Biopolymer Substrates in Buccal Drug Delivery: Current Status and Future Trend

Author(s): Bo Sun, Weijun Wang, Zhibin He, Min Zhang, Fangong Kong, Mohini Sain*.

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 10 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Background: This paper provides a critical review of biopolymer-based substrates, especially the cellulose derivatives, for their application in buccal drug delivery. Drug delivery to the buccal mucous has the benefits of immobile muscle, abundant vascularization and rapid recovery, but not all the drugs can be administered through the buccal mucosa (e.g., macromolecular drugs), due to the low bioavailability caused by their large molecular size. This shortfall inspired the rapid development of drug-compounding technologies and the corresponding usage of biopolymer substrates.

Methods: Cellulose derivatives have been extensively developed for drug manufacturing to facilitate its delivery. We engaged in structured research of cellulose-based drug compounding technologies. We summarized the characteristic cellulose derivatives which have been used as the biocompatible substrates in buccal delivery systems. The discussion of potential use of the rapidly-developed nanocellulose (NC) is also notable in this paper.

Results: Seventy-eight papers were referenced in this perspective paper with the majority (sixty-five) published later than 2010. Forty-seven papers defined the buccal drug delivery systems and their substrates. Fifteen papers outlined the properties and applications of cellulose derivatives. Nanocellulose was introduced as a leading edge of nanomaterial with sixteen papers highlighted its adaptability in drug compounding for buccal delivery.

Conclusion: The findings of this perspective paper proposed the potential use of cellulose derivatives, the typical kind of biopolymers, in the buccal drug delivery system for promoting the bioavailability of macromolecular drugs. Nanocellulose (NC) in particular was proposed as an innovative bio-binder/carrier for the controlled-release of drugs in buccal system.

Keywords: Buccal drug delivery, biopolymer, drug compounding technologies, cellulose derivatives, nanocellulose (NC).

[1]
Davies, E.W.; Llewellyn, S.; Beaudet, A.; Kosmas, C.E.; Gin-Sing, W.; Doll, H.A. Elicitation of health state utilities associated with the mode of administration of drugs acting on the prostacyclin pathway in pulmonary arterial hypertension. Patient Prefer. Adherence, 2018, 12, 1079-1088.
[http://dx.doi.org/10.2147/PPA.S160662] [PMID: 29950821]
[2]
Thwala, L.N.; Préat, V.; Csaba, N.S. Emerging delivery platforms for mucosal administration of biopharmaceuticals: a critical update on nasal, pulmonary and oral routes. Expert Opin. Drug Deliv., 2017, 14(1), 23-36.
[http://dx.doi.org/10.1080/17425247.2016.1206074] [PMID: 27351299]
[3]
Kaestli, L.Z.; Wasilewski-Rasca, A.F.; Bonnabry, P.; Vogt-Ferrier, N. Use of transdermal drug formulations in the elderly. Drugs Aging, 2008, 25(4), 269-280.
[http://dx.doi.org/10.2165/00002512-200825040-00001] [PMID: 18361538]
[4]
Boateng, J. Drug delivery innovations to address global health challenges for pediatric and geriatric populations (through improvements in patient compliance). J. Pharm. Sci., 2017, 106(11), 3188-3198.
[http://dx.doi.org/10.1016/j.xphs.2017.07.009] [PMID: 28734784]
[5]
Berlin, J.; May-McCarver, D.; Notterman, D.; Ward, R.; Weismann, D.; Wilson, G.; Wilson, J.; Bennett, D.; Hoskins, I.; Kaufman, P. American Academy of Pediatrics. Committee on Drugs. Alternative routes of drug administration--advantages and disadvantages (subject review). Pediatrics, 1997, 100(1), 143-152.
[http://dx.doi.org/10.1542/peds.100.1.143] [PMID: 9229706]
[6]
Zetner, D.; Andersen, L.P.; Rosenberg, J. Pharmacokinetics of alternative administration routes of melatonin: a systematic review. Drug Res. (Stuttg.), 2016, 66(4), 169-173.
