Beauvericin, A Fusarium Mycotoxin: Anticancer Activity, Mechanisms, and Human Exposure Risk Assessment

Author(s): Qinghua Wu, Jiri Patocka, Kamil Kuca*.

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 19 , Issue 3 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Abstract:

Beauvericin (BEA) is a cyclic hexadepsipeptide, which derives from Cordyceps cicadae. It is also produced by Fusarium species, which are parasitic to maize, wheat, rice and other important commodities. BEA increases ion permeability in biological membranes by forming a complex with essential cations, which may affect ionic homeostasis. Its ion-complexing capability allows BEA to transport alkaline earth metal and alkali metal ions across cell membranes. Importantly, increasing lines of evidence show that BEA has an anticancer effect and can be potentially used in cancer therapeutics. Normally, BEA performs the anticancer effect due to the induced cancer cell apoptosis via a reactive oxygen species-dependent pathway. Moreover, BEA increases the intracellular Ca2+ levels and subsequently regulates the activity of a series of signalling pathways including MAPK, JAK/STAT, and NF-κB, and finally causes cancer cell apoptosis. In vivo studies further show that BEA reduces tumour volumes and weights. BEA especially targets differentiated and invasive cancer types. Currently, the anticancer activity of BEA is a hot topic; however, there is no review article to discuss the anticancer activity of BEA. Therefore, in this review, we have mainly summarized the anticancer activity of BEA and thoroughly discussed its underlying mechanisms. In addition, the human exposure risk assessment of BEA is also discussed. We hope that this review will provide further information for understanding the anticancer mechanisms of BEA.

Keywords: Beauvericin, anticancer, oxidative stress, signaling pathway, health risk, BEA.

[1]
Hamill, R.L.; Higgens, C.E.; Boaz, H.E.; Gorman, M. The structure op beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetrahedron Lett., 1969, 10(49), 4255-4258.
[2]
Patocka, J. Bioactive metabolites of entomopathogenic fungi Beauveria bassiana. Mil. Med. Sci. Lett., 2016, 85(2), 80-88.
[3]
Shivani, S.; Sardul, S.S.; Tapan, K.M. Pharmacological a therapeutic potential of beauvericin: a short review. J. Proteomics Bioinform., 2017, 10(1), 18-23.
[4]
Fornelli, F.; Minervini, F.; Logrieco, A. Cytotoxicity of fungal metabolites to lepidopteran (Spodoptera frugiperda) cell line (SF-9). J. Invertebr. Pathol., 2004, 85(2), 74-79.
[5]
Jow, G.M.; Chou, C.J.; Chen, B.F.; Tsai, J.H. Beauvericin induces cytotoxic effects in human acute lymphoblastic leukemia cells through cytochrome c release, caspase 3 activation: The causative role of calcium. Cancer Lett., 2004, 216(2), 165-173.
[6]
Leland, J.E.; McGuire, M.R.; Grace, J.A.; Jaronski, S.T.; Ulloa, M.; Park, Y.H.; Plattner, R.D. Strain selection of a fungal entomopathogen, Beauveria bassiana, for control of plant bugs (Lygus spp.) (Heteroptera: Miridae). Biol. Control, 2005, 35(2), 104-114.
[7]
Cheng, C.K.; Chang, K.C.; Lee, Y.J. Antiproliferative effect of beauvericin on retinoblastoma. Fu-Jen. J. Med., 2009, 7(4), 161-169.
[8]
Fu, M.; Li, R.; Guo, C.; Pang, M.; Liu, Y.; Dong, J. Natural incidence of Fusarium species and fumonisins B1 and B2 associated with maize kernels from nine provinces in China in 2012. Food Addit. Contaminants Part A, 2015, 32(4), 503-511.
[9]
Svingen, T.; Lund Hansen, N.; Taxvig, C.; Vinggaard, A.M.; Jensen, U. Have Rasmussen P. Enniatin B and beauvericin are common in Danish cereals and show high hepatotoxicity on a high-content imaging platform. Environ. Toxicol., 2017, 32(5), 1658-1664.
[10]
Ferrer, E.; Juan-García, A.; Font, G.; Ruiz, M.J. Reactive oxygen species induced by beauvericin, patulin and zearalenone in CHO-K1 cells. Toxicol. In Vitro, 2009, 23(8), 1504-1509.
