Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Characterization, Bioactive Compounds and Antioxidant Potential of Açaí (Euterpe oleracea) Genotypes

Author(s): Priscila do C.M.R. Torma, Patric de L. Monteiro, Ana V. Carvalho, Simone H. Flôres, Paula R. Augusti and Alessandro de O. Rios*

Volume 15, Issue 6, 2019

Page: [637 - 647] Pages: 11

DOI: 10.2174/1573407214666180926124149

Price: $65

Abstract

Background: Açaí (Euterpe oleracea), a “superfruit” consumed worldwide, is a Brazilian Amazon native fruit, with high nutritive value due to its high content of lipids, proteins, and fibers, besides bioactive compounds, such as anthocyanins, carotenoids and phenolic compounds in its composition associated with biological action beneficial to health. The increased consumption of this fruit has stimulated breeding programs in the search of plants and fruits with higher productivity and bioactive compounds, generating information for the development of new cultivars with improved attributes. This work aimed to study six different genotypes of açaí, developed by the breeding program, evaluating their physicochemical characteristics and proximate composition, bioactive compounds and antioxidant activity.

Methods: The genotypes were analyzed for titratable acidity, pH, total soluble solids and proximate composition, such as moisture, protein, lipids, total fiber, carbohydrates and ashes contents. A spectrophotometric method using Folin-Ciocalteau reagent performed the phenolic compounds analysis and HPLC evaluated carotenoids and anthocyanins extracted exhaustively. The ABTS assay evaluated the antioxidant activity.

Results: The L06P13 and L09P09 genotype presented higher content of total fiber, carbohydrates, and ashes when compared to the commercial sample used as a standard. Furthermore, L22P13 genotype showed the highest content of total anthocyanins (6745.81 mg/100g), total carotenoids (118 μg/g) and antioxidant activity (674.83 μM Trolox/g) when compared to commercial sample.

Conclusion: The results revealed promising açaí genotypes and support the importance of advances in the area of functional foods and breeding programs.

Keywords: Açaí, Euterpe oleracea, breeding, anthocyanins, carotenoids, antioxidant activity.