[http://dx.doi.org/10.1055/s-0035-1565083] [PMID: 26514093]
[7]
Shah, V.; Bellantone, R.A.; Taft, D.R. Evaluating the potential for delivery of irinotecan via the buccal route: physicochemical characterization and in vitro permeation assessment across porcine buccal mucosa. AAPS PharmSciTech, 2017, 18(3), 867-874.
[http://dx.doi.org/10.1208/s12249-016-0578-z] [PMID: 27363416]
[8]
Zeng, N.; Seguin, J.; Destruel, P.L.; Dumortier, G.; Maury, M.; Dhotel, H.; Bessodes, M.; Scherman, D.; Mignet, N.; Boudy, V. Cyanine derivative as a suitable marker for thermosensitive in situ gelling delivery systems: In vitro and in vivo validation of a sustained buccal drug delivery. Int. J. Pharm., 2017, 534(1-2), 128-135.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.073] [PMID: 28982548]
[9]
Xu, J.; Strandman, S.; Zhu, J.X.; Barralet, J.; Cerruti, M. Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterials, 2015, 37, 395-404.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.024] [PMID: 25453967]
[10]
Gilhotra, R.M.; Ikram, M.; Srivastava, S.; Gilhotra, N. A clinical perspective on mucoadhesive buccal drug delivery systems. J. Biomed. Res., 2014, 28(2), 81-97.
[PMID: 24683406]
[11]
Bhowmik, D.; Kumar, K.S.; Deb, L. Buccal drug delivery system-a novel drug delivery system. Research Journal of Science and Technology, 2016, 8(2), 90.
[http://dx.doi.org/10.5958/2349-2988.2016.00012.7]
[12]
Roque, L.; Castro, P.; Molpeceres, J.; Viana, A.S.; Roberto, A.; Reis, C.; Rijo, P.; Tho, I.; Sarmento, B.; Reis, C. Bioadhesive polymeric nanoparticles as strategy to improve the treatment of yeast infections in oral cavity: in-vitro and ex-vivo studies. Eur. Polym. J., 2018, 104, 19-31.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.04.032]
[13]
Shrivastava, G.; Singh, P.K.; Rizvi, R.F.; Singh, S.K. A novel approach for buccal drug delivery system-fast dissolving film. World J. Pharm. Pharm. Sci., 2015, 4(10), 1744-1760.
[14]
Laffleur, F. Mucoadhesive polymers for buccal drug delivery. Drug Dev. Ind. Pharm., 2014, 40(5), 591-598.
[http://dx.doi.org/10.3109/03639045.2014.892959] [PMID: 24576266]
[15]
Wang, Z.; Chow, M.S. Overview and appraisal of the current concept and technologies for improvement of sublingual drug delivery. Ther. Deliv., 2014, 5(7), 807-816.
[http://dx.doi.org/10.4155/tde.14.50] [PMID: 25287387]
[16]
Harrop, E.; Jamieson, L.; Choy, T.H.; Ho, W.H.P.; Wong, I.C.K. Barriers to the use of buccal and intranasal fentanyl for breakthrough pain in paediatric palliative care: an exploratory survey. BMJ Support. Palliat. Care, 2018, 8(3), 355-356.
[http://dx.doi.org/10.1136/bmjspcare-2017-001413] [PMID: 28801316]
[17]
James, R.; Manoukian, O.S.; Kumbar, S.G. Poly(lactic acid) for delivery of bioactive macromolecules. Adv. Drug Deliv. Rev., 2016, 107, 277-288.
[http://dx.doi.org/10.1016/j.addr.2016.06.009] [PMID: 27349593]
[18]
Morales, J.O.; McConville, J.T. Novel strategies for the buccal delivery of macromolecules. Drug Dev. Ind. Pharm., 2014, 40(5), 579-590.
