Computational Approaches Towards Kinases as Attractive Targets for Anticancer Drug Discovery and Development

Author(s): Rabia Hameed , Afsar Khan* , Sehroon Khan , Shagufta Perveen .

Journal Name: Anti-Cancer Agents in Medicinal Chemistry

Volume 19 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: One of the major goals of computational chemists is to determine and develop the pathways for anticancer drug discovery and development. In recent past, high performance computing systems elicited the desired results with little or no side effects. The aim of the current review is to evaluate the role of computational chemistry in ascertaining kinases as attractive targets for anticancer drug discovery and development.

Methods: Research related to computational studies in the field of anticancer drug development is reviewed. Extensive literature on achievements of theorists in this regard has been compiled and presented with special emphasis on kinases being the attractive anticancer drug targets.

Results: Different approaches to facilitate anticancer drug discovery include determination of actual targets, multi-targeted drug discovery, ligand-protein inverse docking, virtual screening of drug like compounds, formation of di-nuclear analogs of drugs, drug specific nano-carrier design, kinetic and trapping studies in drug design, multi-target QSAR (Quantitative Structure Activity Relationship) model, targeted co-delivery of anticancer drug and siRNA, formation of stable inclusion complex, determination of mechanism of drug resistance, and designing drug like libraries for the prediction of drug-like compounds. Protein kinases have gained enough popularity as attractive targets for anticancer drugs. These kinases are responsible for uncontrolled and deregulated differentiation, proliferation, and cell signaling of the malignant cells which result in cancer.

Conclusion: Interest in developing drugs through computational methods is a growing trend, which saves equally the cost and time. Kinases are the most popular targets among the other for anticancer drugs which demand attention. 3D-QSAR modelling, molecular docking, and other computational approaches have not only identified the target-inhibitor binding interactions for better anticancer drug discovery but are also designing and predicting new inhibitors, which serve as lead for the synthetic preparation of drugs. In light of computational studies made so far in this field, the current review highlights the importance of kinases as attractive targets for anticancer drug discovery and development.

Keywords: Kinase, anticancer, QSAR, docking, computational, malignant cells.

[1]
Alberto, M.E.; Butera, V.; Russo, N. Which one among the Pt-containing anticancer drugs more easily forms monoadducts with G and A DNA bases? A comparative study among oxaliplatin, nedaplatin, and carboplatin. Inorg. Chem., 2011, 50, 6965-6971.
[2]
Ballone, P.; Marchi, M. A density functional study of a new family of anticancer drugs: Paclitaxel, taxotere, epothilone, and discodermolide. J. Phys. Chem. A, 1999, 103, 3097-3102.
[3]
Chen, Y.; Zhi, D. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins: Struct. Funct. Genet., 2001, 43, 217-226.
[4]
Deubel, D.V. The chemistry of dinuclear analogues of the anticancer drug cisplatin. A DFT/CDM study. J. Am. Chem. Soc., 2006, 128, 1654-1663.
[5]
Ghosh, S.; Nie, A.; An, J.; Huang, Z. Structure-based virtual screening of chemical libraries for drug discovery. Curr. Opin. Chem. Biol., 2006, 10, 194-202.
[6]
Vargiu, A.V.; Robertazzi, A.; Magistrato, A.; Ruggerone, P.; Carloni, P. The hydrolysis mechanism of the anticancer ruthenium drugs NAMI-A and ICR investigated by DFT- PCM calculations. J. Phys. Chem. B, 2008, 112, 4401-4409.
[7]
Gillet, J-P.; Calcagno, A.M.; Varma, S.; Marino, M.; Green, L.J.; Vora, M.I.; Patel, C.; Orina, J.N.; Eliseeva, T.A.; Singal, V. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc. Natl. Acad. Sci., 2011, 108, 18708-18713.
[8]
Hambley, T.W. The influence of structure on the activity and toxicity of Pt anti-cancer drugs. Coord. Chem. Rev., 1997, 166, 181-223.
