Solid Lipid Nanoparticles and Chitosan-coated Solid Lipid Nanoparticles as Promising Tool for Silybin Delivery: Formulation, Characterization, and In vitro Evaluation

Author(s): Vieri Piazzini, Lorenzo Cinci, Mario D'Ambrosio, Cristina Luceri, Anna Rita Bilia, Maria Camilla Bergonzi*.

Journal Name: Current Drug Delivery

Volume 16 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Silybin (Sb) is the major flavolignan of the extract of Silybum marianum. It is used for the treatment of various acute and chronic liver toxicities, inflammation, fibrosis and oxidative stress. Many studies indicate that Sb is also active against different carcinomas and it has been very recently proposed to be beneficial in type 2 diabetes patients. However, Sb is a low water soluble and low permeable compound.

Objective: In this study, Solid Lipid Nanoparticles (SLNs) were proposed to enhance the solubility and the intestinal absorption of Sb.

Methods: SLNs were made of stearic acid and Brij 78 and subsequently coated with chitosan. Formulations were physically and chemically characterized. Stability studies were also assessed. Sb in vitro release was evaluated in different pH media. In vitro permeability test with artificial membranes and Caco-2 cells were performed. Cellular uptake and mucoadhesion studies were conducted.

Results: Both nanoparticles were found to be stable. In vitro release indicated that SLNs may prevent burst release and gastric degradation of Sb. Higher extent of Sb permeation was observed for both nanoparticles in PAMPA and Caco-2 cell monolayer models. The results of the cellular uptake study suggested the involvement of active endocytic processes. Chitosan significantly improves mucoadhesion properties of nanoparticles.

Conclusions: Together with the excellent stability, strong mucoadhesive property, and slow release, chitosan coated SLNs demonstrated promising potential to enhance absorption of hydrophobic Sb after oral administration.

Keywords: Silybin (Sb), Solid lipid nanoparticles (SLNs), chitosan, in vitro permeation, Caco-2 up-take, PAMPA.

