y.; Zhang, S.; Xu, X.; Yang, Q.; Zeng, X.; Zhou, Y.; Gu, X.; Lu, S.; Fu, Z.; Fulton, D.J.; Weintraub, N.L.; Caldwell, R.B.; Zhang, W.; Wu, C.; Liu, X-L.; Chen, J-F.; Ahmad, A.; Kaddour-Djebbar, I.; Al-Shabrawey, M.; Li, Q.; Jiang, X.; Sun, Y.; Sodhi, A.; Smith, L.; Hong, M.; Huo, Y. Endothelial adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis. Nat. Commun., 2017, 8(1), 584.
Bhamidipati, C.M.; Mehta, G.S.; Moehle, C.W.; Meher, A.K.; Su, G.; Vigneshwar, N.G.; Barbery, C.; Sharma, A.K.; Kron, I.L.; Laubach, V.E.; Owens, G.K.; Upchurch, G.R., Jr; Ailawadi, G. Adenosine 2A receptor modulates inflammation and phenotype in experimental abdominal aortic aneurysms. FASEB J., 2013, 27(6), 2122-2131.
Meling, T.R.; Romundstad, L.; Niemi, G.; Narum, J.; Eide, P.K.; Sorteberg, A.G.; Sorteberg, W.A. Adenosine-assisted clipping of intracranial aneurysms. Neurosurg. Rev., 2018, 41(2), 585-592.
Desai, V.R.; Rosas, A.L.; Britz, G.W. Adenosine to facilitate the clipping of cerebral aneurysms: Literature review. Stroke Vasc. Neurol., 2017, 2(4), 204-209.
Eltzschig, H.K.; Thompson, L.F.; Karhausen, J.; Cotta, R.J.; Ibla, J.C.; Robson, S.C.; Colgan, S.P. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: Coordination by extracellular nucleotide metabolism. Blood, 2004, 104(13), 3986-3992.
Eltzschig, H.K.; Faigle, M.; Knapp, S.; Karhausen, J.; Ibla, J.; Rosenberger, P.; Odegard, K.C.; Laussen, P.C.; Thompson, L.F.; Colgan, S.P. Endothelial catabolism of extracellular adenosine during hypoxia: the role of surface adenosine deaminase and CD26. Blood, 2006, 108(5), 1602-1610.
Takahashi, T.; Otsuguro, K.; Ohta, T.; Ito, S. Adenosine and inosine release during hypoxia in the isolated spinal cord of neonatal rats. Br. J. Pharmacol., 2010, 161(8), 1806-1816.
Nemeth, Z.H.; Csoka, B.; Wilmanski, J.; Xu, D.; Lu, Q.; Ledent, C.; Deitch, E.A.; Pacher, P.; Spolarics, Z.; Hasko, G. Adenosine A2A receptor inactivation increases survival in polymicrobial sepsis. J. Immunol., 2006, 176(9), 5616-5626.
Tatsuya, H.; Koji, S. Changes of expression of the protein c pathway components in lpsinduced endotoxemia–implication for sepsis. Cardiovasc. Hematol. Disord. Drug Targets, 2015, 15(1), 2-9.
Kayhan, N.; Funke, B.; Conzelmann, L.O.; Winkler, H.; Hofer, S.; Steppan, J.; Schmidt, H.; Bardenheuer, H.; Vahl, C.F.; Weigand, M.A. The adenosine deaminase inhibitor erythro-9-[2-hydroxyl-3-nonyl]-adenine decreases intestinal permeability and protects against experimental sepsis: a prospective, randomised laboratory investigation. Crit. Care, 2008, 12(5), R125.
Ramakers, B.P.; Riksen, N.P.; van den Broek, P.; Franke, B.; Peters, W.H.; van der Hoeven, J.G.; Smits, P.; Pickkers, P. Circulating adenosine increases during human experimental endotoxemia but blockade of its receptor does not influence the immune response and subsequent organ injury. Crit. Care, 2011, 15(1), R3.
Martin, C.; Leone, M.; Viviand, X.; Ayem, M.L.; Guieu, R. High adenosine plasma concentration as a prognostic index for outcome in patients with septic shock. Crit. Care Med., 2000, 28(9), 3198-3202.