[9]
Jenwitheesuk, E.; Horst, J.A.; Rivas, K.L.; Van Voorhis, W.C.; Samudrala, R. Novel paradigms for drug discovery: Computational multitarget screening. Trends Pharmacol. Sci., 2008, 29, 62-71.
[10]
Ma, X.H.; Shi, Z.; Tan, C.; Jiang, Y.; Go, M.L.; Low, B.C.; Chen, Y.Z. In silico approaches to multi-target drug discovery. Pharm. Res., 2010, 27, 739-749.
[11]
Spiegel, K.; Magistrato, A. Modeling anticancer drug–DNA interactions via mixed QM/MM molecular dynamics simulations. Org. Biomol. Chem., 2006, 4, 2507-2517.
[12]
Shi, C.; Guo, D.; Xiao, K.; Wang, X.; Wang, L.; Luo, J. A drug-specific nanocarrier design for efficient anticancer therapy. Nat. Commun., 2015, 6, 7449.
[13]
Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R.A.; Schwartz, B.; Simantov, R.; Kelley, S. Discovery and development of sorafenib: A multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov., 2006, 5, 835-844.
[14]
Takahara, P.M.; Frederick, C.A.; Lippard, S.J. Crystal structure of the anticancer drug cisplatin bound to duplex DNA. J. Am. Chem. Soc., 1996, 118, 12309-12321.
[15]
Rzeski, W.; Matysiak, J.; Kandefer-Szerszeń, M. Anticancer, neuroprotective activities and computational studies of 2-amino-1, 3, 4-thiadiazole based compound. Bioorg. Med. Chem., 2007, 15, 3201-3207.
[16]
Pereira, S.; Fernandes, P.A.; Ramos, M.J. Mechanism for ribonucleotide reductase inactivation by the anticancer drug gemcitabine. J. Comput. Chem., 2004, 25, 1286-1294.
[17]
Abadi, A.H.; Abou-Seri, S.M.; Abdel-Rahman, D.E.; Klein, C.; Lozach, O.; Meijer, L. Synthesis of 3-substituted-2-oxoindole analogues and their evaluation as kinase inhibitors, anticancer and antiangiogenic agents. Eur. J. Med. Chem., 2006, 41, 296-305.
[18]
Pavelka, M.; Lucas, M.F.A.; Russo, N. On the hydrolysis mechanism of the second‐generation anticancer drug carboplatin. Chem. Eur. J., 2007, 13, 10108-10116.
[19]
Nadas, J.; Sun, D. Anthracyclines as effective anticancer drugs. Expert Opin. Drug Discov., 2006, 1, 549-568.
[20]
Blencke, S.; Zech, B.; Engkvist, O.; Greff, Z.; Őrfi, L.; Horváth, Z.; Kéri, G.; Ullrich, A.; Daub, H. Characterization of a conserved structural determinant controlling protein kinase sensitivity to selective inhibitors. Chem. Biol., 2004, 11, 691-701.
[21]
Howard, S.; Berdini, V.; Boulstridge, J.A.; Carr, M.G.; Cross, D.M.; Curry, J.; Devine, L.A.; Early, T.R.; Fazal, L.; Gill, A.L. Fragment-based discovery of the pyrazol-4-yl urea (AT9283), a multitargeted kinase inhibitor with potent aurora kinase activity. J. Med. Chem., 2008, 52, 379-388.
[22]
Faivre, S.; Djelloul, S.; Raymond, E. New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. Semin. Oncol., 2006, 33(4), 407-420.
[23]
Bennasroune, A.; Gardin, A.; Aunis, D.; Crémel, G.; Hubert, P. Tyrosine kinase receptors as attractive targets of cancer therapy. Crit. Rev. Oncol. Hematol., 2004, 50, 23-38.
[24]
Degenhardt, Y.; Lampkin, T. Targeting Polo-like kinase in cancer therapy. Clin. Cancer Res., 2010, 16, 384-389.
[25]
Diaz-Padilla, I.; Siu, L.L.; Duran, I. Cyclin-dependent kinase inhibitors as potential targeted anticancer agents. Invest. New Drugs, 2009, 27, 586-594.