[http://dx.doi.org/10.3109/03639045.2014.892960] [PMID: 24611816]
[19]
Bitencourt-Ferreira, G.; de Azevedo, W.F. Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes. Biophys. Chem., 2018, 240, 63-69.
[http://dx.doi.org/10.1016/j.bpc.2018.05.010] [PMID: 29906639]
[20]
de Ávila, M.B.; de Azevedo, W.F., Jr Development of machine learning models to predict inhibition of 3-dehydroquinate dehydratase. Chem. Biol. Drug Des., 2018, 92(2), 1468-1474.
[http://dx.doi.org/10.1111/cbdd.13312] [PMID: 29676519]
[21]
Levin, N.M.B.; Pintro, V.O.; Bitencourt-Ferreira, G.; de Mattos, B.B.; de Castro Silvério, A.; de Azevedo, W.F., Jr Development of CDK-targeted scoring functions for prediction of binding affinity. Biophys. Chem., 2018, 235, 1-8.
[http://dx.doi.org/10.1016/j.bpc.2018.01.004] [PMID: 29407904]
[22]
Xavier, M.M.; Heck, G.S.; Avila, M.B.; Levin, N.M.B.; Pintro, V.O.; Carvalho, N.L.; Azevedo, W.F. De Azevedo.Jr., W.F. SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions. Comb. Chem. High Throughput Screen., 2016, 19(10), 801-812.
[http://dx.doi.org/10.2174/1386207319666160927111347] [PMID: 27686428]
[23]
Russo, S.; De Azevedo, W.F. Jr. Advances in the understanding of the cannabinoid receptor 1-focusing on the inverse agonists interactions. Curr. Med. Chem., 2019, 26(10), 1908-1919.
[http://dx.doi.org/10.2174/0929867325666180417165247] [PMID: 29667549]
[24]
Das, S.; Bhaumik, A. Protein & peptide drug delivery: A fundamental novel approach and future perspective. World J. Pharm. Pharm. Sci., 2016, 5(9), 763-776.
[25]
Babu, V.R.; Patel, P.; Mundargi, R.C.; Rangaswamy, V.; Aminabhavi, T.M. Developments in polymeric devices for oral insulin delivery. Expert Opin. Drug Deliv., 2008, 5(4), 403-415.
[http://dx.doi.org/10.1517/17425247.5.4.403] [PMID: 18426382]
[26]
Çelik, B. Risperidone mucoadhesive buccal tablets: formulation design, optimization and evaluation. Drug Des. Devel. Ther., 2017, 11, 3355-3365.
[http://dx.doi.org/10.2147/DDDT.S150774] [PMID: 29225461]
[27]
das Neves, J.; Sarmento, B. Technological strategies to overcome the mucus barrier in mucosal drug delivery. Adv. Drug Deliv. Rev., 2018, 124, 1-2.
[http://dx.doi.org/10.1016/j.addr.2018.01.014] [PMID: 29429608]
[28]
Liang, A.C.; Chen, L.L.H. Fast-dissolving intraoral drug delivery systems. Expert Opin. Ther. Pat., 2001, 11(6), 981-986.
[http://dx.doi.org/10.1517/13543776.11.6.981]
[29]
Nguyen, T.H.; Hanley, T.; Porter, C.J.; Boyd, B.J. Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. J. Control. Release, 2011, 153(2), 180-186.
[http://dx.doi.org/10.1016/j.jconrel.2011.03.033] [PMID: 21497623]
[30]
Dekina, S.; Romanovska, I.; Ovsepyan, A.; Tkach, V.; Muratov, E. Gelatin/carboxymethyl cellulose mucoadhesive films with lysozyme: Development and characterization. Carbohydr. Polym., 2016, 147, 208-215.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.006] [PMID: 27178926]
[31]
Boateng, J.; Okeke, O.; Khan, S. Polysaccharide based formulations for mucosal drug delivery: A review. Curr. Pharm. Des., 2015, 21(33), 4798-4821.
