A New Therapeutic Approach for Brain Delivery of Epigallocatechin Gallate: Development and Characterization Studies

Author(s): Harjeet Kaur, Baldeep Kumar, Amitava Chakrabarti, Bikash Medhi*, Manish Modi, Bishan Dass Radotra, Ritu Aggarwal, Vivek Ranjan Sinha.

Journal Name: Current Drug Delivery

Volume 16 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Blood-brain permeability is the primary concern when dealing with the biodistribution of drugs to the brain in neurological diseases.

Objective: The purpose of the study is to develop the nanoformulation of Epigallocatechin gallate (EGCG) in order to improve its bioavailability and penetration into the brain.

Methods: EGCG loaded Solid Lipid Nanoparticles (SLNs) have been developed using microemulsification method and pharmacological assessments were performed.

Results: Surface morphology and micromeritics analysis showed the successful development of EGCG loaded solid lipid nanoparticles with an average size of 162.4 nm and spherical in shape. In vitro release studies indicated a consistent and slow drug release. Pharmacological evaluation of SLN-EGCG demonstrated a significant improvement in cerebral ischemia-induced memory impairment.

Conclusion: The results indicate that the EGCG loaded SLNs provide a potential drug delivery system for improved delivery of EGCG to the brain, hence, enhancing its brain bioavailability.

Keywords: EGCG, nanoparticles, stroke, brain, memory, neurobehaviour, ischemia.