[26]
Fu, D.H.; Jiang, W.; Zheng, J.T.; Zhao, G.Y.; Li, Y.; Yi, H.; Li, Z.R.; Jiang, J.D.; Yang, K.Q.; Wang, Y. Jadomycin B, an Aurora-B kinase inhibitor discovered through virtual screening. Mol. Cancer Ther., 2008, 7, 2386-2393.
[27]
Hasinoff, B.B.; Wu, X.; Nitiss, J.L.; Kanagasabai, R.; Yalowich, J.C. The anticancer multi-kinase inhibitor dovitinib also targets topoisomerase I and topoisomerase II. Biochem. Pharmacol., 2012, 84, 1617-1626.
[28]
Kamath, S.; Buolamwini, J.K. Targeting EGFR and HER‐2 receptor tyrosine kinases for cancer drug discovery and development. Med. Res. Rev., 2006, 26, 569-594.
[29]
Liang, G.; Liu, Z.; Wu, J.; Cai, Y.; Li, X. Anticancer molecules targeting fibroblast growth factor receptors. Trends Pharmacol. Sci., 2012, 33, 531-541.
[30]
Lu, Z.; Xu, S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life, 2006, 58, 621-631.
[31]
Kwak, E.L.; Bang, Y-J.; Camidge, D.R.; Shaw, A.T.; Solomon, B.; Maki, R.G.; Ou, S-H.I.; Dezube, B.J.; Jänne, P.A.; Costa, D.B. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med., 2010, 363, 1693-1703.
[32]
Suárez-Castro, A.; Cortes-García, C.J.; Gamez-Montaño, R.; Chacón-García, L. Docking studies of 1, 5-disubtituted tetrazoles analogs of the anticancer drug imatinib as probable inhibitors of the ABL kinase and the T315I mutant kinase. Proceedings, 2017, 17(1), 1-21.
[33]
Kirkland, L.O.; McInnes, C. Non-ATP competitive protein kinase inhibitors as anti-tumor therapeutics. Biochem. Pharmacol., 2009, 77, 1561-1571.
[34]
Fabbro, D.; Ruetz, S.; Buchdunger, E.; Cowan-Jacob, S.W.; Fendrich, G.; Liebetanz, J.; Mestan, J.; O’Reilly, T.; Traxler, P.; Chaudhuri, B. Protein kinases as targets for anticancer agents: From inhibitors to useful drugs. Pharmacol. Ther., 2002, 93, 79-98.
[35]
Wilhelm, S.M.; Adnane, L.; Newell, P.; Villanueva, A.; Llovet, J.M.; Lynch, M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther., 2008, 7, 3129-3140.
[36]
Semenza, G.L. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci., 2012, 33, 207-214.
[37]
Lapenna, S.; Giordano, A. Cell cycle kinases as therapeutic targets for cancer. Nat. Rev. Drug Discov., 2009, 8, 547-566.
[38]
Strebhardt, K.; Ullrich, A. Targeting polo-like kinase 1 for cancer therapy. Nat. Rev. Cancer, 2006, 6, 384-389.
[39]
Pittoni, P.; Piconese, S.; Tripodo, C.; Colombo, M. Tumor-intrinsic and-extrinsic roles of c-Kit: Mast cells as the primary off-target of tyrosine kinase inhibitors. Oncogene, 2011, 30, 757-769.
[40]
Wang, D.; Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov., 2005, 4, 307-320.
[41]
Pogodin, P.; Lagunin, A.; Rudik, A.; Filimonov, D.; Druzhilovskiy, D. NIcklaus, M.; Poroikov, V. How to achieve better results using PASS-based virtual screening: Case study for kinase inhibitors. Front Chem., 2018, 6e00133
[42]
Lü, S.; Zheng, W.; Ji, L.; Luo, Q.; Hao, X.; Li, X.; Wang, F. Synthesis, characterization, screening and docking analysis of 4-anilinoquinazoline derivatives as tyrosine kinase inhibitors. Eur. J. Med. Chem., 2013, 61, 84-94.