Graphical Abstract
[1]
Halliwell, B. Antioxidants and human disease: A general introduction. Nutr. Rev., 1997, 55(1 Pt 2), S44-S49.
[http://dx.doi.org/10.1111/j.1753-4887.1997.tb06100.x] [PMID: 9155225]
[2]
Rajendran, P.; Nandakumar, N.; Rengarajan, T.; Palaniswami, R.; Gnanadhas, E.N.; Lakshminarasaiah, U.; Gopas, J.; Nishigaki, I. Antioxidants and human diseases. Clin. Chim. Acta, 2014, 436, 332-347.
[http://dx.doi.org/10.1016/j.cca.2014.06.004] [PMID: 24933428]
[3]
Kaur, C.; Kapoor, H.C. Antioxidants in fruits and vegetables - the millennium’s health. Int. J. Food Sci. Technol., 2001, 36, 703-725.
[http://dx.doi.org/10.1046/j.1365-2621.2001.00513.x]
[4]
Heinrich, M.; Dhanji, T.; Casselman, I. Açaí (Euterpe oleracea Mart.)-A phytochemical and pharmacological assessment of the species’ health claims. Phytochem. Lett., 2011, 4, 10-21.
[http://dx.doi.org/10.1016/j.phytol.2010.11.005]
[5]
Pratheeshkumar, P.; Son, Y.O.; Wang, X.; Divya, S.P.; Joseph, B.; Hitron, J.A.; Wang, L.; Kim, D.; Yin, Y.; Roy, R.V.; Lu, J.; Zhang, Z.; Wang, Y.; Shi, X. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin. Toxicol. Appl. Pharmacol., 2014, 280(1), 127-137.
[http://dx.doi.org/10.1016/j.taap.2014.06.028] [PMID: 25062774]
[6]
Fratantonio, D.; Speciale, A.; Ferrari, D.; Cristani, M.; Saija, A.; Cimino, F. Palmitate-induced endothelial dysfunction is attenuated by cyanidin-3-O-glucoside through modulation of Nrf2/Bach1 and NF-κB pathways. Toxicol. Lett., 2015, 239(3), 152-160.
[http://dx.doi.org/10.1016/j.toxlet.2015.09.020] [PMID: 26422990]
[7]
Gao, X.; Cassidy, A.; Schwarzschild, M.A.; Rimm, E.B.; Ascherio, A. Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology, 2012, 78(15), 1138-1145.
[http://dx.doi.org/10.1212/WNL.0b013e31824f7fc4] [PMID: 22491871]
[8]
Sharoni, Y.; Linnewiel-Hermoni, K.; Khanin, M.; Salman, H.; Veprik, A.; Danilenko, M.; Levy, J. Carotenoids and apocarotenoids in cellular signaling related to cancer: A review. Mol. Nutr. Food Res., 2012, 56(2), 259-269.
[http://dx.doi.org/10.1002/mnfr.201100311] [PMID: 22102431]
[9]
Alves-Rodrigues, A.; Shao, A. The science behind lutein. Toxicol. Lett., 2004, 150(1), 57-83.
[http://dx.doi.org/10.1016/j.toxlet.2003.10.031] [PMID: 15068825]
[10]
Palozza, P.; Mele, M.C.; Cittadini, A.; Mastrantoni, M. Potential interactions of carotenoids with other bioactive food components in the prevention of chronic diseases. Curr. Bioact. Compd., 2011, 7(4), 243-261.
[http://dx.doi.org/10.2174/157340711798375877]
[11]
Capocasa, F.; Diamanti, J.; Tulipani, S.; Battino, M.; Mezzetti, B. Breeding strawberry (Fragaria X ananassa Duch) to increase fruit nutritional quality. Biofactors, 2008, 34(1), 67-72.
[http://dx.doi.org/10.1002/biof.5520340107] [PMID: 19706973]
[12]
Kraujalytė, V.; Venskutonis, P.R.; Pukalskas, A.; Česonienė, L.; Daubaras, R. Antioxidant properties, phenolic composition and potentiometric sensor array evaluation of commercial and new blueberry (Vaccinium corymbosum) and bog blueberry (Vaccinium uliginosum) genotypes. Food Chem., 2015, 188, 583-590.
[http://dx.doi.org/10.1016/j.foodchem.2015.05.031] [PMID: 26041234]
[13]
Dubey, R.K.; Singh, V.; Upadhyay, G.; Pandey, A.K.; Prakash, D. Assessment of phytochemical composition and antioxidant potential in some indigenous chilli genotypes from North East India. Food Chem., 2015, 188, 119-125.
[http://dx.doi.org/10.1016/j.foodchem.2015.04.088] [PMID: 26041173]
[14]
Souza, M.C.; Figueiredo, R.W.; Maia, G.A.; Alves, R.E.; Brito, E.S.; Moura, C.F.H.; Rufino, M.S.M. Bioactive compounds and antioxidant activity on fruits from different açaí (Euterpe oleracea Mart) progenies. Acta Hortic., 2009, (841), 455-458.