[http://dx.doi.org/10.2174/1381612821666150820100653] [PMID: 26290211]
[32]
Ayensu, I.; Mitchell, J.C.; Boateng, J.S. Development and physico-mechanical characterisation of lyophilised chitosan wafers as potential protein drug delivery systems via the buccal mucosa. Colloids Surf. B Biointerfaces, 2012, 91, 258-265.
[http://dx.doi.org/10.1016/j.colsurfb.2011.11.004] [PMID: 22130527]
[33]
Kianfar, F.; Antonijevic, M.; Chowdhry, B.; Boateng, J.S. Lyophilized wafers comprising carrageenan and pluronic acid for buccal drug delivery using model soluble and insoluble drugs. Colloids Surf. B Biointerfaces, 2013, 103, 99-106.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.006] [PMID: 23201725]
[34]
Ayensu, I.; Mitchell, J.C.; Boateng, J.S. In vitro characterisation of chitosan based xerogels for potential buccal delivery of proteins. Carbohydr. Polym., 2012, 89(3), 935-941.
[http://dx.doi.org/10.1016/j.carbpol.2012.04.039] [PMID: 24750883]
[35]
Kianfar, F.; Ayensu, I.; Boateng, J.S. Development and physico-mechanical characterization of carrageenan and poloxamer-based lyophilized matrix as a potential buccal drug delivery system. Drug Dev. Ind. Pharm., 2014, 40(3), 361-369.
[http://dx.doi.org/10.3109/03639045.2012.762655] [PMID: 23600651]
[36]
Wu, Z.; Joo, H.; Lee, T.G.; Lee, K. Controlled release of lidocaine hydrochloride from the surfactant-doped hybrid xerogels. J. Control. Release, 2005, 104(3), 497-505.
[http://dx.doi.org/10.1016/j.jconrel.2005.02.023] [PMID: 15911049]
[37]
Fox, C.B.; Kim, J.; Le, L.V.; Nemeth, C.L.; Chirra, H.D.; Desai, T.A. Micro/nanofabricated platforms for oral drug delivery. J. Control. Release, 2015, 219, 431-444.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.033] [PMID: 26244713]
[38]
Zhang, H.; Zhu, Y.; Shen, Y. Microfluidics for cancer nanomedicine: from fabrication to evaluation. Small, 2018, 14(28), e1800360
[http://dx.doi.org/10.1002/smll.201800360] [PMID: 29806174]
[39]
Barata, D.; van Blitterswijk, C.; Habibovic, P. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics. Acta Biomater., 2016, 34, 1-20.
[http://dx.doi.org/10.1016/j.actbio.2015.09.009] [PMID: 26361719]
[40]
de Azevedo, W.F. Jr Opinion paper: targeting multiple cyclin-dependent kinases (CDKs): A new strategy for molecular docking studies. Curr. Drug Targets, 2016, 17(1), 2-2.
[http://dx.doi.org/10.2174/138945011701151217100907] [PMID: 26687602]
[41]
Vianna, C.P.; de Azevedo, W.F., Jr Identification of new potential Mycobacterium tuberculosis shikimate kinase inhibitors through molecular docking simulations. J. Mol. Model., 2012, 18(2), 755-764.
[http://dx.doi.org/10.1007/s00894-011-1113-5] [PMID: 21594693]
[42]
Heberlé, G.; de Azevedo, W.F., Jr Bio-inspired algorithms applied to molecular docking simulations. Curr. Med. Chem., 2011, 18(9), 1339-1352.
[http://dx.doi.org/10.2174/092986711795029573] [PMID: 21366530]
[43]
Bobade, N.N.; Atram, S.C.; Wankhade, V.P.; Pande, D.S.; Tapar, D.K. A review on buccal drug delivery system. Int. J. Pharm. Pharm. Sci., 2013, 3(1), 35-40.