[43]
Nandi, S.; Bagchi, M.C. 3D-QSAR and molecular docking studies of 4-anilinoquinazoline derivatives: A rational approach to anticancer drug design. Mol. Divers., 2010, 14, 27-38.
[44]
Vangrevelinghe, E.; Zimmermann, K.; Schoepfer, J.; Portmann, R.; Fabbro, D.; Furet, P. Discovery of a potent and selective protein kinase CK2 inhibitor by high-throughput docking. J. Med. Chem., 2003, 46, 2656-2662.
[45]
Amin, K.M.; Georgey, H.H.; Awadallah, F.M. EGFR tyrosine kinase targeted compounds: Synthesis, docking study, and in vitro antitumor activity of some new quinazoline and benzo [d] isothiazole derivatives. Med. Chem. Res., 2011, 20, 1042-1053.
[46]
El-Azab, A.S.; Al-Omar, M.A.; Alaa, A-M.; Abdel-Aziz, N.I.; Magda, A-A.; Aleisa, A.M.; Sayed-Ahmed, M.M.; Abdel-Hamide, S.G. Design, synthesis and biological evaluation of novel quinazoline derivatives as potential antitumor agents: Molecular docking study. Eur. J. Med. Chem., 2010, 45, 4188-4198.
[47]
Ali, S.; Heathcote, D.A.; Kroll, S.H.; Jogalekar, A.S.; Scheiper, B.; Patel, H.; Brackow, J.; Siwicka, A.; Fuchter, M.J.; Periyasamy, M. The development of a selective cyclin-dependent kinase inhibitor that shows antitumor activity. Cancer Res., 2009, 69, 6208-6215.
[48]
Aronov, A.M.; Tang, Q.; Martinez-Botella, G.; Bemis, G.W.; Cao, J.; Chen, G.; Ewing, N.P.; Ford, P.J.; Germann, U.A.; Green, J. Structure-guided design of potent and selective pyrimidylpyrrole inhibitors of Extracellular Signal-Regulated Kinase (ERK) using conformational control. J. Med. Chem., 2009, 52, 6362-6368.
[49]
El-Ella, D.A.A.; Ghorab, M.M.; Noaman, E.; Heiba, H.I.; Khalil, A.I. Molecular modeling study and synthesis of novel pyrrolo [2, 3-d] pyrimidines and pyrrolotriazolopyrimidines of expected antitumor and radioprotective activities. Bioorg. Med. Chem., 2008, 16, 2391-2402.
[50]
Folkes, A.J.; Ahmadi, K.; Alderton, W.K.; Alix, S.; Baker, S.J.; Box, G.; Chuckowree, I.S.; Clarke, P.A.; Depledge, P.; Eccles, S.A. The identification of 2-(1 H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno [3, 2-d] pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J. Med. Chem., 2008, 51, 5522-5532.
[51]
Park, H.; Jung, H-Y.; Mah, S.; Hong, S. Systematic computational design and identification of low picomolar inhibitors of aurora kinase A. J. Chem. Inf. Model., 2018, 58, 700-709.
[52]
Cherukupalli, S.; Chandrasekaran, B.; Kryštof, V.; Aleti, R.R.; Sayyad, N.; Merugu, S.R.; Kushwaha, N.D.; Karpoormath, R. Synthesis, anticancer evaluation, and molecular docking studies of some novel 4, 6-disubstituted pyrazolo [3, 4-d] pyrimidines as Cyclin-Dependent Kinase 2 (CDK2) inhibitors. Bioorg. Chem., 2018, 79, 46-59.
[53]
Bhuva, H.A.; Kini, S.G. Synthesis, anticancer activity and docking of some substituted benzothiazoles as tyrosine kinase inhibitors. J. Mol. Graph. Model., 2010, 29, 32-37.
[54]
Fousteris, M.A.; Papakyriakou, A.; Koutsourea, A.; Manioudaki, M.; Lampropoulou, E.; Papadimitriou, E.; Spyroulias, G.A.; Nikolaropoulos, S.S. Pyrrolo [2, 3-a] carbazoles as potential Cyclin Dependent Kinase 1 (CDK1) inhibitors. Synthesis, biological evaluation, and binding mode through docking simulations. J. Med. Chem., 2008, 51, 1048-1052.