[11]
Feudjio, F.T.; Dornetshuber, R.; Lemmens, M.; Hoffmann, O.; Lemmens-Gruber, R.; Berger, W. Beauvericin and enniatin. emerging toxins and/or remedies? World Mycotoxin J., 2010, 3(4), 415-430.
[12]
Qadri, S.M.; Kucherenko, Y.; Lang, F. Beauvericin induced erythrocyte cell membrane scrambling. Toxicology, 2011, 283(1), 24-31.
[13]
Yoo, S.; Kim, M.Y.; Cho, J.Y. Beauvericin, a cyclic peptide, inhibits inflammatory responses in macrophages by inhibiting the NF-κB pathway. Korean J. Physiol. Pharmacol., 2017, 21(4), 449-456.
[14]
Mallebrera, B.; Prosperini, A.; Font, G.; Ruiz, M.J. In vitro mechanisms of Beauvericin toxicity: A review. Food Chem. Toxicol., 2018, 111, 537-545.
[15]
Lu, C.L.; Lin, H.I.; Chen, B.F.; Jow, G.M. Beauvericin-induced cell apoptosis through the mitogen-activated protein kinase pathway in human nonsmall cell lung cancer A549 cells. J. Toxicol. Sci., 2016, 41(3), 429-437.
[16]
Lin, H.I.; Lee, Y.J.; Chen, B.F.; Tsai, M.C.; Lu, J.L.; Chou, C.J.; Jow, G.M. Involvement of Bcl-2 family, cytochrom c and caspase 3 in induction of apoptosis by beauvericin in human non-small cell lung cancer cells. Cancer Lett., 2005, 230, 248-259.
[17]
Que, F.G.; Gores, G.J.; Larusso, N.F. Development and initial application of an in vitro model of apoptosis in rodent cholangiocytes. Am. J. Physiol., 1997, 35, 106-115.
[18]
Tao, Y.W.; Lin, Y.C.; She, Z.G.; Lin, M.T.; Chen, P.X.; Zhang, J.Y. Anticancer activity and mechanism investigation of beauvericin isolated from secondary metabolites of the mangrove endophytic fungi. Anticancer. Agents Med. Chem., 2015, 15(2), 258-266.
[19]
Heilos, D.; Rodríguez-Carrasco, Y.; Englinger, B.; Timelthaler, G.; van Schoonhoven, S.; Sulyok, M.; Boecker, S.; Süssmuth, R.D.; Heffeter, P.; Lemmens-Gruber, R.; Dornetshuber-Fleiss, R.; Berger, W. The natural fungal metabolite beauvericin exerts anticancer activity in vivo: A pre-clinical pilot study. Toxins (Basel), 2017, 9(9), E258.
[20]
Wätjen, W.; Debbab, A.; Hohlfeld, A.; Chovolou, Y.; Proksch, P. The mycotoxin beauvericin induces apoptotic cell death in H4IIE hepatoma cells accompanied by an inhibition of NF-κB-activity and modulation of MAP-kinases. Toxicol. Lett., 2014, 231(1), 9-16.
[21]
Wu, X.F.; Xu, R.; Ouyang, Z.J.; Qian, C.; Shen, Y.; Wu, X.D.; Gu, Y.H.; Xu, Q.; Sun, Y. Beauvericin ameliorates experimental colitis by inhibiting activated T cells via downregulation of the PI3K/Akt signaling pathway. PLoS One, 2013, 8(12), e83013.
[22]
Massini, P.; Näf, U. Ca2+ ionophores and the activation of human blood platelets. The effects of ionomycin, beauvericin, lysocellin, virginiamycin S, lasalocid-derivatives and McN 4308. Biochim. Biophys. Acta, 1980, 598(3), 575.
[23]
Tang, Y.; Li, J.; Li, F.; Hu, C.A.; Liao, P.; Tan, K.; Tan, B.; Xiong, X.; Liu, G.; Li, T.; Yin, Y. Autophagy protects intestinal epithelial cells against deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway. Free Radic. Biol. Med., 2015, 89, 944-951.