Jabs, C.M.; Sigurdsson, G.H.; Neglen, P. Plasma levels of high-energy compounds compared with severity of illness in critically ill patients in the intensive care unit. Surgery, 1998, 124(1), 65-72.
Asakura, M.; Asanuma, H.; Kim, J.; Liao, Y.; Nakamaru, K.; Fujita, M.; Komamura, K.; Isomura, T.; Furukawa, H.; Tomoike, H.; Kitakaze, M. Impact of adenosine receptor signaling and metabolism on pathophysiology in patients with chronic heart failure. Hypertens. Res., 2007, 30, 781.
Funaya, H.; Kitakaze, M.; Node, K.; Minamino, T.; Komamura, K.; Hori, M. Plasma adenosine levels increase in patients with chronic heart failure. Circulation, 1997, 95(6), 1363-1365.
Feldman, A.M.; Wagner, D.R.; McNamara, D.M. AMPD1 Gene Mutation in Congestive Heart Failure. New Insights Into the Pathobiology of Disease Progression, 1999, 99(11), 1397-1399.
Loh, E.; Rebbeck, T.R.; Mahoney, P.D.; DeNofrio, D.; Swain, J.L.; Holmes, E.W. Common variant in ampd1 gene predicts improved clinical outcome in patients with heart failure. Circulation, 1999, 99(11), 1422-1425.
Miller, M. Dyslipidemia and cardiovascular risk: the importance of early prevention. QJM: An Intern. J. Med., 2009, 102(9), 657-667.
Koupenova, M.; Johnston-Cox, H.; Vezeridis, A.; Gavras, H.; Yang, D.; Zannis, V.; Ravid, K. A2b adenosine receptor regulates hyperlipidemia and atherosclerosis. Circulation, 2012, 125(2), 354-363.
Rayner, K.J. Cell death in the vessel wall. The Good, the Bad, the Ugly, 2017, 37(7), e75-e81.
Shuyuan, G.; Luxiao, L.; Huiyong, Y. Cholesterol homeostasis and liver x receptor (LXR) in atherosclerosis. Cardiovasc. Hematol. Disord. Drug Targets, 2018, 18(1), 27-33.
Thomas, F.W.; Sibu, P.S.; Debabrata, M. Antioxidants in the practice of medicine; what should the clinician know? Cardiovasc. Hematol. Disord. Drug Targets, 2016, 16(1), 13-20.
Glass, C.K.; Witztum, J.L. Atherosclerosis. the road ahead. Cell, 2001, 104(4), 503-516.
Koupenova, M.; Johnston-Cox, H.; Ravid, K. Regulation of atherosclerosis and associated risk factors by adenosine and adenosine receptors. Curr. Atheroscler. Rep., 2012, 14(5), 460-468.
Barnholt, K.E.; Kota, R.S.; Aung, H.H.; Rutledge, J.C. Adenosine blocks IFN-γ-induced phosphorylation of STAT1 on serine 727 to reduce macrophage activation. J. Immunol., 2009, 183(10), 6767-6777.
Gessi, S.; Fogli, E.; Sacchetto, V.; Merighi, S.; Varani, K.; Preti, D.; Leung, E.; Maclennan, S.; Borea, P.A. Adenosine modulates HIF-1alpha, VEGF, IL-8, and foam cell formation in a human model of hypoxic foam cells. Arterioscler. Thromb. Vasc. Biol., 2010, 30(1), 90-97.
Wang, H.; Zhang, W.; Zhu, C.; Bucher, C.; Blazar, B.R.; Zhang, C.; Chen, J.F.; Linden, J.; Wu, C.; Huo, Y. Inactivation of the adenosine A2A receptor protects apolipoprotein E-deficient mice from atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2009, 29(7), 1046-1052.
Hess, H.; Mietaschk, A.; Deichsel, G. Drug-induced inhibition of platelet function delays progression of peripheral occlusive arterial disease. A prospective double-blind arteriographically controlled trial. Lancet, 1985, 1(8426), 415-419.