[44]
Fonseca-Santos, B.; Chorilli, M. An overview of polymeric dosage forms in buccal drug delivery: State of art, design of formulations and their in vivo performance evaluation. Mater. Sci. Eng. C, 2018, 86, 129-143.
[http://dx.doi.org/10.1016/j.msec.2017.12.022] [PMID: 29525088]
[45]
Verma, S.; Kaul, M.; Rawat, A.; Saini, S. An overview on buccal drug delivery system. Int. J. Pharm. Sci. Res., 2011, 2(6), 1303.
[46]
Shojaei, A.H. Buccal mucosa as a route for systemic drug delivery: a review. J. Pharm. Pharm. Sci., 1998, 1(1), 15-30.
[PMID: 10942969]
[47]
Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. Engl., 2005, 44(22), 3358-3393.
[http://dx.doi.org/10.1002/anie.200460587] [PMID: 15861454]
[48]
Deng, H.; Wang, C.; Xiao, H.; Khan, A. Preparation and chemical characterization of banana/orange composite wine. J. Bioresour. Bioprod., 2016, 1(2)
[http://dx.doi.org/10.21967/jbb.v1i2.45]
[49]
Kulasinski, K.; Keten, S.; Churakov, S.V.; Derome, D.; Carmeliet, J. A comparative molecular dynamics study of crystalline, paracrystalline and amorphous states of cellulose. Cellulose, 2014, 21(3), 1103-1116.
[http://dx.doi.org/10.1007/s10570-014-0213-7]
[50]
Roy, D.; Semsarilar, M.; Guthrie, J.T.; Perrier, S. Cellulose modification by polymer grafting: a review. Chem. Soc. Rev., 2009, 38(7), 2046-2064.
[http://dx.doi.org/10.1039/b808639g] [PMID: 19551181]
[51]
Dumanli, A.G. Nanocellulose and its composites for biomedical applications. Curr. Med. Chem., 2017, 24(5), 512-528.
[http://dx.doi.org/10.2174/0929867323666161014124008] [PMID: 27758719]
[52]
de Oliveira Barud, H.G.; da Silva, R.R.; da Silva Barud, H.; Tercjak, A.; Gutierrez, J.; Lustri, W.R.; de Oliveira, O.B.; Ribeiro, S.J.L. A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydr. Polym., 2016, 153, 406-420.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.059] [PMID: 27561512]
[53]
Rajwade, J.M.; Paknikar, K.M.; Kumbhar, J.V. Applications of bacterial cellulose and its composites in biomedicine. Appl. Microbiol. Biotechnol., 2015, 99(6), 2491-2511.
[http://dx.doi.org/10.1007/s00253-015-6426-3] [PMID: 25666681]
[54]
An, S.J.; Lee, S.H.; Huh, J.B.; Jeong, S.I.; Park, J.S.; Gwon, H.J.; Kang, E.S.; Jeong, C.M.; Lim, Y.M. Preparation and characterization of resorbable bacterial cellulose membranes treated by electron beam irradiation for guided bone regeneration. Int. J. Mol. Sci., 2017, 18(11), 2236.
[http://dx.doi.org/10.3390/ijms18112236] [PMID: 29068426]
[55]
Lee, S.H.; An, S.J.; Lim, Y.M.; Huh, J.B. The efficacy of electron beam irradiated bacterial cellulose membranes as compared with collagen membranes on guided bone regeneration in peri-implant bone defects. Materials (Basel), 2017, 10(9), 1018.
[http://dx.doi.org/10.3390/ma10091018] [PMID: 28862689]
[56]
Vuoti, S.; Laatikainen, E.; Heikkinen, H.; Johansson, L.S.; Saharinen, E.; Retulainen, E. Chemical modification of cellulosic fibers for better convertibility in packaging applications. Carbohydr. Polym., 2013, 96(2), 549-559.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.053] [PMID: 23768600]
[57]
Mezdour, S.; Lepine, A.; Erazo-Majewicz, P.; Ducept, F.; Michon, C. Oil/water surface rheological properties of hydroxypropyl cellulose (HPC) alone and mixed with lecithin: Contribution to emulsion stability. Colloids Surf. A Physicochem. Eng. Asp., 2008, 331(1-2), 76-83.