[24]
Campos, F.F.; Sales, Junior, P.A.; Romanha, A.J.; Araújo, M.S.; Siqueira, E.P.; Resende, J.M.; Alves, T.M.; Martins-Filho, O.A.; Santos, V.L.; Rosa, C.A.; Zani, C.L.; Cota, B.B. Bioactive endophytic fungi isolated from Caesalpinia echinata Lam. (Brazilwood) and identification of beauvericin as a trypanocidal metabolite from Fusarium sp. Mem. Inst. Oswaldo Cruz, 2015, 110(1), 65-74.
[25]
Mogensen, J.M.; Sørensen, S.M.; Sulyok, M.; van der Westhuizen, L.; Shephard, G.S.; Frisvad, J.C.; Thrane, U.; Krska, R.; Nielsen, K.F. Single-kernel analysis of fumonisins and other fungal metabolites in maize from South African subsistence farmers. Food Addit. Contam. Part A, 2011, 28(12), 1724-1734.
[26]
Wang, J.; Zhang, D.M.; Jia, J.F.; Peng, Q.L.; Tian, H.Y.; Wang, L.; Ye, W.C. Cyclodepsipeptides from the ascocarps and insect-body portions of fungus Cordyceps cicadae. Fitoterapia, 2014, 97, 23-27.
[27]
Luangsa-Ard, J.J.; Berkaew, P.; Ridkaew, R.; Hywel-Jones, N.L.; Isaka, M. A beauvericin hot spot in the genus Isaria. Mycol. Res., 2009, 113(12), 1389-1395.
[28]
Stanciu, O.; Juan, C.; Miere, D.; Loghin, F.; Mañes, J. Presence of enniatins and beauvericin in Romanian wheat samples: From raw material to products for direct human consumption. Toxins (Basel), 2017, 9(6), E189.
[29]
Xu, L.; Wang, J.; Zhao, J.; Li, P.; Shan, T.; Wang, J.; Li, X.; Zhou, L. Beauvericin from the endophytic fungus, Fusarium redolens, isolated from Dioscorea zingiberensis and its antibacterial activity. Nat. Prod. Commun., 2010, 5(5), 811-814.
[30]
Xu, L.J.; Liu, Y.S.; Zhou, L.G.; Wu, J.Y. Modeling of Fusarium redolens Dzf2 mycelial growth kinetics and optimal fed-batch fermentation for beauvericin production. J. Ind. Microbiol. Biotechnol., 2011, 38(9), 1187-1192.
[31]
Zhan, J.; Burns, A.M.; Liu, M.X.; Faeth, S.H.; Gunatilaka, A.A.L. Search for cell motility and angiogenesis inhibitors with potential anticancer activity: Beauvericin and other constituents of two endophytic strains of Fusarium oxysporum. J. Nat. Prod., 2007, 70, 227-232.
[32]
Spencer, N.J. Motility patterns in mouse colon: gastrointestinal dysfunction induced by anticancer chemotherapy. Neurogastroenterol. Motil., 2016, 8(12), 1759-1764.
[33]
Anasamy, T.; Thy, C.K.; Lo, K.M.; Chee, C.F.; Yeap, S.K.; Kamalidehghan, B.; Chung, L.Y. Tribenzyltin carboxylates as anticancer drug candidates: Effect on the cytotoxicity, motility and invasiveness of breast cancer cell lines. Eur. J. Med. Chem., 2017, 125, 770-783.
[34]
Tolleson, W.H.; Melchior, W.B.J.; Morris, S.M.; McGarrity, L.J.; Domom, O.E. Apoptosis and antiproliferative effects of fumonisin B1 in human keratinocytes, fibroblasts, esophageal epithelial cells, and hepatom cells. Carcinogenesis, 1996, 17, 239.
[35]
Kegvi, T.; Klarit, M.; Pepeljnjak, S.; Domijan, A.M.; Petrik, J. Lipid peroxidation and glutathione levels in porcine kidney PK15 cells after indiividual and combined treatment with fumonisin B1, beauvericin and ochratoxinn A. Basic Clin. Pharmacol. Toxicol., 2007, 100(3), 157-164.
[36]
Dombrink-Kurtzman, M.A. Fumonisin and beauvericin induce apoptosis in turkey peripheral blood lymphocytes. Mycopathologia, 2003, 156(4), 357-364.
