Deposition of Cr Atoms Using Switching-Detuning Light Mask for Direct Atom Lithography

Author(s): Li Zhu, Xiao Deng*, Jie Liu, Xinbin Cheng, Tongbao Li.

Journal Name: Current Nanoscience

Volume 15 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: As progress on the nanofabrication has made semiconductor developed rapidly, there is an increasing need in precise pitch standards to calibrate the structure of devices at nanoscale. Nano-gratings fabricated by atom lithography are unique and suitable to act as precise pitch standard because its pitch distance is directly traceable to a natural constant. As the scaling down of nano-devices, it is very challenging to double the spatial frequency of nano-grating while keeping the self-traceability in atom lithography.

Methods: In this study, the switching-detuning light mask is utilized for Cr atom lithography. During a single deposition process, the standing wave frequency is switching from positive detuning to negative detuning alternatively.

Results: Nano-gratings fabricated using switching-detuning light mask is successfully replicated with double spatial frequency and self-traceability. Non-uniformity between neighboring Cr lines shows up with a corrected pitch of 107.15±0.35 nm.

Conclusion: Non-uniformity is mainly caused by the dipole force discrepancy between positive and negative detuning light mask. Therefore, to increase the high uniformity of nano-gratings, the deposition time of negative detuning should be at least twice as the positive detuning. On the other hand, to reduce the pitch uncertainty, it is necessary to reduce the distance between the atom beam and reflection mirror as close as possible. These two significant optimization designs are promising to increase the spatial frequency doubling performance with high uniformity and accuracy.

Keywords: Atom lithography, standard material, self-traceability, double spatial frequency, height uniformity, pitch accuracy.

[1]
Dai, G.; Pohlenz, F.; Xu, M.; Koenders, L.; Danzebrink, H.U.; Wilkening, G. Accurate and traceable measurement of nano- and microstructures. Meas. Sci. Technol., 2006, 17, 545-552.
[2]
Pfeiffer, H.C.; Langner, G.O. Advanced deflection concept for large area, high resolution e-beam lithography. J. Vac. Sci. Technol., 1981, 19, 1058-1063.
[3]
Preist, T.W.; Cotter, N.P.K.; Sambles, J.R. Periodic multilayer gratings of arbitrary shape. J. Opt. Soc. Am. A, 1995, 12, 1740-1748.
[4]
McClelland, J.J.; Scholten, R.E.; Palm, E.C.; Celotta, R.J. Laser-focused atomic deposition. Science, 1993, 262, 877-880.
[5]
Lei, L.; Li, Y.; Deng, X.; Fan, G.; Cai, X.; Cheng, X.; Weng, J.; Liu, G.; Li, T. Laser-focused Cr atomic deposition pitch standard as a reference standard. Sens. Actuators A Phys., 2015, 222, 184-193.
[6]
Anderson, W.R.; Bradley, C.C.; Mcclelland, J.J.; Celotta, R.J. Minimizing feature width in atom optically fabricated chromium nanostructures. Phys. Rev. A, 2010, 59, 2476-2485.
[7]
McGowan, R.W.; Giltner, D.M.; Lee, S.A. Light force cooling, focusing, and nanometer-scale deposition of aluminum atoms. Opt. Lett., 1995, 20, 2535-2537.
[8]
te Sligte, E.; Smeets, B.; van der Stam, K.M.R.; Herfst, R.W.; van der Straten, P.; Beijerinck, H.C.W.; van Leeuwen, K.A.H. Atom lithography of Fe. Appl. Phys. Lett., 2004, 85, 4493-4495.
[9]
Lison, F.; Haubrich, D.; Meschede, D. Nanoscale atomic lithography with a cesium atomic beam. Appl. Phys. B, 1997, 65, 419-421.
[10]
Ohmukai, R.; Urabe, S.; Watanabe, M. Atom lithography with ytterbium beam. Appl. Phys. B, 2003, 77, 415-419.
[11]
Gupta, R.; Mcclelland, J.J.; Celotta, R.J.; Marte, P. Raman-induced avoided crossings in adiabatic optical potentials: Observation of λ/8 spatial frequency in the distribution of atoms. Phys. Rev. Lett., 1996, 129, 4689-4692.
[12]
He, X.; Yu, S.; Xu, P.; Wang, J.; Zhan, M. Combining red and blue-detuned optical potentials to form a Lamb-Dicke trap for a single neutral atom. Opt. Express, 2012, 20, 3711-3724.
[13]
Oberthaler, M.K.; Pfau, T. One-, two- and three-dimensional nanostructures with atom lithography. J. Phys. Condens. Matter, 2003, 15, R233-R255.
[14]
Jurdik, E.; Rasing, T.; van Kempen, H.; Bradley, C.C.; McClelland, J.J. Surface growth in laser-focused atomic deposition. Phys. Rev. B, 1999, 60, 1543-1546.
[15]
Schulze, T.; Brezger, B.; Schmidt, P.O.; Mertens, R.; Bell, A.S.; Pfau, T.; Mlynek, J. Sub-100 nm structures by neutral atom lithography. Microelectron. Eng., 1999, 46, 105-108.
[16]
Wang, J.; Qian, J.; Yin, C.; Shi, C.; Lei, M. Method of identifying the relative position between standing wave of laser light and substrate in atom lithography. Acta Phys. Sin., 2012, 61190601
[17]
Smeets, B.; van der Straten, P.; Meijer, T.; Fabrie, C.; van Leeuwen, K.A.H. Atom lithography without laser cooling. Appl. Phys. B, 2010, 98, 697-705.
[18]
Zhang, W. The Research of Laser Collimation and Deposition of Chromium Atomic Beam., PhD Thesis, Tongji University: Shanghai, March. 2008.
[19]
McClelland, J.J.; Anderson, W.R.; Bradley, C.C.; Walkiewicz, M.; Celotta, R.J.; Jurdik, E.; Deslattes, R.D. Accuracy of nanoscale pitch standards fabricated by laser-focused atomic deposition. J. Res. Natl. Inst. Stand. Technol., 2003, 108, 99-113.
[20]
Tortonese, M.; Guan, Y.; Prochazka, J. NIST-traceable calibration of CD-SEM magnification using a 100-nm pitch standard. Proc. SPIE, 2003, 5038, 711-718.
[21]
Lei, L.; Li, Y.; Fan, G.; Li, T. The measurement of nano dimension standard by laser focus sensor. Sens. Actuators A Phys., 2013, 203, 430-433.
[22]
Joannopoulos, J.D.; Villeneuve, P.R.; Fan, S. Erratum: Photonic crystals: putting a new twist on light. Nature, 1997, 386, 143-149.
[23]
Kane, B.E. A silicon-based nuclear spin quantum computer. Nature, 1998, 393, 133-137.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 6
Year: 2019
Page: [626 - 630]
Pages: 5
DOI: 10.2174/1573413714666180925123758
Price: $58

Article Metrics

PDF: 19
HTML: 3