Chitosan: A Natural and Sustainable Polymeric Organocatalyst for C-C Bond Formation During the Synthesis of 5-amino-2,3-dihydrobenzo[d] thiazole-4,6-dicarbonitriles

Author(s): Km N. Shivhare , Ibadur R. Siddiqui* .

Journal Name: Current Organocatalysis

Volume 6 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: A green, recyclable and reusable chitosan catalyst has been utilized for the synthesis of 5-amino-2,3-dihydrobenzo[d]thiazole-4,6-dicarbonitrile and its derivatives.

Methods and Results: Three-component reaction protocol incorporates the reaction of aldehydes, malononitrile and rhodanine derivatives. This is examined as an efficient route for the synthesis of dicarbonitriles utilizing a green, biodegradable, environmentally benign, and easily available chitosan catalyst. In the reported protocol, catalyst can be recycled and not any substantial dropping in its catalytic activity during the recycling steps was obtained.

Conclusion: A green and environmentally benign, one pot three-component protocol has been illustrated for the synthesis of 5-amino-2,3-dihydrobenzo[d]thiazole-4,6-dicarbonitrile derivatives. Adequately yield products were gained via the natural catalytic approach with the recyclability of the catalyst. The use of chitosan represents this procedure as an attractive substitute for the synthesis of biaryls complex by multicomponent reaction condition.

Keywords: 5-amino-2, 3-dihydrobenzo[d]thiazole-4, 6-dicarbonitrile, biaryl, chitosan, green & biodegradable, natural biopolymer, organocatalyst.