[37]
Klarić, M.S.; Rumora, L.; Ljubanović, D.; Pepeljnjak, S. Cytotoxicity and apoptosis induced by fumonisin B(1), beauvericin and ochratoxin A in porcine kidney PK15 cells: effects of individual and combined treatment. Arch. Toxicol., 2008, 82(4), 247-255.
[38]
Tang, C.Y.; Chen, Y.W.; Jow, G.M.; Chou, C.J.; Jeng, C.J. Beauvericin activates Ca2+-activated Cl- currents and induces cell deaths in Xenopus oocytes via influx of extracellular Ca2+. Chem. Res. Toxicol., 2005, 18(5), 825-833.
[39]
Chen, B.F.; Tsai, M.C.; Jow, G.M. Induction of calcium influx from extracellular fluid by beauvericin in human leukemia cells. Biochem. Biophys. Res. Commun., 2006, 340(1), 134-139.
[40]
Niazi, M.; Zakeri-Milani, P.; Najafi Hajivar, S.; Soleymani Goloujeh, M.; Ghobakhlou, N.; Shahbazi Mojarrad, J.; Valizadeh, H. Nano-based strategies to overcome p-glycoprotein-mediated drug resistance. Expert Opin. Drug Metab. Toxicol., 2016, 12(9), 1021-1033.
[41]
Ansari, S.M.; Saquib, Q.; Attia, S.M.; Abdel-Salam, E.M.; Alwathnani, H.A.; Faisal, M.; Alatar, A.A.; Al-Khedhairy, A.A.; Musarrat, J. Pendimethalin induces oxidative stress, DNA damage, and mitochondrial dysfunction to trigger apoptosis in human lymphocytes and rat bone-marrow cells. Histochem. Cell Biol., 2018, 149(2), 127-141.
[42]
Wu, Q.; Wang, X.; Wan, D.; Li, J.; Yuan, Z. Crosstalk of JNK1-STAT3 is critical for RAW264.7 cell survival. Cell. Signal., 2014, 26(12), 2951-2960.
[43]
Wu, Q.H.; Wang, X.; Yang, W.; Nüssler, A.K.; Xiong, L.Y.; Kuča, K.; Dohnal, V.; Zhang, X.J.; Yuan, Z.H. Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: an update. Arch. Toxicol., 2014, 88(7), 1309-1326.
[44]
Tonshin, A.A.; Teplova, V.V.; Andersson, M.A.; Salkinoja-Salonen, M.S. The Fusarium mycotoxins enniatins and beauvericin cause mitochondrial dysfunction by affecting the mitochondrial volume regulation, oxidative phosphorylation and ion homeostasis. Toxicology, 2010, 276(1), 49-57.
[45]
Klarić, M.S.; Pepeljnjak, S.; Domijan, A.M.; Petrik, J. Lipid peroxidation and glutathione levels in porcine kidney PK15 cells after individual and combined treatment with fumonisin B(1), beauvericin and ochratoxin A. Basic Clin. Pharmacol. Toxicol., 2007, 100(3), 157-164.
[46]
Prosperini, A.; Juan-García, A.; Font, G.; Ruiz, M.J. Beauvericin-induced cytotoxicity via ROS production and mitochondrial damage in Caco-2 cells. Toxicol. Lett., 2013, 222(2), 204-211.
[47]
Wu, Q.; Wang, X.; Nepovimova, E.; Miron, A.; Liu, Q.; Wang, Y.; Su, D.; Yang, H.; Li, L.; Kuca, K. Trichothecenes: immunomodulatory effects, mechanisms, and anti-cancer potential. Arch. Toxicol., 2017, 91(12), 3737-3785.
[48]
Wu, Q.; Wang, X.; Nepovimova, E.; Wang, Y.; Yang, H.; Li, L.; Zhang, X.; Kuca, K. Antioxidant agents against trichothecenes: new hints for oxidative stress treatment. Oncotarget, 2017, 8(66), 110708-111072.
[49]
Dornetshuber, R.; Heffeter, P.; Lemmens-Gruber, R.; Elbling, L.; Marko, D.; Micksche, M.; Berger, W. Oxidative stress and DNA interactions are not involved in Enniatin- and Beauvericin-mediated apoptosis induction. Mol. Nutr. Food Res., 2009, 53(9), 1112-1122.
