Measurement of Hydrogen Sulfide Concentration by use of Carbon Nanotubes and 1-allyl-3-Methylimidazolium Bromide

Author(s): Nahid Parsafar*, Aghdas Banaei.

Journal Name: Nanoscience & Nanotechnology-Asia

Volume 9 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Objective: In this research, carboxylated multi-walled carbon nanotubes were used to construct working and counter electrodes of the electrochemical gas sensor. The 1-allyl-3- methylimidazolium bromides which is a hydrophilic room temperature ionic liquid was used as the electrolyte. Finally, the sensor was used to measure hydrogen sulfide and carbon monoxide in the air.

Methods: The electrochemical method was used to measure the hydrogen sulfide concentration. To record sensor response, chronoamperometry was performed. Also, impedance spectroscopy of screen printed electrodes modified with MWCNTs-COOH was done. The working electrode was characterized by field emission scanning electron microscopy (FESEM), Energy-Dispersive X-Ray Spectroscopy (EDX) and Fourier-Transform Infrared (FTIR) spectroscopy.

Results: In the range of 0.6 ppm to 10 ppm, the sensor had a linear behavior and its sensitivity was 0.3716 µA / ppm. The results of the FESEM, EDX and FTIR analysis confirm the desired structure of the working electrode. Impedance spectroscopy shows that by using ionic liquid electrolyte the impedance is less than the case of the sulfuric acid electrolyte.

Conclusion: The use of ionic liquid as an electrolyte can increase the sensor sensitivity about 141% with respect to sulfuric acid as the electrolyte, in 0.6 ppm to 10 ppm concentration range of H2S gas. Also, the sensor response to hydrogen sulfide is more than one thousand times greater than its response to carbon monoxide per 1 ppm of gas.

Keywords: Electrochemical gas sensing, carboxylated carbon nanotubes, 1-Allyl-3-methylimidazolium bromide, hydrogen sulfide, chronoamperometry, impedance spectroscopy.

