Improved In vivo Effect of Chrysin as an Absorption Enhancer Via the Preparation of Ternary Solid Dispersion with Brij®L4 and Aminoclay

Author(s): Sang Hoon Lee, Yeo-song Lee, Jae Geun Song, Hyo-Kyung Han *.

Journal Name: Current Drug Delivery

Volume 16 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: Chrysin is a strong inhibitor of breast cancer resistance protein (BCRP) but it is practically insoluble in water. Effective solubilization of chrysin is critical for its pharmaceutical application as an absorption enhancer via inhibition of BCRP-mediated drug efflux.

Objective: This study aimed to develop an effective oral formulation of chrysin to improve its in vivo effect as an absorption enhancer.

Method: Solid dispersions (SDs) of chrysin were prepared with hydrophilic carriers having surface acting properties and a pH modulator. In vitro and in vivo characterizations were performed to select the optimal SDs of chrysin.

Results: SDs with Brij®L4 and aminoclay was most effective in increasing the solubility of chrysin by 13-53 fold at varying drug-carrier ratios. Furthermore, SDs significantly improved the dissolution rate and extent of drug release. SDs (chrysin: Brij®L4: aminoclay=1:3:5) achieved approximately 60% and 83% drug release within 1 h and 8 h, respectively, in aqueous medium, while the dissolution of the untreated chrysin was less than 13%. XRD patterns indicated the amorphous state of chrysin in SDs. The SD formulation was effective in improving the bioavailability of topotecan, a BCRP substrate in rats. Following oral administration of topotecan with the SDs of chrysin, the Cmax and AUC of topotecan was enhanced by approximately 2.6- and 2-fold, respectively, while the untreated chrysin had no effect.

Conclusion: The SD formulation of chrysin with Brij®L4 and aminoclay appeared to be promising in improving the dissolution of chrysin and enhancing its in vivo effect as an absorption enhancer.

Keywords: Chrysin, solid dispersion, BCRP inhibitor, dissolution, topotecan, ATP-binding cassette (ABC).