[50]
Wu, Y.J.; Tang, L. Bcl-2 family proteins regulate apoptosis and epithelial to mesenchymal transition by calcium signals. Curr. Pharm. Des., 2016, 22(30), 4700-4704.
[51]
Zhou, X.; Hao, W.; Shi, H.; Hou, Y.; Xu, Q. Calcium homeostasis disruption - a bridge connecting cadmium-induced apoptosis, autophagy and tumorigenesis. Oncol. Res. Treat., 2015, 38(6), 311-315.
[52]
Scorrano, L.; Oskes, S.A.; Opferman, J.T.; Cheng, E.H.; Sorcinelli, M.D.; Pozzan, T.; Korsmeyer, S.J. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science, 2003, 300(5616), 135-139.
[53]
Ruan, H.B.; Ma, Y.; Torres, S.; Zhang, B.; Feriod, C.; Heck, R.M.; Qian, K.; Fu, M.; Li, X.; Nathanson, M.H.; Bennett, A.M. Nie, Y.; Ehrlich, B.E.; Yang, X. Calcium-dependent O-GlcNAc signaling drives liver autophagy in adaptation to starvation. Genes Dev., 2017, 31(16), 1655-1665.
[54]
Huang, Q.; Cao, H.; Zhan, L.; Sun, X.; Wang, G.; Li, J.; Guo, X.; Ren, T.T.; Wang, Z.; Lyu, Y.H. Mitochondrial fission forms a positive feedback loop with cytosolic calcium signaling pathway to promote autophagy in hepatocellular carcinoma cells. Cancer Lett., 2017, 403, 108.
[55]
Ojcius, D.M.; Zychlinsky, A.; Zheng, L.M.; Young, J.D. Ionophore-induced apoptosis: role of DNA fragmentation and calcium fluxes. Exp. Cell Res., 1991, 197, 43-49.
[56]
Kim, M.K.; Seong, S.Y.; Seoh, J.Y.; Han, T.H.; Song, H.J.; Lee, J.E.; Shin, J.H.; Lim, B.U.; Kang, J.S. Orientia tsutsugamushi inhibits apoptosis of macrophages by retarding intracellular calcium release. Infect. Immun., 2002, 70, 4692-4696.
[57]
Bieber, K.; Koga, H.; Nishie, W. In vitro and in vivo models to investigate the pathomechanisms and novel treatments for pemphigoid diseases. Exp. Dermatol., 2017, 26(12), 1163-1170.
[58]
Nesslany, F. The current limitations of in vitro genotoxicity testing and their relevance to the in vivo situation. Food Chem. Toxicol., 2017, 106(Pt B), 609-615.
[59]
Antignani, A.; FitzGerald, D. Immunotoxins: the role of the toxin. Toxins., 2013, 5(8), 1486-1502.
[60]
Weidle, U.H.; Tiefenthaler, G.; Schiller, C.; Weiss, E.H.; Georges, G.; Brinkmann, U. Prospects of bacterial and plant protein-based immunotoxins for treatment of cancer. Cancer Genomics Proteomics, 2014, 11(1), 25-38.
[61]
Allahyari, H.; Heidari, S.; Ghamgosha, M.; Saffarian, P.; Amani, J. Immunotoxin: A new tool for cancer therapy. Tumour Biol., 2017, 39(2), 1010428317692226.
[62]
Ohtani, K.; Murakami, H.; Shibuya, O.; Kawamura, O.; Ohi, K.; Chiba, J.; Otokawa, M.; Ueno, Y. Antitumor activity of T-2 toxin-conjugated monoclonal antibody to murine thymoma. Jpn. J. Exp. Med., 1990, 60(2), 57-65.
[63]
Kojima, S.; Nakamura, N.; Ueno, Y.; Yamaguchi, T.; Takahashi, T. Anti-tumor activity of T-2 toxin-conjugated A7 monoclonal antibody (T-2-A7 MoAb) against human colon carcinoma. Nat. Toxins, 1993, 1(4), 209-215.
[64]
Nagar, R. Autophagy: A brief overview in perspective of dermatology. Indian J. Dermatol. Venereol. Leprol., 2017, 83(3), 290-297.