Occupational Safety and Health Administration. U.S. Department of Labor: Hydrogen Sulfide Fact Sheet, Available from: (Accessed on: October 2005)
Dorman, D.C.; Moulin, F.J.M.; McManus, B.E.; Mahle, K.C.; James, R.A.; Struve, M.F. Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: Correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium. Toxicol. Sci., 2002, 65(1), 18-25.
Xu, L.; Li, T.; Gao, X.; Wang, Y. In: Behaviour of a catalytic combustion methane gas sensor working on pulse mode Proceedings of the IEEE International Conference on Sensors, Kona, HI, USA November 1-42010, pp. 391-394.
Lee, E.B.; Hwang, I.S.; Cha, J.H.; Lee, H.J.; Lee, W.B.; Pak, J.J.; Lee, J.H.; Ju, B.K. Micromachined catalytic combustible hydrogen gas sensor. Sens. Actuat B Chem., 2011, 153(2), 392-397.
Tardy, P.; Coulon, J.R.; Lucat, C.; Menil, F. Dynamic thermal conductivity sensor for gas detection. Sens. Actuat B Chem., 2004, 98(1), 63-68.
Simon, I.; Arndt, M. Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications. Sens. Actuat A Phys., 2002, 97-98, 104-108.
Graaf, G.; Wolffenbuttel, R. Surface micromachined thermal conductivity detectors for gas sensing. Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Graz, May 13-16, 2012, pp. 1861-1864
Xiong, L.; Compton, R.G. Amperometric gas detection: A review. Int. J. Electrochem. Sci., 2014, 9, 7152-7181.
Stetter, J.R.; Li, J. Amperometric gas sensorss- A review. Chem. Rev., 2008, 108(2), 352-366.
Lee, C.; Akbar, S.A.; Park, C.O. Potentiometric CO2 gas sensor with lithium phosphorous oxynitride electrolyte. Sens. Actuat B Chem., 2001, 80(3), 234-242.
Massie, C.; Stewart, G.; McGregor, G.; Gilchrist, J.R. Design of a portable optical sensor for methane gas detection. Sens. Actuat B Chem., 2006, 113(2), 830-836.
Acquaroli, L.N.; Urteaga, R.; Koropecki, R.R. Innovative design for optical porous silicon gas sensor. Sens. Actuat B Chem., 149(1)2010, , 189-193.
Chen, D.; Liu, W.; Zhang, Y.; Liu, J.; Kan, R.; Wang, M.; Chen, J.; Cui, Y. In: H2S detection by tunable diode laser absorption spectroscopy Proceedings of the IEEE International Conference on Information Acquisition, Shandong August 20-232006, pp. 754-758.
Zhang, G.; Li, Y.; Li, Q. A miniaturized carbon dioxide gas sensor based on infrared absorption. Optics. Lasers Eng., 2010, 48(12), 1206-1212.
Khodadadi, A.; Mohajerzadeh, S.S.; Mortazavi, Y.; Miri, A.M. Cerium oxide/SnO2-based semiconductor gas sensors with improved sensitivity to CO. Sens. Actuat B Chem., 2001, 80(3), 267-271.
Korotcenkov, G. Practical aspects in design of oneelectrode semiconductor gas sensors: Status report. Sens. Actuat B Chem., 2007, 121(2), 664-678.
Shimanoe, K.; Yuasa, M.; Kida, T.; Yamazoe, N. In: Semiconductor gas sensor using nano-sized oxide for high-sensitive detection of environment-related gases Proceedings of the IEEE International Conference on Nanotechnology Materials and Devices October, 2011, pp. 38-43.
Lim, C.; Wang, W.; Yang, S.; Lee, K. Development of SAW-based multi-gas sensor for simultaneous detection of CO2 and NO2. Sens. Actuat B Chem., 2011, 154(1), 9-16.
Fischerauer, G.; Dickert, F.; Forth, P.; Knauer, U. In: Chemical sensors based on SAW resonators working at up to 1 GHz. Proceedings of the IEEE Ultrasonics Symposium, 1996, 1, 439-442.
Hamidon, M.N.; Skarda, V.; White, N.M.; Krispel, F.; Krempl, P.; Binhack, M.; Buff, W. Fabrication of high temperature surface acoustic wave devices for sensor applications. Sens. Actuat. A, 2005, 123(1), 403-407.
Yunusa, Z.; Hamidon, M.N.; Kaiser, A.; Awang, Z. Gas sensors: A review. Sens. Trans., 2014, 168(4), 61-75.
Wang, Y.; Yeow, J.T.W. A review of carbon nanotubes-based gas sensors. J. Sens., 2009, 2009, 493904.
Misra, A. Carbon nanotubes and graphene-based chemical sensors. Curr. Sci., 2014, 107(3), 419-429.
Karimi, M.; Ghasemi, A.; Mirkiani, S.; Moosavi Basri, S.M.; Hamblin, M.R. Carbon Nanotubes in Drug Gene Delivery; Morgan & Claypool Publishers: USA, 2017.
Barkade, S.S.; Gajare, G.R.; Mishra, S.; Naik, J.B.; Gogate, P.R.; Pinjari, D.V.; Sonawane, S.H. Chemical functionalization of carbon nanomaterials: Chemistry and applications. 1st ed, Vijay Kumar Thakur, Manju Kumari Thakur, Eds.; CRC Press: USA, 2018, pp. 868-897.
Ouyang, M.; Li, W.J. In: Performance of F-CNTs sensors towards ethanol vapor using different functional groups 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China Jan 20-232010, pp. 928-931.
Dong, K.Y.; Choi, J.; Lee, Y.D.; Kang, B.H.; Yu, Y.Y.; Choi, H.H.; Ju, B.K. Detection of a CO and NH3 gas mixture using carboxylic acid-functionalized single-walled carbon nanotubes. Nanoscale Res. Lett., 2013, 8(1), 12.
Yourong, W.; Heqing, Y.; E’feng, W. The electrochemical oxidation and the quantitative determination of hydrogen sulfide on a solid polymer electrolyte-based system. J. Electroanal. Chem., 2001, 497(1), 163-167.
Yu, C.; Wang, Y.; Hua, K.; Xing, W.; Lu, T. Electrochemical H2S sensor with H2SO4 pre-treated Nafion membrane as solid polymer electrolyte. Sens. Actuators B Chem., 2002, 86(2), 259-265.
Kramer, K.E.; Pehrsson, S.L.R.; Hammond, M.H.; Tillett, D.; Streckert, H.H. Detection and classification of gaseous sulfur compounds by solid electrolyte cyclic voltammetry of cermet sensor array. Anal. Chim. Acta, 2007, 584(1), 78-88.
Tataria, H.; Schneider, A.A. Electrochemical cell for the detection of hydrogen sulfide. U.S. Patent 4169779 A, Oct 2, 1979.
Rehman, A.; Zeng, X. Methods and approaches of utilizing ionic liquids as gas sensing materials. RSC Adv, 2015, 5(72), 58371-58392.
Gębicki, J.; Kloskowski, A.; Chrzanowski, W.; Stepnowski, P.; Namiesnik, J. Application of ionic liquids in amperometric gas sensors. Crit. Rev. Anal. Chem., 2016, 46(2), 122-138.
Abdelhamid, H.N. Ionic liquids for mass spectrometry: Matrices, separation and microextraction. Trends Analyt. Chem., 2015.
Abdelhamid, H.N. Organic matrices, ionic liquids, and organic matrices@nanoparticles assisted laser desorption/ionization mass spectrometry. Trends Analyt. Chem., 2017, 89, 68-98.
Abdelhamid, H.N.; Shahnawaz Khan, M.S.; Wu, H.F. Design, characterization and applications of new ionic liquid matrices for multifunctional analysis of biomolecules: A novel strategy for pathogenic bacteria biosensing. Anal. Chim. Acta, 2014, 823, 51-60.
Abdelhamid, H.N. Ionic liquids matrices assisted laser desorption/ionization mass spectrometry (ILMALDI-MS). Mass Spectrom. Purif. Tech, 2015, 1, 2.
Bhaisare, M.L.; Abdelhamid, H.N. Wu1, B.S.; Wu, H.F. Rapid and direct MALDI-MS identification of pathogenic bacteria from blood using ionic liquid-modified magnetic nanoparticles (Fe3O4@SiO2). J. Mater. Chem. B , 2014, 2, 4671-4683.
Wulandari1, S.A.; Arifin, Widiyandari, H.; Subagio, A. Synthesis and characterization carboxyl functionalized Multi- Walled Carbon Nanotubes (MWCNT-COOH) and NH2 functionalized Multi-Walled Carbon Nanotubes (MWCNTNH2). J. Phys. Conf. Series., 2018, 1025, 1.
Zhang, W.D.; Zhang, W.H. Carbon nanotubes as active components for gas sensors. J. Sens., 2009, 2009, 160698.
Shirkavand Hadavand, B.; Mahdavi Javid, K.; Gharagozlou, M. Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite. Mater. Des., 2013, 50, 62-67.
Taberna, P.; Simon, P.; Fauvarque, J.F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc., 2003, 150(3), A292-A300.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [398 - 407]
Pages: 10
DOI: 10.2174/2210681208666180925141748
Price: $58

Article Metrics

PDF: 17
PRC: 2