[http://dx.doi.org/10.17660/ActaHortic.2009.841.57]
[15]
Carvalho, A.V.; Mattieto, R.A.; Silva, P.A.; Araújo, E.A.F. Optimatization of the technological parameters to produce structured gels from assai palm fruit pulp. Braz. J. Food. Technol., 2010, 13(4), 232-241.
[http://dx.doi.org/10.4260/BJFT2010130400032]
[16]
Rufino, M.S.M.; Pérez-Jiménez, J.; Arranz, S.; Alves, R.E.; Brito, E.S.; Oliveira, M.S.P.; Saura-Calixto, F. Açaí (Euterpe oleraceae) “BRS Pará”: A tropical fruit source of antioxidante dietary fiber and high antioxidante capacity oil. Food Res. Int., 2011, 44, 2100-2106.
[http://dx.doi.org/10.1016/j.foodres.2010.09.011]
[17]
Cunha, C.R.; Maciel, V.T.; Madruga, A.L.S.; Lunz, A.M.P.; Bergo, C.L.; Oliveira, M.S.P. Caracterização físico-química da polpa de indivíduos experimentais de açaizeiro (Euterpe oleraceae mart.) com alta produtividade of the 9th Congresso Brasileiro de Sistemas Agroflorestais, Ilhéus, Bahia, Brazil, October . 2013, pp. 17-18.
[18]
Gaithersburg, Md. Official Methods of Analysis, 16th ed; AOAC International: Rockville, 1997.
[19]
Goering, H.K.; Van Soest, P.J. Forage fiber analysis (apparatus,reagents, procedures and some applications). 1970.
[20]
Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica I. The quantitative analysis of phenolic constituents. J. Sci. Food Agric., 1959, 10, 63-68.
[http://dx.doi.org/10.1002/jsfa.2740100110]
[21]
Vargas, E.F.; Jablonski, A.; Flôres, S.H.; Rios, A.O. Pelargonidin 3-Glucoside extraction from the residue from strawberry processing (Fragaria X Ananassa). Curr. Bioact. Compd., 2016, 12(4), 269-275.
[http://dx.doi.org/10.2174/1573407212666160512120242]
[22]
Assumpção, C.F.; Hermes, V.S.; Bortolin, R.C.; Moreira, J.C.F.; Manfroi, V.; Jablonski, A.; Flôres, S.H.; Rios, A.O. Carotenoid content and antioxidant activity of organic and conventional grape juice processing waste. Curr. Bioact. Compd., 2015, 11(4), 249-255.
[http://dx.doi.org/10.2174/1573407212666151214221952]
[23]
Ertaş, E.; Özer, H.; Alasalvar, C. A rapid HPLC method for determination of Sudan dyes and Para Red in red chilli pepper. Food Chem., 2007, 105, 756-760.
[http://dx.doi.org/10.1016/j.foodchem.2007.01.010]
[24]
Guilland, J.C.; Lequeu, B. The nutrient vitamins to the drug; Sao Paulo: Santos,. , 1995.
[25]
Kuskoski, E.M.; Asuero, A.G.; Troncoso, A.M.; Mancini-Filho, J.; Fett, R. Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Sci. Technol., 2005, 25(4), 726-732.
[http://dx.doi.org/10.1590/S0101-20612005000400016]
[26]
Ismail, B.P. Ash Content Determination. Food Analysis Laboratory Manual, (3rd Ed.); Food Science Text Series, 2017, pp. 117-119.
[http://dx.doi.org/10.1007/978-3-319-44127-6_11]
[27]
Neves, L.T.B.C.; Campos, D.C.S.; Mendes, J.K.S.; Urnhani, C.O.; Araújo, K.G.M. Qualidade de frutos processados artesanalmente de açaí (Euterpe oleracea Mart.) e bacaba (Oenocarpus bacaba Mart.). Rev. Bras. Frutic., 2015, 37(3), 729-738.
[http://dx.doi.org/10.1590/0100-2945-148/14]
[28]
Schauss, A.G.; Wu, X.; Prior, R.L.; Ou, B.; Patel, D.; Huang, D.; Kababick, J.P. Phytochemical and nutrient composition of the freeze-dried amazonian palm berry, Euterpe oleraceae mart. (acai). J. Agric. Food Chem., 2006, 54(22), 8598-8603.
[http://dx.doi.org/10.1021/jf060976g] [PMID: 17061839]
[29]
Gouvêa, A.C.M.S.; Araujo, M.C.P.; Schulz, D.F.; Pacheco, S.; Godoy, R.L.O.; Cabral, L.M.C. Anthocyanins standards (cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside) isolation from freeze-dried açaí (Euterpe oleraceae Mart.) by HPLC. Food Sci. Technol., 2012, 32(1), 43-46.