[1]
Hans, M.L.; Lowman, A.M. Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci., 2002, 6, 319-327.
[2]
Jabr-Milane, L.S.; van Vlerken, L.E.; Yadav, S.; Amiji, M.M. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat. Rev., 2008, 34, 592-602.
[3]
Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5, 305-313.
[4]
Mukherjee, B.; Mondal, L.; Chakraborty, S.; Paul, P.; Choudhury, A.; Bhattacharya, S.; Hossain, C.M. Size dependent variations of phospholipid based vesicular drug carriers in systemic drug activity. Curr. Pharm. Biotechnol., 2015, 16, 380-391.
[5]
Zununi Vahed, S.; Salehi, R.; Davaran, S.; Sharifi, S. Liposome-based drug co-delivery systems in cancer cells. Mater. Sci. Eng. C, 2017, 71, 1327-1341.
[6]
Barile, L.; Vassalli, G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol. Ther., 2017, 17, 463-478.
[7]
Komiyama, M.; Yoshimoto, K.; Sisido, M.; Ariga, K. Chemistry can make strict and fuzzy controls for bio-systems: DNA nanoarchitectonics and cell-macromolecular nanoarchitectonics. Bull. Chem. Soc. Jpn., 2017, 90, 967-1004.
[8]
Bilia, A.R.; Guccione, C.; Isacchi, B.; Righeschi, C.; Firenzuoli, F.; Bergonzi, M.C. Essential oils loaded in nanosystems: A developing strategy for a successful therapeutic approach. Evid. Based Complement. Alternat. Med., 2014, 2014, 651593.
[9]
Muller, R.H.; Ruhl, D.; Runge, S. Biodegradation of solid lipid nanoparticles as a function of lipase incubation time. Int. J. Pharm., 1996, 144, 115-121.
[10]
Devi, K.V.; Nimisha, J.; Valli, K.S. Importance of novel drug delivery systems in herbal medicines. Pharmacogn. Rev., 2010, 4, 27-31.
[11]
Li, W.; Yi, S.; Wang, Z.; Chen, S.; Xin, S.; Xie, J.; Zhao, C. Self-nanoemulsifying drug delivery system of persimmon leaf extract: Optimization and bioavailability studies. Int. J. Pharm., 2011, 420, 161-171.
[12]
Piazzini, V.; Bigagli, E.; Luceri, C.; Bilia, A.R.; Bergonzi, M.C. Enhanced solubility and permeability of Salicis cortex extract by formulating as microemulsion. Planta Med., 2018 accepted DOI.
[http://dx.doi.org/10.1055/a-0611-6203]
[13]
Graverini, G.; Piazzini, V.; Landucci, E.; Casamenti, F.; Pantano, D.; Pellegrini-Giampietro, D.; Bilia, A.R.; Bergonzi, M.C. Solid lipid nanoparticles for delivery of andrographolide across the blood-brain barrier: In vitro and in vivo evaluation. Colloids Surf. B Biointerfaces, 2018, 161, 302-313.
[14]
Piazzini, V.; Monteforte, E.; Luceri, C.; Bigagli, E.; Bilia, A.R.; Bergonzi, M.C. Nanoemulsion for improving oral bioavailability of Vitex agnus castus extract: Formulation and in vitro evaluation using PAMPA and Caco-2 approaches. Drug Deliv., 2017, 24, 380-390.
[15]
Bilia, A.R.; Piazzini, V.; Guccione, C.; Risaliti, L.; Asprea, M.; Capecchi, G.; Bergonzi, M.C. Improving on nature: The role of nanomedicine in the development of clinical natural drugs. Planta Med., 2017, 83, 366-381.
[16]
Bilia, A.R.; Isacchi, B.; Righeschi, C.; Guccione, C.; Bergonzi, M.C. Flavonoids loaded in nanocarriers: An opportunity to increase oral bioavailability and bioefficacy. Food Nutr. Sci., 2014, 5, 1212-1227.
[17]
Hussain, N.; Jaitley, V.; Florence, A.T. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv. Drug Deliv. Rev., 2001, 50, 107-142.
[18]
Righeschi, C.; Bergonzi, M.C.; Isacchi, B.; Bazzicalupi, C.; Gratteri, P.; Bilia, A.R. Enhanced curcumin permeability by SLN formulation: The PAMPA approach. LWT - Food Sci. Techn., 2016, 66, 475-483.
[19]
Zi, X.; Agarwal, R. Silibinin decreases prostate- specific antigen with cell growth inhibition via G1 arrest, leading to differentiation of prostate carcinoma cells: Implications for prostate cancer intervention. PNAS, 1999, 96, 7490-7495.
[20]
Saliou, C.; Rihn, B.; Cillard, J.; Okamoto, T.; Packer, L. Selective inhibition of NF-kappa-B activation by the flavonoid hepatoprotector silymarin in HepG2: Evidence for different activating pathways. FEBS Lett., 1998, 440, 8-12.
[21]
Velussi, M.; Cernigoi, A.M.; De Monte, A.; Dapas, F.; Caffau, C. Longterm (12 months) treatment with an anti-oxidant drug (silymarin) is effective on hyperinsulinemia, exogenous insulin need and malondialdehyde levels in cirrhotic diabetic patients. J. Hepatol., 1997, 26, 871-879.
[22]
Lirussi, F.; Beccarello, A.; Zanette, G.; De Monte, A.; Donadon, V. Silybin-beta-cyclodextrin in the treatment of patients with diabetes mellitus and alcoholic liver disease. Efficacy study of a new preparation of an anti-oxidant agent. Diabetes Nutr. Metab., 2002, 15, 222-231.
[23]
Huseini, H.F.; Larijani, B.; Heshmat, R.; Fakhrzadeh, H.; Radjabipour, B. The efficacy of Silybum marianum (L.) Gaertn. (Silymarin) in the treatment of type II diabetes: A randomized, double-blind, placebo-controlled, clinical trial. Phytother. Res., 2006, 20, 1036-1039.
[24]
Zhang, J.Q.; Liu, J.; Li, X.L.; Jasti, B.R. Preparation and characterization of solid lipid nanoparticles containing silibinin. Drug Deliv., 2007, 14, 381-387.
[25]