[65]
Reyes-Velázquez, W.P.; Figueroa-Gómez, R.M.; Barberis, M.; Reynoso, M.M.; Rojo, F.G.; Chulze, S.N.; Torres, A.M. Fusarium species (section Liseola) occurrence and natural incidence of beauvericin, fusaproliferin and fumonisins in maize hybrids harvested in Mexico. Mycotoxin Res., 2011, 27(3), 187-194.
[66]
Jestoi, M. Emerging Fusarium - Mycotoxins Fusaproliferin, Beauvericin, Enniatins, and Moniliformin—A Review. Crit. Rev. Food Sci. Nutr., 2008, 48(1), 21-49.
[67]
Jestoi, M.; Rokka, M.; Yli-Mattila, T.; Parikka, P.; Rizzo, A.; Peltonen, K. Presence and concentrations of the Fusarium-related mycotoxins beauvericin, enniatins and moniliformin in finnish grain samples. Food Addit. Contam., 2004, 21(8), 794-802.
[68]
Moretti, A.; Logrieco, A.; Bottalico, A.; Ritieni, A.; Randazzo, G. Production of beauvericin by Fusarium proliferatum from maize in Italy. Mycotoxin Res., 1994, 10(2), 73-78.
[69]
Bottalico, A.; Logrieco, A.; Ritieni, A.; Moretti, A.; Randazzo, G.; Corda, P. Beauvericin and fumonisin B1 in preharvest Fusarium moniliforme maize ear rot in Sardinia. Food Addit. Contam., 1995, 12(4), 599-607.
[70]
Moretti, A.; Mulé, G.; Ritieni, A.; Láday, M.; Stubnya, V.; Hornok, L.; Logrieco, A. Cryptic subspecies and beauvericin production by Fusarium subglutinans from Europe. Int. J. Food Microbiol., 2008, 127(3), 312-315.
[71]
Sifou, A.; Meca, G.; Serrano, A.B.; Mahnine, N.; Abidi, A.E.; Mañes, J.; El Azzouzi, M.E.; Abdellah Zinedine, A. First report on the presence of emerging Fusarium mycotoxins enniatins (A, A1, B, B1), beauvericin and fusaproliferin in rice on the Moroccan retail markets. Food Control, 2011, 22, 1826-1830.
[72]
Streit, E.; Schwab, C.; Sulyok, M.; Naehrer, K.; Krska, R.; Schatzmayr, G. Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins., 2013, 5(3), 504-523.
[73]
Munkvold, G.; Stahr, H.M.; Logrieco, A.; Moretti, A.; Ritieni, A. Occurrence of fusaproliferin and beauvericin in Fusarium-contaminated livestock feed in Iowa. Appl. Environ. Microbiol., 1998, 64(10), 3923-3926.
[74]
Hu, L.; Rychlik, M. Occurrence of enniatins and beauvericin in 60 Chinese medicinal herbs. Food Addit. Contam. Chem. Anal. Control Expo. Risk Assess., 2014, 31(7), 1240-1245.
[75]
Taevernier, L.; Veryser, L.; Roche, N.; Peremans, K.; Burvenich, C.; Delesalle, C.; De Spiegeleer, B. Human skin permeation of emerging mycotoxins (beauvericin and enniatins). J. Expo. Sci. Environ. Epidemiol., 2016, 26(3), 277-287.
[76]
EFSA. Scientific opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed. EFSA Panel on Contaminants in the Food Chain. EFSA J., 2014, 12(174), 2902.
[77]
Luz, C.; Saladino, F.; Luciano, F.B.; Mañes, J.; Meca, G. Occurrence, toxicity, bioaccessibility and mitigation strategies of beauvericin, a minor Fusarium mycotoxin. Food Chem. Toxicol, 2017, 107(Pt A), 430-439.
[78]
Wang, Q.; Xu, L. Beauvericin, a bioactive compound produced by fungi: A short review. Molecules, 2012, 17(3), 2367-2377.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 19
ISSUE: 3
Year: 2019
Page: [206 - 214]
Pages: 9
DOI: 10.2174/1389557518666180928161808
Price: $58

Article Metrics

PDF: 18
HTML: 5
EPUB: 2
PRC: 1