Mao, Q. Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J., 2005, 7, E118-E133.
Taipalensuu, J.; Tornblon, H.; Lindberg, G.; Einarsson, C.; Sjoqvist, F.; Melhus, H.; Garberg, P.; Sjostrom, B.; Lundgren, B.; Artursson, P. Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial CaCo-2 cell monolayers. J. Pharmacol. Exp. Ther., 2001, 299, 164-170.
Jonker, J.W.; Smit, J.W.; Brinkhuis, R.F.; Maliepaard, M.; Beijnen, J.H.; Schellens, J.H.; Schinkel, A.H. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J. Natl. Cancer Inst., 2000, 92, 1651-1656.
Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther., 2002, 96, 67-202.
Mani, R.; Natesan, V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 2018, 145, 187-196.
Chen, Y.H.; Yang, Z.S.; Wen, C.C.; Chang, Y.S.; Wang, B.C.; Hsiao, C.A.; Shih, T.L. Evaluation of the structure-activity relationship of flavonoids as antioxidants and toxicants of zebrafish larvae. Food Chem., 2012, 134, 717-724.
Gresa‐Arribas, N.; Serratosa, J.; Saura, J.; Solà, C. Inhibition of CCAAT/enhancer binding protein δ expression by chrysin in microglial cells results in anti‐inflammatory and neuroprotective effects. J. Neurochem., 2010, 115, 526-536.
Yamamoto, Y. Effects of dietary chrysin supplementation on blood pressure and oxidative status of rats fed a high-fat high-sucrose diet. Food Sci. Technol. Res., 2014, 20, 295-300.
Samarghandian, S.; Azimin-Nezhad, M.; Samini, F.; Farkhondeh, T. Chrysin treatment improves diabetes and its complications in streptozotocin-induced diabetic rat. Can. J. Physiol. Pharmacol., 2016, 94, 388-393.
Khoo, B.Y.; Chua, S.L.; Balaram, P. Apoptotic effects of chrysin in human cancer cell lines. Int. J. Mol. Sci., 2010, 11, 2188-2199.
Zhang, S.; Yang, X.; Morris, M.E. Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport. Mol. Pharmacol., 2004, 65, 1208-1216.
Zhang, S.; Wang, X.; Sagawa, K.; Morris, M.E. Flavonoids chrysin and benzoflavone, potent breast cancer resistance protein inhibitors, have no significant effect on topotecan pharmacokinetics in rats or mdr1a/1b (-/-) mice. Drug Metab. Dispos., 2005, 33, 341-348.
Walle, T.; Otake, Y.; Brubaker, J.A.; Walle, U.K.; Halushka, P.V. Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br. J. Clin. Pharmacol., 2001, 51, 143-146.
Zhou, L.; Zhang, P.; Yang, G.; Lin, R.; Wang, W.; Liu, T.; Zhang, L.; Zhang, J. solubility of chrysin in ethanol and water mixtures. J. Chem. Eng. Data, 2014, 59, 2215-2220.
Kwon, Y.E.; Kim, H.M.; Park, S.Y.; Jung, S.H. Enhancement of solubility and antioxidant activity of some flavonoids based on the inclusion complexation with sulfobutylether β-cyclodextrin. Bull. Korean Chem. Soc., 2010, 31, 3035-3037.
Sassa-Deepaeng, T.; Pikulkaew, S.; Okonogi, S. Development of chrysin loaded poloxamer micelles and toxicity evaluation in fish embryos. Drug Discov. Ther., 2016, 10, 150-155.
Castro, G.T.; Ferretti, F.H.; Blanco, S.E. Determination of the overlapping pK(a) values of chrysin using UV-vis spectroscopy and ab initio methods. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2005, 62, 657-665.
Nguyen, M.N.U.; Vo, T.V.; Tran, P.H.L.; Tran, T.T.D. Zein-based solid dispersion for potential application in targeted delivery. J. Pharm. Investig., 2017, 47, 357-364.
Singh, J.; Walia, M.; Harikumar, S. Solubility enhancement by solid dispersion method: A review. J. Durg Deliv. Sci. Technol., 2013, 3, 148-155.
Yamashita, S.; Fukunishi, A.; Higashino, H.; Kataoka, M.; Wada, K. Design of supersaturable formulation of telmisartan with pH modifier: In vitro study on dissolution and precipitation. J. Pharm. Investig., 2017, 47, 163-171.
Vo, C.L.N.; Park, C.; Lee, B.J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur. J. Pharm. Biopharm., 2013, 85, 799-813.
Liu, X.; Feng, X.; Williams, III , R.O.; Zhang, F. Characterization of amorphous solid dispersions. J. Pharm. Investig., 2018, 48, 19-41.
Ziaee, A.; Albadarin, A.B.; Padrela, L.; Faucher, A.; O’Reilly, E.; Walker, G. Spray drying ternary amorphous solid dispersions of ibuprofen - An investigation into critical formulation and processing parameters. Eur. J. Pharm. Biopharm., 2017, 120, 43-51.
Hwang, I.; Kang, C-Y.; Park, J-B. Advances in hot-melt extrusion technology toward pharmaceutical objectives. J. Pharm. Investig., 2017, 47, 123-132.
Prasad, D.; Chauhan, H.; Atef, E. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug-polymer interaction for synergistic effects. J. Pharm. Sci., 2014, 103, 3511-3523.
Seo, S.W.; Han, H.K.; Chun, M.K.; Choi, H.K. Preparation and pharmacokinetic evaluation of curcumin solid dispersion using Solutol® HS15 as a carrier. Int. J. Pharm., 2012, 424, 18-25.
Karata, A.; Yuksel, N.; Baykara, T. Improved solubility and dissolution rate of piroxicam using gelucire 44/14 and labrasol. Farmaco, 2005, 60, 777-782.
Yang, L.; Shao, Y.; Han, H.K. Improved pH-dependent drug release and oral exposure of telmisartan, a poorly soluble drug through the formation of drug-aminoclay complex. Int. J. Pharm., 2014, 471, 258-263.
Edwards, D.A.; Luthy, R.G.; Liu, Z. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ. Sci. Technol., 1991, 25, 127-133.
Jafvert, C.T.; Van Hoof, P.L.; Heath, J.K. Solubilization of non-polar compounds by non-ionic surfactant micelles. Water Res., 1994, 28, 1009-1017.
Yamagata, T.; Kusuhara, H.; Morishita, M.; Takayama, K.; Benameur, H.; Sugiyama, Y. Effect of excipients on breast cancer resistance protein substrate uptake activity. J. Control. Release, 2007, 124, 1-5.
Datta, K.K.R. Achari, A.; Eswaramoorthy, M. Aminoclay: A functional layered material with multifaceted applications. J. Mater. Chem. A., 2013, 1, 6707-6718.
Kim, I.S.; Park, J-S.; Kim, K-W. Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Appl. Geochem., 2001, 16, 1419-1428.
Chadha, R.; Bhalla, Y.; Nandan, A.; Chadha, K.; Karan, M. Chrysin cocrystals: Characterization and evaluation. J. Pharm. Biomed. Anal., 2017, 134, 361-371.
Platzer, P.; Schaden, S.; Thalhammer, T.; Hamilton, G.; Rosenberg, B.; Silgoner, I.; Jager, W. Biotransformation of topotecan in the isolated perfused rat liver: Identification of three novel metabolites. Anticancer Res., 1998, 18, 2695-2700.
Kruijtzer, C.M.F.; Beijnen, J.H.; Rosing, H.; ten Bokkel Huinink, W.W.; Schot, M.; Jewell, R.C.; Paul, E.M.; Schellens, J.H.M. Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-Glycoprotein inhibitor GF120918. J. Clin. Oncol., 2002, 20, 2943-2950.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [86 - 92]
Pages: 7
DOI: 10.2174/1567201815666180924151458

Article Metrics

PDF: 19