[55]
Abdul-Hameed, M.D.M.; Hamza, A.; Liu, J.; Zhan, C.G. Combined 3D-QSAR modeling and molecular docking study on indolinone derivatives as inhibitors of 3-phosphoinositide-dependent protein kinase-1. J. Chem. Inf. Model., 2008, 48, 1760-1772.
[56]
Kamel, M.M.; Ali, H.I.; Anwar, M.M.; Mohamed, N.A.; Soliman, A.M. Synthesis, antitumor activity and molecular docking study of novel sulfonamide-Schiff’s bases, thiazolidinones, benzothiazinones and their C-nucleoside derivatives. Med. Res. Rev., 2010, 45, 572-580.
[57]
Kini, S.G.; Choudhary, S.; Mubeen, M. Synthesis, docking study and anticancer activity of coumarin substituted derivatives of benzothiazole. J. Comput. Methods Mol. Des., 2012, 2, 51-60.
[58]
Sugiyama, M.; Fujita, K.I.; Murayama, N.; Akiyama, Y.; Yamazaki, H.; Sasaki, Y. Sorafenib and sunitinib, two anticancer drugs, inhibit CYP3A4-mediated and activate CY3A5-mediated midazolam 1′-hydroxylation. Drug Metab. Dispos., 2011, 39, 757-762.
[59]
Phosrithong, N.; Ungwitayatorn, J. Molecular docking study on anticancer activity of plant-derived natural products. Med. Chem. Res., 2010, 19, 817-835.
[60]
Xie, L.; Evangelidis, T.; Xie, L.; Bourne, P.E. Drug discovery using chemical systems biology: Weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir. PLOS Comput. Biol., 2011, 7e1002037
[61]
Hou, D-X.; Kumamoto, T. Flavonoids as protein kinase inhibitors for cancer chemoprevention: Direct binding and molecular modeling. Antioxid. Redox Signal., 2010, 13, 691-719.
[62]
Fatima, G.; Loubna, A.; Wiame, L.; Azeddine, I. In silico inhibition studies of AXL Kinase by curcumin and its natural derivatives. J. Appl. Bioinforma. Comput. Biol., 2017, 6e1000142
[63]
Mohan, N.; Latha, M. In silico docking and interaction analysis of ellgic acid and curcumin derivatives against human cancer. Ind. J. Sci. Res., 2018, 18, 22-28.
[64]
Rampogu, S.; Son, M.; Baek, A.; Park, C.; Rana, R.M.; Zeb, A.; Parameswaran, S.; Lee, K.W. Targeting natural compounds against HER2 kinase domain as potential anticancer drugs applying pharmacophore based molecular modelling approaches. Comput. Biol. Chem., 2018, 74, 327-338.
[65]
Tanzadehpanah, H.; Mahaki, H.; Moghadam, N.H.; Salehzadeh, S.; Rajabi, O.; Najafi, R.; Amini, R.; Saidijam, M. Binding site identification of anticancer drug gefitinib to HSA and DNA in the presence of five different probes. J. Biomol. Struct. Dyn., 2019, 37(4), 823-836.
[66]
Bommu, U.D.; Konidala, K.K.; Pamanji, R.; Yeguvapalli, S. Computational screening, ensemble docking and pharmacophore analysis of potential gefitinib analogues against epidermal growth factor receptor. J. Recept. Signal Transduct., 2018, 38, 48-60.
[67]
Zhu, J.; Huang, J.W.; Tseng, P.H.; Yang, Y.T.; Fowble, J.; Shiau, C.W.; Shaw, Y.J.; Kulp, S.K.; Chen, C.S. From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res., 2004, 64, 4309-4318.
[68]
Yaguchi, S.I.; Fukui, Y.; Koshimizu, I.; Yoshimi, H.; Matsuno, T.; Gouda, H.; Hirono, S.; Yamazaki, K.; Yamori, T. Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J. Natl. Cancer Inst., 2006, 98, 545-556.