[1]
Soler, E.P.; Casado Ruiz, V. Epidemiology and risk factors of cerebral ischemia and ischemic heart diseases: Similarities and differences. Curr. Cardiol. Rev., 2010, 6(3), 138-149.
[2]
Brouns, R.; De Deyn, P. The complexity of neurobiological processes in acute ischemic stroke. Clin. Neurol. Neurosurg., 2009, 111(6), 483-495.
[3]
Hong, J.T.; Ryu, S.R.; Kim, H.J.; Lee, J.K.; Lee, S.H.; Yun, Y.P.; Lee, B.M.; Kim, P.Y. Protective effect of green tea extract on ischemia/reperfusion-induced brain injury in Mongolian gerbils. Brain Res., 2001, 888(1), 11-18.
[4]
Hou, R-R.; Chen, J-Z.; Chen, H.; Kang, X-G.; Li, M-G.; Wang, B-R. Neuroprotective effects of (−)-epigallocatechin-3-gallate (EGCG) on paraquat-induced apoptosis in PC12 cells. Cell Boil. Int., 2008, 32(1), 22-30.
[5]
Sutherland, B.A.; Shaw, O.M.; Clarkson, A.N.; Jackson, D.N.; Sammut, I.A.; Appleton, I. Neuroprotective effects of (-)-epigallocatechin gallate following hypoxia-ischemia-induced brain damage: Novel mechanisms of action. FASEB J., 2005, 19(2), 258-260.
[6]
Zhang, F.; Li, N.; Jiang, L.; Chen, L.; Huang, M. Neuroprotective effects of (−)-epigallocatechin-3-gallate against focal cerebral ischemia/reperfusion injury in rats through attenuation of inflammation. Neurochem. Res., 2015, 40(8), 1691-1698.
[7]
Mukherjee, S.; Ray, S.; Thakur, R. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[8]
Üner, M.; Yener, G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomedicine, 2007, 2(3), 289-300.
[9]
Wissing, S.; Kayser, O.; Müller, R. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev., 2004, 56(9), 1257-1272.
[10]
Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 2002, 54, S131-S155.
[11]
Garud, A.; Singh, D.; Garud, N. Solid lipid nanoparticles (SLN): Method, characterization and applications. Int. Curr. Pharm. J., 2012, 1(11), 384-393.
[12]
Kushwaha, A.K.; Vuddanda, P.R.; Karunanidhi, P.; Singh, S.K.; Singh, S. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. BioMed Res. Int., 2013, 2013, 584589.
[13]
Kumar, R.; Sinha, V. Preparation and optimization of voriconazole microemulsion for ocular delivery. Colloids Surf. B Biointerfaces, 2014, 117, 82-88.
[14]
Manjunath, K.; Reddy, J.S.; Venkateswarlu, V. Solid lipid nanoparticles as drug delivery systems. Methods Find. Exp. Clin. Pharmacol., 2005, 27(2), 127-144.
[15]
Park, J-W.; Hong, J-S.; Lee, K-S.; Kim, H-Y.; Lee, J-J.; Lee, S-R. Green tea polyphenol (−)-epigallocatechin gallate reduces matrix metalloproteinase-9 activity following transient focal cerebral ischemia. J. Nutr. Biochem., 2010, 21(11), 1038-1044.
[16]
Lim, S.H.; Kim, H.S.; Kim, Y.K.; Kim, T-M. Im, S.; Chung, M.E.; Hong, B.Y.; Ko, Y.J.; Kim, H.W.; Lee, J.I. The functional effect of epigallocatechin gallate on ischemic stroke in rats. Acta Neurobiol. Exp. (Wars.), 2010, 70(1), 40-46.
[17]
Medhi, B.; Prakash, A. Practical manual of experimental and clinical pharmacology. Jaypee Brothers, Medical Publishers Pvt. Limited:; , 2010.
[18]
Narkhede, K.P.; Kulkarni, A.R.; Savant, C. Attenuation of neuronal damage by gymnemic acid in experimentally induced cerebral ischemia in rats. J. App. Pharm. Sci., 2016, 6(6), 113-118.
[19]
Ansari, M.; Hussain, S.; Mudagal, M.; Goli, D. Neuroprotective effect of allopurinol and nimesulide against cerebral ischemic reperfusion injury in diabetic rats. Eur. Rev. Med. Pharmacol. Sci., 2013, 17(2), 170-178.
[20]
Kumar, B.; Kuhad, A.; Chopra, K. Neuropsychopharmacological effect of sesamol in unpredictable chronic mild stress model of depression: Behavioral and biochemical evidences. Psychopharmacology., 2011, 214(4), 819-828.
[21]
Chamorro, Á.; Dirnagl, U.; Urra, X.; Planas, A.M. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol., 2016, 15(8), 869-881.
[22]
Nidhin, M.; Indumathy, R.; Sreeram, K.; Nair, B.U. Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bull. Mater. Sci., 2008, 31(1), 93-96.
[23]
De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[24]
Liu, J.; Hu, W.; Chen, H.; Ni, Q.; Xu, H.; Yang, X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int. J. Pharm., 2007, 328(2), 191-195.
[25]
Helgason, T.; Awad, T.; Kristbergsson, K.; McClements, D.J.; Weiss, J. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). J. Colloid Interface Sci., 2009, 334(1), 75-81.
[26]
Freitas, C.; Müller, R.H. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. Int. J. Pharm., 1998, 168(2), 221-229.
[27]
Nazemiyeh, E.; Eskandani, M.; Sheikhloie, H.; Nazemiyeh, H. Formulation and physicochemical characterization of lycopene-loaded solid lipid nanoparticles. Adv. Pharm. Bull., 2016, 6(2), 235-241.
[28]
Shi, F.; Wei, Z.; Zhao, Y.; Xu, X. Nanostructured lipid carriers loaded with baicalin: an efficient carrier for enhanced antidiabetic effects. Pharmacogn. Mag., 2016, 12(47), 198-202.
[29]
Gokce, E.H.; Korkmaz, E.; Dellera, E.; Sandri, G.; Bonferoni, M.C.; Ozer, O. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: Evaluation of antioxidant potential for dermal applications. Int. J. Nanomedicine, 2012, 7, 1841-1850.
[30]
Das, S.; Ng, W.K.; Kanaujia, P.; Kim, S.; Tan, R.B. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: Effects of process variables. Colloids Surf. B Biointerfaces, 2011, 88(1), 483-489.
[31]
Haque, A.M.; Hashimoto, M.; Katakura, M.; Hara, Y.; Shido, O. Green tea catechins prevent cognitive deficits caused by Aβ 1-40 in rats. J. Nutr. Biochem., 2008, 19(9), 619-626.
[32]
Medhi, B.; Aggarwal, R.; Chakrabarti, A. Neuroprotective effect of pioglitazone on acute phase changes induced by partial global cerebral ischemia in mice. Indian J. Exp. Biol., 2010, 48(8), 793-799.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 16
ISSUE: 1
Year: 2019
Page: [59 - 65]
Pages: 7
DOI: 10.2174/1567201815666180926121104
Price: $58

Article Metrics

PDF: 19
HTML: 4
EPUB: 1
PRC: 1