[http://dx.doi.org/10.1016/j.colsurfa.2008.07.023]
[58]
Sun, B.; Zhang, M.; Shen, J.; He, Z.; Fatehi, P.; Ni, Y. Applications of cellulose-based materials in sustained drug delivery systems. Curr. Med. Chem., 2017, 24, 1-17.
[http://dx.doi.org/10.2174/0929867324666170705143308] [PMID: 28685683]
[59]
Anlar, S.; Capan, Y.; Güven, O.; Göğüş, A.; Dalkara, T.; Hincal, A.A. Formulation and in vitro-in vivo evaluation of buccoadhesive morphine sulfate tablets. Pharm. Res., 1994, 11(2), 231-236.
[http://dx.doi.org/10.1023/A:1018951323522] [PMID: 8165181]
[60]
Yildir, E.; Sjöholm, E.; Preis, M.; Trivedi, P.; Trygg, J.; Fardim, P.; Sandler, N. Investigation of dissolved cellulose in development of buccal discs for oromucosal drug delivery. Pharm. Dev. Technol., 2018, 23(5), 520-529.
[http://dx.doi.org/10.1080/10837450.2017.1397163] [PMID: 29067849]
[61]
Chiellini, F.; Piras, A.M.; Errico, C.; Chiellini, E. Micro/nanostructured polymeric systems for biomedical and pharmaceutical applications. Nanomedicine (Lond.), 2008, 3(3), 367-393.
[http://dx.doi.org/10.2217/17435889.3.3.367] [PMID: 18510431]
[62]
Bawarski, W.E.; Chidlowsky, E.; Bharali, D.J.; Mousa, S.A. Emerging nanopharmaceuticals. Nanomedicine (Lond.), 2008, 4(4), 273-282.
[http://dx.doi.org/10.1016/j.nano.2008.06.002] [PMID: 18640076]
[63]
Sun, B.; Zhang, M.; Hou, Q.; Liu, R.; Wu, T.; Si, C. Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers. Cellulose, 2016, 23(1), 439-450.
[http://dx.doi.org/10.1007/s10570-015-0803-z]
[64]
Sun, B.; Wang, W.; Zhang, M.; Sain, M. Biomass-based edible film with enhanced mass barrier capacity and gas permeable selectivity. Cellulose, 2018, 25(10), 5919-5937.
[http://dx.doi.org/10.1007/s10570-018-1976-z]
[65]
Sun, B.; Wang, W.; He, Z.; Zhang, M.; Kong, F.; Sain, M.; Ni, Y. Improvement of stability of tea polyphenols: a review. Curr. Pharm. Des., 2018, 24(29), 3410-3423.
[http://dx.doi.org/10.2174/1381612824666180810160321] [PMID: 30101698]
[66]
Cataldi, A.; Dorigato, A.; Deflorian, F.; Pegoretti, A. Thermo-mechanical properties of innovative microcrystalline cellulose filled composites for art protection and restoration. J. Mater. Sci., 2014, 49(5), 2035-2044.
[http://dx.doi.org/10.1007/s10853-013-7892-6]
[67]
Dai, L.; Chen, J.; Yang, B.; Su, Y.; Chen, L.; Long, Z.; Ni, Y. TEMPO-oxidized waste cellulose as reinforcement for recycled fiber networks. Ind. Eng. Chem. Res., 2017, 56(51), 15065-15071.
[http://dx.doi.org/10.1021/acs.iecr.7b04135]
[68]
Sun, B.; Zhang, M.; Ni, Y. Use of sulfated cellulose nanocrystals towards stability enhancement of gelatin-encapsulated tea polyphenols. Cellulose, 2018, 25(9), 5157-5173.