[69]
Broggini, M.; Coley, H.M.; Mongelli, N.; Pesenti, E.; Wyatt, M.D.; Hartley, J.A.; Dlncaici, M. DNA sequence-specific adenine alkylation by the novel antitumor drug tallimustine (FCE 24517), a benzoyl nitrogen mustard derivative of distamycin. Nucleic Acids Res., 1995, 23, 81-87.
[70]
Dancey, J.; Sausville, E.A. Issues and progress with protein kinase inhibitors for cancer treatment. Nat. Rev. Drug Discov., 2003, 2, 296-313.
[71]
Hancock, C.N.; Macias, A.; Lee, E.K.; Yu, S.Y.; MacKerell, A.D.; Shapiro, P. Identification of novel extracellular signal-regulated kinase docking domain inhibitors. J. Med. Chem., 2005, 48, 4586-4595.
[72]
Mahadevan, D.; Bearss, D.J.; Vankayalapati, H. Structure-based design of novel anti-cancer agents targeting aurora kinases. Curr. Med. Chem. Anticancer Agents, 2003, 3, 25-34.
[73]
Sánchez-Martínez, C.; Gelbert, L.M.; Lallena, M.J.; de Dios, A. Cyclin Dependent Kinase (CDK) inhibitors as anticancer drugs. Bioorg. Med. Chem. Lett., 2015, 25, 3420-3435.
[74]
Thaimattam, R.; Daga, P.R.; Banerjee, R.; Iqbal, J. 3D-QSAR studies on c-Src kinase inhibitors and docking analyses of a potent dual kinase inhibitor of c-Src and c-Abl kinases. Bioorg. Med. Chem., 2005, 13, 4704-4712.
[75]
Tuccinardi, T.; Botta, M.; Giordano, A.; Martinelli, A. Protein kinases: Docking and homology modeling reliability. J. Chem. Inf. Model., 2010, 50, 1432-1441.
[76]
Zahler, S.; Tietze, S.; Totzke, F.; Kubbutat, M.; Meijer, L.; Vollmar, A.M.; Apostolakis, J. Inverse in silico screening for identification of kinase inhibitor targets. Chem. Biol., 2007, 14, 1207-1214.
[77]
Asegbeloyin, J.N.; Oyeka, E.E.; Okpareke, O.; Ibezim, A. Synthesis, structure, computational and in-silico anticancer studies of N, N-diethyl-N′-palmitoylthiourea. J. Mol. Struct., 2018, 1153, 69-77.
[78]
Trejo-Soto, P.J.; Hernández-Campos, A.; Romo-Mancillas, A.; Medina-Franco, J.L.; Castillo, R. In search of AKT kinase inhibitors as anticancer agents: structure-based design, docking, and molecular dynamics studies of 2, 4, 6-trisubstituted pyridines. J. Biomol. Struct. Dyn., 2018, 36, 423-442.
[79]
Asati, V.; Bharti, S.K. Design, synthesis and molecular modeling studies of novel thiazolidine-2, 4-dione derivatives as potential anti-cancer agents. J. Mol. Struct., 2018, 1154, 406-417.
[80]
Prada-Gracia, D.; Huerta-Yepez, S.; Moreno-Vargas, L.M. Application of computational methods for anticancer drug discovery, design, and optimization. Bol. Med. Hosp. Infant. Mex., 2016, 73, 411-423.
[81]
Fruman, D.A.; O’brien, S. Cancer: A targeted treatment with off-target risks. Nature, 2017, 542, 424-425.
[82]
Havelka, A.M.; Berndtsson, M.; Olofsson, M.H.; Shoshan, M.C.; Linder, S. Mechanisms of action of DNA-damaging anticancer drugs in treatment of carcinomas: is acute apoptosis an “off-target” effect? Mini Rev. Med. Chem., 2007, 7, 1035-1039.