Kaur, I.P.; Bhandari, R.; Bhandari, S.; Kakkar, V. Potential of solid lipid nanoparticles in brain targeting. J. Control. Release, 2008, 127, 97-109.
[26]
Fonte, P.; Nogueira, T.; Gehm, C.; Ferreira, D.; Sarmento, B. Chitosan-coated solid lipid nanoparticles enhance the oral absorption of insulin. Drug Deliv. Transl. Res., 2011, 1, 299-308.
[27]
Sogias, I.; Williams, A.; Khutoryanskiy, V. Why is chitosan mucoadhesive? Biomacromolecules, 2008, 9, 1837-1842.
[28]
Bugnicourt, L.; Ladaviere, C. A close collaboration of chitosan with lipid colloidal carriers for drug delivery applications. J. Control. Release, 2017, 256, 121-140.
[29]
Shahgaldian, P.; Da Silva, E.; Coleman, A.W.; Rather, B.; Zaworotko, M.J. Para-acyl-calix-arene based solid lipid nanoparticles (SLNs): A detailed study of preparation and stability parameters. Int. J. Pharm., 2003, 253, 23-38.
[30]
Sandri, G.; Motta, S.; Bonferoni, M.C.; Brocca, P.; Rossi, S.; Ferrari, F.; Rondelli, V.; Cantù, L.; Caramella, C.; Del Favero, E. Chitosan-coupled solid lipid nanoparticles: Tuning nanostructure and mucoadhesion. Eur. J. Pharm. Biopharm., 2017, 110, 13-18.
[31]
Bergonzi, M.C.; Hamdouch, R.; Mazzacuva, F.; Isacchi, B. Bilia. A.R. Optimization, characterization and in vitro evaluation of curcumin microemulsions. LWT-Food Sci. Techn, 2014, 59, 148-155.
[32]
Piazzini, V.; Rosseti, C.; Bigagli, E.; Luceri, C.; Bilia, A.R.; Bergonzi, M.C. Prediction of permeation and cellular transport of Silybum marianum extract formulated in nanoemulsion by using PAMPA and Caco-2 cell models. Planta Med., 2017, 83, 1184-1193.
[33]
Iacomino, G.O.; Fierro, S.; D’Auria, G. Picariello, P.; Ferranti, C.; Liguori, F.; Addeo, G.; Mamone. Structural analysis and Caco-2 cell permeability of the celiac-toxic A-gliadin peptide 31-55. J. Agric. Food Chem., 2013, 61, 1088-1096.
[34]
Bonferoni, M.C.; Sandri, G.; Ferrari, F.; Rossi, S.; Larghi, V.; Zambito, Y.; Caramella, C. Comparison of different in vitro and ex vivo methods to evaluate mucoadhesion of glycol-palmitoyl chitosan micelles. J. Drug Deliv. Sci. Technol., 2010, 20, 419-424.
[35]
Vieira, A.C.C.; Chaves, L.L.; Pinheiro, S.; Pinto, S.; Pinheiro, M.; Costa Lima, S.; Ferreira, D.; Sarmento, B.; Reis, S. Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. Int. J. Pharm., 2018, 536, 478-485.
[36]
Florence, A.T. Issues in oral nanoparticle drug carrier uptake and targeting. J. Drug Target., 2004, 12, 65-70.
[37]
Venishetty, V.K.; Chede, R.; Komuravelli, R.; Adepu, L.; Sistla, R.; Diwan, P.V. Design and evaluation of polymer coated carvedilol loaded solid lipid nanoparticles to improve the oral bioavailability: A novel strategy to avoid intraduodenal administration. Colloids Surf. B Biointerfaces, 2012, 95, 1-9.
[38]
Xu, P.; Yin, Q.; Shen, J.; Chen, L.; Yu, H.; Zhang, Z.; Li, Y. Synergistic inhibition of breast cancer metastasis by silibinin-loaded lipid nanoparticles containing TPGS. Int. J. Pharm., 2013, 454, 21-30.
[39]
Dharmala, K.; Yoo, J.W.; Lee, C.H. Development of chitosan-SLN microparticles for chemotherapy: In vitro approach through efflux-transporter modulation. J. Control. Release, 2008, 131, 190-197.
[40]
Luo, Y.; Teng, Z.; Li, Y.; Wang, Q. Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr. Polym., 2015, 122, 221-229.
[41]
Kansy, M.; Senner, F.; Gubernator, K. Physicochemical high throughput screening: Parallel artificial membrane permeation assay in the description of passive absorption processes. J. Med. Chem., 1998, 41, 1007-1010.
[42]
Petit, C.; Bujard, A.; Skalicka-Wozniak, K.; Cretton, S.; Houriet, J.; Christen, P.; Carrupt, P.A. Wolfender, J.L. Prediction of the passive intestinal absorption of medicinal plant extract constituents with the Parallel Artificial Membrane Permeability Assay (PAMPA). Planta Med., 2016, 82, 424-431.
[43]
Palmgrén, J.J.; Mönkkönen, J.; Korjamo, T.; Hassinen, A.; Auriola, S. Drug adsorption to plastic containers and retention of drugs in cultured cells under in vitro conditions. Eur. J. Pharm. Biopharm., 2006, 64, 369-378.
[44]
Heikkinen, A.T.; Mönkkönen, J.; Korjamo, T. Kinetics of cellular retention during Caco-2 permeation experiments: Role of lysosomal sequestration and impact on permeability estimates. J. Pharma. Exp. Ther., 2009, 328, 882-892.
[45]
Broeders, J.J.; van Eijkeren, J.C.; Blaauboer, B.J.; Hermens, J.L. Transport of chlorpromazine in the Caco-2 cell permeability assay: A kinetic study. Chem. Res. Toxicol., 2012, 25, 1442-1451.
[46]
Hubatsch, I.; Ragnarsson, E.G.; Artursson, P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat. Protoc., 2007, 2, 2111-2119.
[47]
Rossi, S.; Ferrari, F.; Bonferoni, M.C.; Caramella, C. Chitosan-coupled solid lipid nanoparticles: Tuning nanostructure and Mucoadhesion. Eur. J. Pharm. Sci., 2000, 10, 251-257.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 16
ISSUE: 2
Year: 2019
Page: [142 - 152]
Pages: 11
DOI: 10.2174/1567201815666181008153602

Article Metrics

PDF: 26
HTML: 6
PRC: 1