[http://dx.doi.org/10.1007/s10570-018-1918-9]
[69]
Sun, B.; Zhang, M.; He, Z.; Zheng, L.; Shen, J.; Ni, Y. Towards greener and more sustainable cellulose-based hand sanitizer products. J. Bioresour. Bioprod., 2017, 2(2), 56-60.
[70]
Sun, B.; Hou, Q.; Liu, Z.; He, Z.; Ni, Y. Stability and efficiency improvement of ASA in internal sizing of cellulosic paper by using cationically modified cellulose nanocrystals. Cellulose, 2014, 21(4), 2879-2887.
[http://dx.doi.org/10.1007/s10570-014-0283-6]
[71]
Sun, B.; He, Z.; Hou, Q.; Liu, Z.; Cha, R.; Ni, Y. Interaction of a spirooxazine dye with latex and its photochromic efficiency on cellulosic paper. Carbohydr. Polym., 2013, 95(1), 598-605.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.032] [PMID: 23618311]
[72]
Tang, C.; Wang, Y.; Long, Y.; An, X.; Shen, J.; Ni, Y. Anchoring 20 (R)-ginsenoside Rg3 onto cellulose nanocrystals to increase the hydroxyl radical scavenging activity. ACS Sustain. Chem.& Eng., 2017, 5(9), 7507-7513.
[http://dx.doi.org/10.1021/acssuschemeng.6b02996]
[73]
Zhu, X.; Wen, Y.; Cheng, D.; Li, C.; An, X.; Ni, Y. Cationic amphiphilic microfibrillated cellulose (MFC) for potential use for bile acid sorption. Carbohydr. Polym., 2015, 132, 598-605.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.063] [PMID: 26256387]
[74]
Zhu, X.; Wen, Y.; Wang, L.; Li, C.; Cheng, D.; Zhang, H.; Ni, Y. Binding of sodium cholate in vitro by cationic microfibrillated cellulose. Ind. Eng. Chem. Res., 2014, 53(48), 18508-18513.
[http://dx.doi.org/10.1021/ie503909g]
[75]
Sun, B.; Hou, Q.; He, Z.; Liu, Z.; Ni, Y. Cellulose nanocrystals (CNC) as carriers for a spirooxazine dye and its effect on photochromic efficiency. Carbohydr. Polym., 2014, 111, 419-424.
[http://dx.doi.org/10.1016/j.carbpol.2014.03.051] [PMID: 25037370]
[76]
Fardioui, M.; Mekhzoum, M.E.M.; Qaiss, A.K.; Bouhfid, R. Bionanocomposite materials based on chitosan reinforced with nanocrystalline cellulose and organo-modified montmorillonite, in:Nanoclay reinforced polymer composites: nanocomposites and bionanocomposites; Jawaid, M.; Qaiss, A.E.K.; Bouhfid, R., Eds.; Springer Singapore: Singapore, 2016, pp. 167-194.
[http://dx.doi.org/10.1007/978-981-10-1953-1_7]
[77]
Du, H.; Liu, C.; Zhang, Y.; Yu, G.; Si, C.; Li, B. Sustainable preparation and characterization of thermally stable and functional cellulose nanocrystals and nanofibrils via formic acid hydrolysis. J. Bioresour. Bioprod., 2017, 2(1), 10-15.
[http://dx.doi.org/10.21967/jbb.v2i1.68]
[78]
Sun, B.; Hou, Q.; Liu, Z.; Ni, Y. Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose, 2015, 22(2), 1135-1146.
[http://dx.doi.org/10.1007/s10570-015-0575-5]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 10
Year: 2020
Page: [1661 - 1669]
Pages: 9
DOI: 10.2174/0929867325666181001114750
Price: $65

Article Metrics

PDF: 17
HTML: 3
EPUB: 1
PRC: 1