[83]
Abassi, Y.A.; Xi, B.; Zhang, W.; Ye, P.; Kirstein, S.L.; Gaylord, M.R.; Feinstein, S.C.; Wang, X.; Xu, X. Kinetic cell-based morphological screening: Prediction of mechanism of compound action and off-target effects. Chem. Biol., 2009, 16, 712-723.
[84]
MacDonald, M.L.; Lamerdin, J.; Owens, S.; Keon, B.H.; Bilter, G.K.; Shang, Z.; Huang, Z.; Yu, H.; Dias, J.; Minami, T. Identifying off-target effects and hidden phenotypes of drugs in human cells. Nat. Chem. Biol., 2006, 2, 329-337.
[85]
Dharap, S.S.; Wang, Y.; Chandna, P.; Khandare, J.J.; Qiu, B.; Gunaseelan, S.; Sinko, P.; Stein, S.; Farmanfarmaian, A.; Minko, T. Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. Proc. Natl. Acad. Sci. USA, 2005, 102, 12962-12967.
[86]
Albini, A.; Pennesi, G.; Donatelli, F.; Cammarota, R.; De Flora, S.; Noonan, D.M. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J. Natl. Cancer Inst., 2010, 102, 14-25.
[87]
Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol., 2013, 65, 157-170.
[88]
Danesi, R.; Fogli, S.; Gennari, A.; Conte, P.; Del Tacca, M. Pharmacokinetic-pharmacodynamic relationships of the anthracycline anticancer drugs. Clin. Pharmacokinet., 2002, 41, 431-444.
[89]
Hartmann, J.T.; Haap, M.; Kopp, H.G.; Lipp, H.P. Tyrosine kinase inhibitors-a review on pharmacology, metabolism and side effects. Curr. Drug Metab., 2009, 10, 470-481.
[90]
Wheate, N.J.; Walker, S.; Craig, G.E.; Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans., 2010, 39, 8113-8127.
[91]
Florea, A.M.; Büsselberg, D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers, 2011, 3, 1351-1371.
[92]
Yera, E.R.; Cleves, A.E.; Jain, A.N. Prediction of off-target drug effects through data fusion. In: Biocomputing 2014; , 2014; pp. World Scientific. 160-171.
[93]
Li, Y.Y.; An, J.; Jones, S.J. A computational approach to finding novel targets for existing drugs. PLOS Comput. Biol., 2011, 7e1002139
[94]
Fabian, M.A.; Biggs III, W.H.; Treiber, D.K.; Atteridge, C.E.; Azimioara, M.D.; Benedetti, M.G.; Carter, T.A.; Ciceri, P.; Edeen, P.T.; Floyd, M. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol., 2005, 23, 329-336.
[95]
Molina, D.M.; Jafari, R.; Ignatushchenko, M.; Seki, T.; Larsson, E.A.; Dan, C.; Sreekumar, L.; Cao, Y.; Nordlund, P. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science, 2013, 341, 84-87.
[96]
Campillos, M.; Kuhn, M.; Gavin, A.C.; Jensen, L.J.; Bork, P. Drug target identification using side-effect similarity. Science, 2008, 321, 263-266.
[97]
Keiser, M.J.; Setola, V.; Irwin, J.J.; Laggner, C.; Abbas, A.I.; Hufeisen, S.J.; Jensen, N.H.; Kuijer, M.B.; Matos, R.C.; Tran, T.B. Predicting new molecular targets for known drugs. Nature, 2009, 462, 175-182.
[98]
Van-Leeuwen, I.M.; Rao, B.; Sachweh, M.C.; Laín, S. An evaluation of small-molecule p53 activators as chemoprotectants ameliorating adverse effects of anticancer drugs in normal cells. Cell Cycle, 2012, 11, 1851-1861.
[99]
Komarov, P.G.; Komarova, E.A.; Kondratov, R.V.; Christov-Tselkov, K.; Coon, J.S.; Chernov, M.V.; Gudkov, A.V. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science, 1999, 285, 1733-1737.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 5
Year: 2019
Page: [592 - 598]
Pages: 7
DOI: 10.2174/1871520618666181009163014
Price: $58

Article Metrics

PDF: 17
HTML: 3