[http://dx.doi.org/10.1590/S0101-20612012005000001]
[30]
Rogez, H.; Pompeu, D.R.; Akwie, S.N.T.; Larondelle, Y. Sigmoidal kinetics of anthocyanin accumulation during fruit ripening: A comparison between açai fruits (Euterpe oleracea) and other anthocyanin-rich fruits. J. Food Compos. Anal., 2011, 24, 796-800.
[http://dx.doi.org/10.1016/j.jfca.2011.03.015]
[31]
Bochi, V.C.; Godoy, H.T.; Giusti, M.M. Anthocyanin and other phenolic compounds in Ceylon gooseberry (Dovyalis hebecarpa) fruits. Food Chem., 2015, 176, 234-243.
[http://dx.doi.org/10.1016/j.foodchem.2014.12.041] [PMID: 25624229]
[32]
Radunić, M.; Jukić Špika, M.; Goreta Ban, S.; Gadže, J.; Díaz-Pérez, J.C.; MacLean, D. Physical and chemical properties of pomegranate fruit accessions from Croatia. Food Chem., 2015, 177, 53-60.
[http://dx.doi.org/10.1016/j.foodchem.2014.12.102] [PMID: 25660857]
[33]
Dias, A.L.S.; Rozet, E.; Chataigné, G.; Oliveira, A.C.; Rabelo, C.A.S.; Hubert, P.; Rogez, H.; Quetin-Leclercq, J. A rapid validated UHPLC-PDA method for anthocyanins quantification from Euterpe oleracea fruits. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 907, 108-116.
[http://dx.doi.org/10.1016/j.jchromb.2012.09.015] [PMID: 23026226]
[34]
Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J. Agric. Food Chem., 2006, 54(11), 4069-4075.
[http://dx.doi.org/10.1021/jf060300l] [PMID: 16719536]
[35]
Mertens-Talcott, S.U.; Rios, J.; Jilma-Stohlawetz, P.; Pacheco-Palencia, L.A.; Meibohm, B.; Talcott, S.T.; Derendorf, H. Pharmacokinetics of anthocyanins and antioxidant effects after the consumption of anthocyanin-rich acai juice and pulp (Euterpe oleracea Mart.) in human healthy volunteers. J. Agric. Food Chem., 2008, 56(17), 7796-7802.
[http://dx.doi.org/10.1021/jf8007037] [PMID: 18693743]
[36]
Xie, C.; Kang, J.; Burris, R.; Ferguson, M.E.; Schauss, A.G.; Nagarajan, S.; Wu, X. Açaí juice attenuates atherosclerosis in ApoE deficient mice through antioxidant and anti-inflammatory activities. Atherosclerosis, 2011, 216(2), 327-333.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.02.035] [PMID: 21411096]
[37]
Ribeiro, J.C.; Antunes, L.M.G.; Aissa, A.F.; Darin, J.D.C.; De Rosso, V.V.; Mercadante, A.Z. Bianchi, Mde.L. Evaluation of the genotoxic and antigenotoxic effects after acute and subacute treatments with açai pulp (Euterpe oleracea Mart.) on mice using the erythrocytes micronucleus test and the comet assay. Mutat. Res., 2010, 695(1-2), 22-28.
[http://dx.doi.org/10.1016/j.mrgentox.2009.10.009] [PMID: 19892033]
[38]
Kang, J.; Thakali, K.M.; Xie, C.; Kondo, M.; Tong, Y.; Ou, B.; Jensen, G.S.; Medina, M.B.; Schauss, A.G.; Wu, X. Bioactivities of açaí (Euterpe precatoria Mart.) fruit pulp, superior antioxidant and anti-inflammatory properties to Euterpe oleracea Mart. Food Chem., 2012, 133, 671-677.
[http://dx.doi.org/10.1016/j.foodchem.2012.01.048]
[39]
Von Lintig, J.; Vogt, K. Filling the gap in vitamin A research. Molecular identification of an enzyme cleaving beta-carotene to retinal. J. Biol. Chem., 2000, 275(16), 11915-11920.
[http://dx.doi.org/10.1074/jbc.275.16.11915] [PMID: 10766819]
[40]
Lu, Q.Y.; Hung, J.C.; Heber, D.; Go, V.L.W.; Reuter, V.E.; Cordon-Cardo, C.; Scher, H.I.; Marshall, J.R.; Zhang, Z.F. Inverse associations between plasma lycopene and other carotenoids and prostate cancer. Cancer Epidemiol. Biomarkers Prev., 2001, 10(7), 749-756.
[PMID: 11440960]
[41]
Yan, B.; Lu, M.S.; Wang, L.; Mo, X.F.; Luo, W.P.; Du, Y.F.; Zhang, C.X. Specific serum carotenoids are inversely associated with breast cancer risk among Chinese women: A case-control study. Br. J. Nutr., 2016, 115(1), 129-137.