Anderson, J.L.; Habashi, J.; Carlquist, J.F.; Muhlestein, J.B.; Horne, B.D.; Bair, T.L.; Pearson, R.R.; Hart, N. A common variant of the AMPD1 gene predicts improved cardiovascular survival in patients with coronary artery disease. J. Am. Coll. Cardiol., 2000, 36(4), 1248-1252.
Wang, H.; Zhang, W.; Tang, R.; Zhu, C.; Bucher, C.; Blazar, B.R.; Geng, J.G.; Zhang, C.; Linden, J.; Wu, C.; Huo, Y. Adenosine receptor A2A deficiency in leukocytes increases arterial neointima formation in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol., 2010, 30(5), 915-922.
Leesar, M.A.; Stoddard, M.; Ahmed, M.; Broadbent, J.; Bolli, R. Preconditioning of human myocardium with adenosine during coronary angioplasty. Circulation, 1997, 95(11), 2500-2507.
Guieu, R.; Paganelli, F.; Sampieri, F.; Bechis, G.; Levy, S.; Rochat, H. The use of HPLC to evaluate the variations of blood coronary adenosine levels during percutaneous transluminal angioplasty. Clin. Chim. Acta, 1994, 230(1), 63-68.
Andreassi, M.G.; Botto, N.; Laghi-Pasini, F.; Manfredi, S.; Ghelarducci, B.; Farneti, A.; Solinas, M.; Biagini, A.; Picano, E. AMPD1 (C34T) polymorphism and clinical outcomes in patients undergoing myocardial revascularization. Int. J. Cardiol., 2005, 101(2), 191-195.
Nordestgaard, A.G.; Marcus, C.S.; Wilson, S.E. Effect of aspirin and dipyridamole on sequential graft platelet accumulation after implantation of small diameter PTFE prosthesis. Platelets, 1990, 1(1), 37-41.
Nordestgaard, A.G.; Wilson, S.E. Neoendothelialization of small-diameter polytetrafluoroethylene arterial grafts is not delayed by aspirin and dipyridamole. J. Vasc. Surg., 1988, 7(1), 93-98.
Depre, C.; Havaux, X.; Wijns, W. Pathology of restenosis in saphenous bypass grafts after long-term stent implantation. Am. J. Clin. Pathol., 1998, 110(3), 378-384.
Lembo, N.J.; Black, A.J.; Roubin, G.S.; Wilentz, J.R.; Mufson, L.H.; Douglas, J.S., Jr; King, S.B., III Effect of pretreatment with aspirin versus aspirin plus dipyridamole on frequency and type of acute complications of percutaneous transluminal coronary angioplasty. Am. J. Cardiol., 1990, 65(7), 422-426.
Danchin, N.; Juilliere, Y.; Kettani, C.; Buffet, P.; Anconina, J.; Cuilliere, M.; Cherrier, F. Effect on early acute occlusion rate of adjunctive antithrombotic treatment with intravenously administered dipyridamole during percutaneous transluminal coronary angioplasty. Am. Heart J., 1994, 127(3), 494-498.
Heintzen, M.P.; Heidland, U.E.; Klimek, W.J.; Leschke, M.; Kelm, M.; Schwartzkopff, B.; Vester, E.G.; Michel, C.J.; Strauer, B.E. Intracoronary dipyridamole reduces the incidence of abrupt vessel closure following PTCA: A prospective randomised trial. Heart, 2000, 83(5), 551-556.
Strauer, B.E.; Heidland, U.E.; Heintzen, M.P.; Schwartzkopff, B. Pharmacologic myocardial protection during percutaneous transluminal coronary angioplasty by intracoronary application of dipyridamole: Impact on hemodynamic function and left ventricular performance. J. Am. Coll. Cardiol., 1996, 28(5), 1119-1126.
Heidland, U.E.; Heintzen, M.P.; Michel, C.J.; Strauer, B.E. Adjunctive intracoronary dipyridamole in the interventional treatment of small coronary arteries: A prospectively randomized trial. Am. Heart J., 2000, 139(6), 1039-1045.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [109 - 131]
Pages: 23
DOI: 10.2174/1871529X18666181011103719
Price: $58

Article Metrics

PDF: 62