[1]
(a) Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.M. Magnetically recoverable nanocatalysts. Chem. Rev., 2011, 111, 3036-3075.
(b) Nasir Baig, R.B.; Varma, R.S. Organic synthesis via magnetic attraction: benign and sustainable protocols using magnetic nanoferrites. Green Chem., 2013, 15, 398-417.
(c) Nasir Baig, R.B.; Varma, R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun., 2013, 49, 752-770.
(d) Srivastava, M.; Rai, P.; Singh, J.; Singh, J. An environmentally friendlier approach-ionic liquid catalysed, water promoted and grinding induced synthesis of highly functionalised pyrazole derivatives. RSC Advances, 2013, 3, 16994-16998.
[2]
(a) Dittmer, D.C. ‘No-solvent’ Organic Synthesis. Chem. Ind., 1997, 19, 779-784.
(b) VandenEynde, J.J.; Hecq, N.; Kataeva, O.; Kappe, C.O. Microwave-mediated regioselective synthesis of novel pyrimido [1,2-a]pyrimidines under solvent-free conditions. Tetrahedron, 2001, 57, 1785-1791.
[3]
Singh, J.; Dutta, P.K.; Dutta, J.; Hunt, A.J.; Macquarrie, D.J.; Clark, J.H. Preparation and properties of highly soluble chitosan-l-glutamic acid aerogel derivative. Carbohydr. Polym., 2009, 76, 188-195.
[4]
Singh, J.; Dutta, P.K. Antibacterial and physiochemical behavior of prepared chitosan/pyridine-3,5-di-carboxylic acid complex for biomedical applications. J. Macromol. Sci., 2011, 48, 246-253.
[5]
Rajendra Reddy, K.; Rajgopal, K.; Uma Maheswari, C.; Lakshmi Kantam, M. Chitosan hydrogel: A green and recyclable biopolymer catalyst for aldol and Knoevenagel reactions. New J. Chem., 2006, 30, 1549-1552.
[6]
Dekamin, M.G.; Azimoshan, M.; Ramezani, L. Chitosan: a highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of α-amino nitriles and iminesunder mild conditions. Green Chem., 2013, 15, 811-820.
[7]
Mahe, O.; Briere, J-F.; Dez, I. Chitosan: An upgraded polysaccharide waste for organocatalysis. Eur. J. Org. Chem., 2015, 12, 2559-2578.
[8]
Bodhak, C.; Kundu, A.; Pramanik, A. An efficient and recyclable chitosan supported copper(II) heterogeneous catalyst for C-N cross coupling between aryl halides and aliphatic diamines. Tetrahedron Lett., 2015, 56, 419-424.
[9]
Subba Reddy, B.V.; Venkateswarlu, A. NiranjanReddy, G.; Rami Reddy, Y.V. Chitosan-SO3H: an efficient, biodegradable, and recyclable solid acid for the synthesis of quinoline derivatives via Friedländer annulation. Tetrahedron Lett., 2013, 54, 5767-5770.
[10]
Siddiqui, Z.N. Chitosan catalyzed an efficient, one pot synthesis of pyridine derivatives. Tetrahedron Lett., 2015, 56, 1919-1924.
[11]
(a)Torssell, K.G.B. Natural Product Chemistry; Wiley: Chichester, 1983.
(b)Thomson, R.H. The Chemistry of Natural Products; Blackie and Son: Glasgow, 1985.
[12]
Bringmann, G.; Gulder, T.; Gulder, T.A.M.; Breuning, M. Atroposelective total synthesis of axially chiral biaryl natural products. Chem. Rev., 2011, 111, 563-639.
[13]
(a) Noyori, R. Chemical multiplication of chirality: science and applications. Chem. Soc. Rev., 1989, 18, 187-208.
(b) Andersen, N.G.; Maddaford, S.P.; Keay, B.A. A modified in situ suzuki cross-coupling of haloarenes for the preparation of C2-symmetric biaryls. J. Org. Chem., 1996, 61, 9556-19559.
[14]
(a) Grӓber, P. Photoinduced electron trnasfer. Ber. Bunsenges. Phys. Chem, 1990, 94, 204-205.
(b) Kurreck, H.; Huber, M. Model reactions for photosynthesis-photoinduced charge and energy transfer between covalently linked porphyrin and quinone units. Angew. Chem. Int. Ed. Engl., 1995, 34, 849-866.
[15]
(a)Prasad, P.N.; Williams, D.J. Introduction to Nonlinear Optical Effects in Molecules and Polymers; Wiley: New York, 1991.
(b) Nalwa, H.S. Organic materials for third-order nonlinear optics. Adv. Mater., 1993, 5, 341-358.
[16]
van Mullekom, H.A.M.; Vekemans, J.A.J.M.; Meijer, E.W. Band-gap engineering of donor-acceptor-substituted ᴨ–conjugated polymers. Chem. Eur. J, 1998, 4, 1235-1243.
[17]
(a)Launay, J.P. Molecular Electronics. In Granular Nanoelectronics: New York, 1991.
(b)Petty, M.C.; Bryce, M.R.; Bloor, D., Eds.; Introduction to Molecular Electronics; New York, 1995.
[18]
Cui, S.L.; Lin, X.F.; Gang, W.Y. Parallel synthesis of strongly fluorescent polysubstituted 2,6-dicyanoanilines via microwave-promoted multicomponent reaction. J. Org. Chem., 2005, 70, 2866-2869.
[19]
Singh, F.V.; Vatsyayan, R.; Roy, U.; Goel, A. Arylanthranilodinitriles: A new biaryl class of antileishmanial agents. Bioorg. Med. Chem. Lett., 2006, 16, 2734-2737.
[20]
Sawargave, S.P.; Kudale, A.S.; Deore, J.V.; Bhosale, D.S.; Divse, J.M.; Chavan, S.P.; Borate, H.B. One-step synthesis of 4-alkyl-3-aryl-2,6-dicyanoanilines and their use in the synthesis of highly functionalized 2,3,5,6,7- and 2,3,4,5,7-substituted indoles. Tetrahedron Lett., 2011, 52, 5491-2493.
[21]
Boschelli, D.H.; Connor, D.T.; Bornemeier, D.A.; Dyer, R.D.; Kennedy, J.A.; Kuipers, P.J.; Okonkwo, G.C.; Schrier, D.J.; Wright, C.D. 1,3,4-Oxadiazole, 1,3,4-thiadiazole, and 1,2,4-triazole analogs of the fenamates: in vitro inhibition of cyclooxygenase and 5-lipoxygenase activities. J. Med. Chem., 1993, 36, 1802-1810.
[22]
Kohli, P.; Srivastava, S.; Srivastava, S.K. Synthesis and biological activity of mercaptobenzoxazole based thiazolidinones and their arylidenes. J. Chin. Chem. Soc., 2007, 54, 1003-1010.
[23]
Paramashivappa, R.; Kumar, P.P.; Rao, P.S.; Rao, A.S. Design, synthesis and biological evaluation of benzimidazole/benzothiazole and benzoxazole derivatives as cyclooxygenase inhibitors. Bioorg. Med. Chem. Lett., 2003, 13, 657-660.
[24]
Refaey, S.; Taha, F.; El-Malak, A.A. Inhibition of stainless steel pitting corrosion in acidic medium by 2-mercaptobenzoxazole. Appl. Surf. Sci., 2004, 236, 175-185.
[25]
Liu, X.; Liu, M.; Xu, W.; Zeng, M-T.; Zhu, H.; Chang, C-Z.; Dong, Z-B. An environmentally benign and efficient synthesis of substituted benzothiazole-2-thiols, benzoxazole-2-thiols, and benzimidazoline-2-thiones in water. Green Chem., 2017, 19, 5591-5598.
[26]
Anitha, M.; Swamy, K.C.K. Synthesis of thiazolidine-thiones, imino-thiazolidines and oxazolidines via the base promoted cyclisation of epoxy-sulfonamides and heterocumulenes. Org. Biomol. Chem., 2018, 16, 402-413.
[27]
Liu, Y.; Liu, J.; Liu, X. Reaction of 2-thiazolidinethione with halohydrocarbon: synthesis of novel N -alkylated 2-thiazolidinethione and S -alkylated thiazoline derivatives. Heterocycl. Commun., 2010, 16, 275-278.
[28]
Wang, S.; Zha, Y.; Wang, S.; Zhang, J.; Sun, J.; Rong, L.; Cai, P. An efficient and facile synthesis of 5-amino-2,3-dihydrobenzo[d]thiophene-4,6-dicarbonitrile and 5-amino-2,3-dihydrobenzo[d]thiazole-4,6-dicarbonitrile derivatives. Res. Chem. Intermed., 2015, 41, 6041-6051.
[29]
Siddiqui, I.R.; Rai, P. Rahila, Srivastava, A. Chitosan: an efficient promoter for the synthesis of 2-aminopyrimidine-5-carbonitrile derivatives in solvent free conditions. New J. Chem., 2014, 38, 3791-3795.
[30]
Rai, P.; Srivastava, M.; Singh, J.; Singh, J. Chitosan/ionic liquid forms a renewable and reusable catalyst system used for the synthesis of highly functionalized spiro derivatives. New J. Chem., 2014, 38, 3181-3186.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 6
ISSUE: 1
Year: 2019
Page: [69 - 76]
Pages: 8
DOI: 10.2174/2213337205666180925142458

Article Metrics

PDF: 26
HTML: 2