[http://dx.doi.org/10.1017/S000711451500416X] [PMID: 26482064]
[42]
Krinsky, N.I.; Landrum, J.T.; Bone, R.A. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu. Rev. Nutr., 2003, 23, 171-201.
[http://dx.doi.org/10.1146/annurev.nutr.23.011702.073307] [PMID: 12626691]
[43]
Sangiovanni, J.P.; Chew, E.Y.; Clemons, T.E.; Ferris, F.L., III; Gensler, G.; Lindblad, A.S.; Milton, R.C.; Seddon, J.M.; Sperduto, R.D. The relationship of dietary carotenoid and vitamin A, E and C intake with age-related macular degeneration in a case-control estudy. Arch. Ophtalmol. (Paris), 2007, 125(9), 1225-1232.
[http://dx.doi.org/10.1001/archopht.125.9.1225] [PMID: 17846363]
[44]
Ma, L.; Hao, Z.X.; Liu, R.R.; Yu, R.B.; Shi, Q.; Pan, J.P. A dose-response meta-analysis of dietary lutein and zeaxanthin intake in relation to risk of age-related cataract. Graefes Arch. Clin. Exp. Ophthalmol., 2014, 252(1), 63-70.
[http://dx.doi.org/10.1007/s00417-013-2492-3] [PMID: 24150707]
[45]
Müller, H. Determination of the carotenoid content in selected vegetables and fruit by HPLC and photodiode array detection. Z Lebensm Unters Forsch A, 1997, 204, 88-94.
[http://dx.doi.org/10.1007/s002170050042]
[46]
Pertuzatti, P.B.; Barcia, M.T.; Rodrigues, D.; da Cruz, P.N.; Hermosín-Gutiérrez, I.; Smith, R.; Godoy, H.T. Antioxidant activity of hydrophilic and lipophilic extracts of Brazilian blueberries. Food Chem., 2014, 164, 81-88.
[http://dx.doi.org/10.1016/j.foodchem.2014.04.114] [PMID: 24996309]
[47]
Guideline: Vitamin A supplementation in infants 1-5 months of age., 2011.
[48]
Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem., 2005, 53(10), 4290-4302.
[http://dx.doi.org/10.1021/jf0502698] [PMID: 15884874]
[49]
Rojano, B.A.; Vahos, I.C.Z.; Arbeláez, A.F.A.; Martínez, A.J.M.; Correa, F.B.C.; Carvajal, L.G. Polifenoles y actividad antioxidante del fruto liofilizado de palma naidi(açaí colombiano) (Euterpe oleracea Mart).. Rev. Fac. Nal. Agr. Medellín , 2011, 64(2), 6213-6220.
[50]
Medeiros, N.S.; Almeida, D.C.; Lima, J.D.; Wohlemberg, M.; Machado, F.; Massolini, M.; Agostini, F.; Funchal, C.; Bortolazzi, S.; Dani, C. In vitro antioxidant activity of passion fruit (Passiflora alata) extract by different kinds of treatment on rat liver. Curr. Bioact. Compd., 2018, 14(1), 21-25.
[http://dx.doi.org/10.2174/1573407213666161118120014]
[51]
Ksiksi, T.; Palakkott, A.R.; Ppoyil, S.B.T. Tribulus arabicus and Tribulus macropterus are comparable to Tribulus terrestris: An antioxidant assessment. Curr. Bioact. Compd., 2017, 13(1), 82-87.
[http://dx.doi.org/10.2174/1573407212666161014130546]
[52]
Gironés-Vilaplana, A.; Baenas, N.; Villaño, D.; Speisky, H.; García-Viguera, C.; Moreno, D.A. Evaluation of Latin-American fruits rich in phytochemicals with biological effects. J. Funct. Foods, 2014, 7, 599-608.
[http://dx.doi.org/10.1016/j.jff.2013.12.025]
[53]
Nageeb, A.; Al-Tawashi, A.; Mohammad Emwas, A.H.; Abdel-Halim Al-Talla, Z.; Al-Rifai, N. Comparison of Artemisia annua bioactivities between traditional medicine and chemical extracts. Curr. Bioact. Compd., 2013, 9(4), 324-332.
[http://dx.doi.org/10.2174/157340720904140404151439] [PMID: 24761137]
[54]
Jacobo-Velázquez, D.A.; Cisneros-Zevallos, L. Correlations of antioxidant activity against phenolic content revisited: A new approach in data analysis for food and medicinal plants. J. Food Sci., 2009, 74(9), R107-R113.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01352.x] [PMID: 20492125]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy