Breaking the Barrier of Cancer Through Liposome Loaded with Phytochemicals

Author(s): Tapan Kumar Giri*.

Journal Name: Current Drug Delivery

Volume 16 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Currently, the most important cause of death is cancer. To treat the cancer there are a number of drugs existing in the market but no drug is found to be completely safe and effective. The toxicity of the drugs is the key problem in the cancer chemotherapy. However, plants and plant derived bioactive molecule have proved safe and effective in the treatment of cancers. Phytochemicals that are found in fruits, vegetables, herbs, and plant extract have been usually used for treating cancer. It has been established that several herbal drug have a strong anticancer activity. However, their poor bioavailability, solubility, and stability have severely restricted their use. These problems can be overcome by incorporating the herbal drug in nanolipolomal vesicles. In last few decades, researcher have used herbal drug loaded nanoliposome for the treatment and management of a variety of cancers. Presently, a number of liposomal formulations are on the market for the treatment of cancer and many more are in pipe line. This review discusses about the tumor microenvironment, targeting mechanism of bioactive phytochemicals to the tumor tissue, background of nanoliposome, and the potential therapeutic applications of different bioactive phytochemicals loaded nanoliposome in cancer therapy.

Keywords: Flavonoids, bioactive, phytochemicals, nanoliposome, cancer, tumor microenvironment.

[1]
Nosrati, H.; Salehiabar, M.; Manjili, H.K.; Danafar, H.; Davaran, S. Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications. Int. J. Biol. Macromol., 2018, 108, 909-915.
[2]
Nosrati, H.; Salehiabar, M.; Davaran, S.; Danafar, H.; Manjili, H.K. Methotrexate-conjugated L-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells. Drug Dev. Ind. Pharm., 2018, 44, 886-894.
[3]
Wang, N.; Wu, Y.; Bian, J.; Qian, X.; Lin, H.; Sun, H.; You, Q.; Zhang, X. Current development of ROS-modulating agents as novel antitumor therapy. Curr. Cancer Drug Targets, 2017, 17, 122-136.
[4]
Morgan, G.; Ward, R.; Barton, M. The contribution of cytotoxic chemotherapy to 5-year survival in adult malignancies. Clin. Oncol. J., 2004, 16, 549-560.
[5]
Luciano, R.; Battafarano, G.; Saracino, R.; Rossi, M.; Perrotta, A.; Manco, M.; Muraca, M.; Fattore, A.D. New perspectives in glioblastoma: Nanoparticles-based approaches. Curr. Cancer Drug Targets, 2017, 17, 203-220.
[6]
Giri, T.K.; Mukherjee, P.; Barman, T.K.; Maity, S. Nano-encapsulation of capsaicin on lipid vesicle and evaluation of their hepatocellular protective effect. Int. J. Biol. Macromol., 2016, 88, 236-243.
[7]
Giri, T.K.; Alexander, A. Ajazuddin, Barman, T.K.; Maity, S. Infringement of the barriers of cancer via dietary phytoconstituents capsaicin through novel drug delivery system. Curr. Drug Deliv., 2016, 13, 27-39.
[8]
Darvesh, A.S.; Bishayee, A. Chemopreventive and therapeutic potential of tea polyphenols in hepatocellular cancer. Nutr. Cancer, 2013, 65, 329-344.
[9]
Zhang, W.; Shu, W.O.; Li, H.; Yang, G.; Cai, H.; Ji, B.T.; Gao, J.; Gao, Y.T.; Zheng, W.; Xiang, Y.B. Vitamin intake and liver cancer risk. J. Natl. Cancer Inst., 2012, 104, 1174-1182.
[10]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2, 270-278.
[11]
Leung, L.K.; Su, Y.; Chen, R.; Zhang, Z.; Huang, Y.; Chen, Z.U. The aflavins in black tea and catechins in green tea are equally effective antioxidants. J. Nutr., 2001, 313, 2248-2251.
[12]
Sethi, G.; Sung, B.; Aggarwal, B.B. The role of curcumin in modern medicine. In: Herbal Drugs: Ethnomedicine to modern medi226. Curr. Pharm. Biotechnol., 2012, 13, 218-228.
[13]
Reddy, L.; Odhav, B.; Bhoola, K.D. Natural products for cancer prevention: a global perspective. Pharmacol. Ther., 2003, 99, 1-13.
[14]
Agarwal, S.; Amin, K.S.; Jagadeesh, S.; Baishay, G.; Rao, P.G.; Barua, N.C. Mahanine restores RASSF1A expression by down-regulating DNMT1 and DNMT3B in prostate cancer cells. Mol. Cancer, 2013, 12, 99.
[15]
Fang, M.; Chen, D.; Yang, C.S. Dietary polyphenols may affect DNA methylation. J. Nutr., 2007, 137, 223S-228S.
[16]
Paluszczak, J.; Krajka-Kuzniak, V.; Baer-Dubowska, W. The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol. Lett., 2010, 192, 119-125.
[17]
Howitz, K.T.; Bitterman, K.J.; Cohen, H.Y.; Lamming, D.W.; Lavu, S.; Wood, J.G.; Zipkin, R.E.; Chung, P.; Kisielewski, A.; Zhang, L.L.; Scherer, B.; Sinclair, D.A. Smallmolecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 2003, 425, 191-196.
[18]
Beaver, L.M.; Yu, T.W.; Sokolowski, E.I.; Williams, D.E.; Dashwood, R.H.; Ho, E. 3, 3′-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells. Toxicol. Appl. Pharmacol., 2012, 263, 345-351.
[19]
Bosviel, R.; Durif, J.; Dechelotte, P.; Bignon, Y.J.; Bernard-Gallon, D. Epigenetic modulation of BRCA1 and BRCA2 gene expression by equol in breast cancer cell lines. Br. J. Nutr., 2012, 108, 1187-1193.
[20]
Balasubramanyam, K.; Swaminathan, V.; Ranganathan, A.; Kundu, T.K. Small molecule modulators of histone acetyltransferase p300. J. Biol. Chem., 2003, 278, 19134-19140.
[21]
Lee, W.J.; Zhu, B.T. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis, 2006, 27, 269-277.
[22]
Balasubramanyam, K.; Varier, R.A.; Altaf, M.; Swaminathan, V.; Siddappa, N.B.; Ranga, U.; Kundu, T.K. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferasedependent chromatin transcription. J. Biol. Chem., 2004, 279, 51163-51171.
[23]
Lee, W.J.; Zhu, B.T. Inhibition of DNA methylation by caffeic acid and chlorogenic acid two common catechol-containing coffee polyphenols. Carcinogenesis, 2006, 27, 269-277.
[24]
Cui, Y.; Lu, C.; Kang, A.; Liu, L.; Tan, S.; Sun, D.; Hu, J.; Ma, X. Nordihydroguaiaretic acid restores expression of silenced E-cadherin gene in human breast cancer cell lines and xenografts. Anticancer Drugs, 2008, 19, 487-494.
[25]
Oh, J.I.; Chun, K.H.; Joo, S.H.; Oh, Y.T.; Lee, S.K. Caspase-3-dependent protein kinase C delta activity is required for the progression of Ginsenoside-Rh2-induced apoptosis in SK-HEP-1 cells. Cancer Lett., 2005, 230, 228-238.
[26]
Zhang, C.; Liu, L.; Yu, Y.; Chen, B.; Tang, C.; Li, X. Antitumor effects of ginsenoside Rg3 on human hepatocellular carcinoma cells. Mol. Med. Rep., 2012, 5, 1295-1298.
[27]
Jiang, J.W.; Chen, X.M.; Chen, X.H.; Zheng, S.S. Ginsenoside Rg3 inhibit hepatocellular carcinoma growth via intrinsic apoptotic pathway. World J. Gastroenterol., 2011, 17, 3605-3613.
[28]
Song, G.; Guo, S.; Wang, W.; Hu, C.; Mao, Y.; Zhang, B.; Zhang, H.; Hu, T. Intestinal metabolite compound K of ginseng saponin potently attenuates metastatic growth of hepatocellular carcinoma by augmenting apoptosis via a Bid-mediated mitochondrial pathway. J. Agric. Food Chem., 2010, 58, 12753-12760.
[29]
Ng, K.T.; Guo, D.Y.; Cheng, Q.; Geng, W.; Ling, C.C.; Li, C.X.; Liu, X.B.; Ma, Y.Y.; Lo, C.M.; Poon, R.T.; Fan, S.T.; Man, K. A garlic derivative, S-allylcysteine (SAC), suppresses proliferation and metastasis of hepatocellular carcinoma. PloS One, 2012, 7, e31655.
[30]
Zhang, C.L.; Zeng, T.; Zhao, X.L.; Yu, L.H.; Zhu, Z.P.; Xie, K.Q. Protective effects of garlic oil on hepatocarcinoma induced by N-nitro sodiethyla mine in rats. Int. J. Biol. Sci., 2012, 8, 363-374.
[31]
Manach, C.; Scalbert, A.; Morand, C. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79, 727-747.
[32]
Komiyama, M.; Yoshimoto, K.; Sisido, M.; Ariga, K. Chemistry can make strict and fuzzy controls for bio-systems: DNA nanoarchitectonics and cell-macromolecular nanoarchitectonics. Bull. Chem. Soc. Jpn., 2017, 90, 967-1004.
[33]
Hare, J.I.; Lammers, T.; Ashford, M.B.; Puri, S.; Storm, G.; Barry, S.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev., 2017, 108, 25-38.
[34]
Li, B.L.; Setyawati, M.I.; Chen, L.; Xie, J.; Ariga, K.; Lim, C.T.; Garaj, S.; Leong, D.T. Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery. ACS Appl. Mater. Interfaces, 2017, 9, 15286-15296.
[35]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[36]
Bhattacharyya, K.; Mukherjee, S. Fluorescent metal nano-clusters as next generation fluorescent probes for cell imaging and drug delivery. Bull. Chem. Soc. Jpn., 2018, 91, 447-454.
[37]
Nomani, A.; Nosrati, H.; Manjili, H.K.; Khesalpour, L.; Danafar, H. Preparation and characterization of copolymeric polymersomes for protein delivery. Drug Res. (Stuttg.), 2017, 67(8), 458-465.
[38]
Nosrati, H.; Salehiabar, M.; Attari, E.; Davaran, S.; Danafar, H.; Manjili, H.K. Green and one‐pot surface coating of iron oxide magnetic nanoparticles with natural amino acids and biocompatibility investigation. Appl. Organomet. Chem., 2018, 32, e4069.
[39]
Nosrati, H.; Salehiabar, M.; Davaran, S.; Ramazani, A.; Manjili, H.K.; Danafar, H. New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs). Res. Chem. Intermed., 2017, 43, 7423-7442.
[40]
Nosrati, H.; Rashidi, N.; Danafar, H.; Manjili, H.K. Anticancer activity of tamoxifen loaded tyrosine decorated biocompatible Fe3O4 magnetic nanoparticles against breast cancer cell lines. J. Inorg. Organomet. Polym., 2018, 28, 1178.
[41]
Nosrati, H.; Sefidi, N.; Sharafi, A.; Danafar, H.; Manjili, K.H. Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg. Chem., 2018, 76, 501-509.
[42]
Nosrati, H.; Adibtabar, M.; Sharafi, A.; Danafar, H.; Kheiri, H.M. PAMAM-modified citric acid-coated magnetic nanoparticles as pH sensitive biocompatible carrier against human breast cancer cells. Drug Dev. Ind. Pharm., 2018, 23, 1-8.
[43]
Danafar, H.; Manjili, H.K.; Najafi, M. Study of copolymer composition on drug loading efficiency of enalapril in polymersomes and cytotoxicity of drug loaded nanoparticles. Drug Res. (Stuttg.), 2016, 66(9), 495-504.
[44]
Hu, J.; Sheng, Y.; Shi, J.; Yu, B.; Yu, Z.; Liao, G. Long circulating polymeric nanoparticles for gene/drug delivery. Curr. Drug Metab., 2018, 19(9), 723-738.
[45]
Sheng, Y.; Hu, J.; Shi, J.; Lee, L.J. Stimuli-responsive carriers for controlled intracellular drug release. Curr. Med. Chem., 2017, •••
[http://dx.doi.org/10.2174/0929867324666170830102409]
[46]
Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomed, 2006, 1, 297-315.
[47]
Whiteside, T. The tumor microenvironment and its role in promoting tumor growth. Oncogene, 2008, 27, 5904-5912.
[48]
Lee, T.H.; Asti, E.D.; Magnus, N.; Al-Nedawi, K.; Meehan, B.; Rak, J. Microvesicles as mediators of intercellular communication in cancer-The emerging science of cellular ‘debris’. Semin. Immunopathol., 2011, 33, 455-467.
[49]
Wang, G.; Fu, X.L.; Wang, J.J.; Guan, R.; Tang, X.J. Novel strategies to discover effective drug targets in metabolic and immune therapy for glioblastoma. Curr. Cancer Drug Targets, 2016, 17, 17-39.
[50]
Erez, N.; Truitt, M.; Olson, P.; Hanahan, D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell, 2010, 17, 135-147.
[51]
Driskell, R.R.; Lichtenberger, B.M.; Hoste, E.; Kretzschmar, K.; Simons, B.D.; Charalambous, M.; Ferron, S.R.; Herault, Y.; Pavlovic, G.; Ferguson-Smith, A.C.; Watt, F.M. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature, 2013, 504, 277-281.
[52]
Tassone, E.; Valacca, C.; Mignatti, P. Membrane‐type 1 matrix metalloproteinase downregulates fibroblast growth factor‐2 binding to the cell surface and intracellular signaling. J. Cell. Physiol., 2015, 230, 366-377.
[53]
Selvan, S.R.; Dowling, J.P.; Kelly, W.K.; Lin, J. Indoleamine 2, 3-dioxygenase (IDO): Biology and target in cancer immunotherapies. Curr. Cancer Drug Targets, 2016, 16, 755-764.
[54]
Yamashita, M.; Ogawa, T.; Zhang, X.; Hanamura, N.; Kashikura, Y.; Takamura, M.; Yoneda, M.; Shiraishi, T. Role of stromal myofibroblasts in invasive breast cancer: Stromal expression of alpha-smooth muscle actin correlates with worse clinical outcome. Breast Cancer, 2012, 19, 170-176.
[55]
Porsch, H.; Mehić, M.; Olofsson, B.; Heldin, P.; Heldin, C.H. Platelet-derived growth factor β-receptor, transforming growth factor β type I receptor, and CD44 protein modulate each other’s signaling and stability. J. Biol. Chem., 2014, 289, 19747-19757.
[56]
Cirri, P.; Chiarugi, P. Cancer-associated-fibroblasts and tumour cells: A diabolic liaison driving cancer progression. Cancer Metastasis Rev., 2012, 31, 195-208.
[57]
Muggen, A.F.; Singh, S.P.; Hendriks, R.W.; Langerak, A.W. Targeting signaling pathways in chronic lymphocytic leukemia. Curr. Cancer Drug Targets, 2016, 16, 669-688.
[58]
Fullár, A.; Kovalszky, I.; Bitsche, M.; Romani, A.; Schartinger, V.H.; Sprinzl, G.M.; Riechelmann, H.; Dudás, J. Tumor cell and carcinoma-associated fibroblast interaction regulates matrix metalloproteinases and their inhibitors in oral squamous cell carcinoma. Exp. Cell Res., 2012, 318, 1517-1527.
[59]
Kerkar, S.P.; Restifo, N.P. Cellular constituents of immune escape within the tumor microenvironment. Cancer Res., 2012, 72, 3125-3130.
[60]
Vermeulen, L.; Melo, F.S.; Richel, D.J.; Medema, J.P. The developing cancer stem-cell model: Clinical challenges and opportunities. Lancet Oncol., 2012, 13, e83-e89.
[61]
Magee, J.A.; Piskounova, E.; Morrison, S.J. Cancer stem cells: Impact, heterogeneity, and uncertainty. Cancer Cell, 2012, 21, 283-296.
[62]
Ohga, N.; Ishikawa, S.; Maishi, N.; Akiyama, K.; Hida, Y.; Kawamoto, T.; Sadamoto, Y.; Osawa, T.; Yamamoto, K.; Kondoh, M.; Ohmura, H.; Shinohara, N.; Nonomura, K.; Shindoh, M.; Hida, K. Heterogeneity of tumor endothelial cells: Comparison between tumor endothelial cells isolated from high- and low-metastatic tumors. Am. J. Pathol., 2012, 180, 1294-1307.
[63]
Swartz, M.A.; Fleury, M.E. Interstitial flow and its effects in soft tissues. Annu. Rev. Biomed. Eng., 2007, 9, 229-256.
[64]
Padera, T.P.; Stoll, B.R.; Tooredman, J.B.; Capen, D.; Tomaso, E.; Jain, R.K. Pathology: Cancer cells compress intratumour vessels. Nature, 2004, 427, 695.
[65]
van Sluis, R.; Bhujwalla, Z.M.; Raghunand, N.; Ballesteros, P.; Alvarez, J.; Cerdán, S.; Galons, J.P.; Gillies, R.J. In vivo imaging of extracellular pH using 1H MRSI. Magn. Reson. Med., 1999, 41, 743-750.
[66]
Heinrich, E.L.; Walser, T.C.; Krysan, K.; Liclican, E.L.; Grant, J.L.; Rodriguez, N.L.; Dubinett, S.M. The inflammatory tumor microenvironment, epithelial mesenchymal transition and lung carcinogenesis. Cancer Microenviron., 2012, 5, 5-18.
[67]
Haley, B.; Frenkel, E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol., 2008, 26, 57-64.
[68]
Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today, 2006, 11, 812-818.
[69]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release, 2011, 153, 198-205.
[70]
Gullotti, E.; Yeo, Y. Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol. Pharm., 2009, 6, 1041-1051.
[71]
Gabizon, A.; Catane, R.; Uziely, B.; Kaufman, B.; Safra, T.; Cohen, R.; Martin, F.; Huang, A.; Barenholz, Y. Prolonged circulation time and enhanced accumulation inmalignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res., 1994, 54, 987-992.
[72]
Northfelt, D.W.; Martin, F.J.; Working, P.; Volberding, P.A.; Russell, J.; Newman, M.; Amantea, M.A.; Kaplan, L.D. Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: Pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma. J. Clin. Pharmacol., 1996, 36, 55-63.
[73]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Murray, Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev., 2001, 53, 283-318.
[74]
Barbé, C.; Bartlett, J.; Kong, L.; Finnie, L.; Lin, H.Q.; Larkin, M.; Calleja, S.; Bush, A.; Calleja, G. Silica particles: A novel drug-delivery system. Adv. Mater., 2004, 16, 1-8.
[75]
Li, Y.; Pei, Y.; Zhang, X.; Gu, Z.; Zhou, Z.; Yuan, W.; Zhou, J.; Zhu, J.; Gao, X. PEGylated PLGA nanoparticles as protein carriers: Synthesis, preparation and biodistribution in rats. J. Control. Release, 2001, 71, 203-211.
[76]
Owens, D.E.; Peppas, N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm., 2006, 307, 93-102.
[77]
Cho, K.; Wang, X.; Nie, S.; Chen, Z.G.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res., 2008, 14, 1310-1316.
[78]
Daniels, T.R.; Delgado, T.; Helguera, G.; Penichet, M.L. The transferrin receptor part II: Targeted delivery of therapeutic agents into cancer cells. Clin. Immunol., 2006, 121, 159-176.
[79]
Minko, T. Drug targeting to the colon with lectins and neoglycoconjugates. Adv. Drug Deliv. Rev., 2004, 56, 491-509.
[80]
Lurje, G.; Lenz, H.J. EGFR signaling and drug discovery. Oncology, 2009, 77, 400-410.
[81]
Matsumura, Y.; Gotoh, M.; Muro, K.; Yamada, Y.; Shirao, K.; Shimada, Y.; Okuwa, M.; Matsumoto, S.; Miyata, Y.; Ohkura, H.; Chin, K.; Baba, S.; Yamao, T.; Kannami, A.; Takamatsu, Y.; Ito, K.; Takahashi, K. Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann. Oncol., 2004, 15, 517-525.
[82]
Gosk, S.; Moos, T.; Gottstein, C.; Bendas, G. VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo. Biochim. Biophys. Acta, 2008, 1778, 854-863.
[83]
Pastorino, F.; Brignole, C.; Marimpietri, D.; Cilli, M.; Gambini, C.; Ribatti, D.; Longhi, R.; Allen, T.M.; Corti, A.; Ponzoni, M. Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Res., 2003, 63, 7400-7409.
[84]
Kondo, M.; Asai, T.; Katanasaka, Y.; Sadzuka, Y.; Tsukada, H.; Ogino, K.; Taki, T.; Baba, K.; Oku, N. Anti-neovascular therapy by liposomal drug targeted to membrane type-1 matrix metalloproteinase. Int. J. Cancer, 2004, 108, 301-306.
[85]
Xiong, X.B.; Huang, Y.; Lu, W.L.; Zhang, X.; Zhang, H.; Nagai, T.; Zhang, Q. Intracellular delivery of doxorubicin with RGD-modified sterically stabilized liposomes for an improved antitumor efficacy: in vitro and in vivo. J. Pharm. Sci., 2005, 94, 1782-1793.
[86]
Park, J.W.; Hong, K.; Kirpotin, D.B.; Colbern, G.; Shalaby, R.; Baselga, J.; Shao, Y.; Nielsen, U.B.; Marks, J.D.; Moore, D.; Papahadjopoulos, D.; Benz, C.C. Anti-HER2 immunoliposomes: Enhanced efficacy attributable to targeted delivery. Clin. Cancer Res., 2002, 8, 1172-1181.
[87]
Kirpotin, D.B.; Drummond, D.C.; Shao, Y.; Shalaby, M.R.; Hong, K.; Nielsen, U.B.; Marks, J.D.; Benz, C.C.; Park, J.W. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res., 2006, 66, 6732-6740.
[88]
Mamot, C.; Drummond, D.C.; Noble, C.O.; Kallab, V.; Guo, Z.; Hong, K.; Kirpotin, D.B.; Park, J.W. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res., 2005, 65, 11631-11638.
[89]
Eliaz, R.E.; Nir, S.; Marty, C.; Szoka, F.C. Determination and modeling of kinetics of cancer cell killing by doxorubicin and doxorubicin encapsulated in targeted liposomes. Cancer Res., 2004, 64, 711-718.
[90]
Gabizon, A.; Horowitz, A.T.; Goren, D.; Tzemach, D.; Shmeeda, H.; Zalipsky, S. In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin. Cancer Res., 2003, 9, 6551-6559.
[91]
Krieger, M.L.; Eckstein, N.; Schneider, V.; Koch, M.; Royer, H.D.; Jaehde, U.; Bendas, G. Overcoming cisplatin resistance of ovarian cancer cells by targeted liposomes in vitro. Int. J. Pharm., 2010, 389, 10-17.
[92]
Bangham, A.D.; Standish, M.M.; Weissmann, G. The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J. Mol. Biol., 1965, 13, 253-259.
[93]
Sessa, G.; Weissmann, G. Phospholipid spherules (liposomes) as a model for biological membranes. J. Lipid Res., 1968, 9, 310-318.
[94]
Giri, T.K.; Giri, A.; Barman, T.K.; Maity, S. Nanoliposome is a promising carrier of protein and peptide biomolecule for the treatment of cancer. Anticancer. Agents Med. Chem., 2016, 16, 816-831.
[95]
Simões, S.; Moreira, J.N.; Fonseca, C.; Düzgüneş, N.; de Lima, M.C. On the formulation of pH-sensitive liposomes with long circulation times. Adv. Drug Deliv. Rev., 2004, 56, 947-965.
[96]
Carvalho-Júnior, A.D.; Vieira, F.P.; Melo, V.J.M.; Lopes, M.T.P.; Silveira, J.N.; Ramaldes, G.A.; Garnier-Suillerot, A.; Pereira-Maia, E.C.; Oliveira, M.C. Preparation and cytotoxicity of cisplatin loaded liposomes. Braz. J. Med. Biol. Res., 2007, 40, 1149-1157.
[97]
Batista, C.M.; Carvalho, C.M.B.; Magalhães, N.S.S. Lipossomas e suas aplicações terapêuticas: Estado da arte. Braz. J. Pharm. Sci., 2007, 43, 167-179.
[98]
Harrison, M.; Tomlinson, D.; Stewart, S. Liposomal-entrapped doxorubicin: an active agent in AIDS-related Kaposi’s sarcoma. J. Clin. Oncol., 1995, 13, 914-920.
[99]
Wang, S.; Noh, S.K.; Koo, S.I. Green tea catechins inhibit pancreatic phospholipase A(2) and intestinal absorption of lipids in ovariectomized rats. J. Nutr. Biochem., 2006, 17, 492-498.
[100]
Basu, A.; Lucas, E.A. Mechanisms and effects of green tea on cardiovascular health. Nutr. Rev., 2007, 65, 361-375.
[101]
Proniuk, S.; Liederer, B.M.; Blanchard, J. Preformulation study of epigallocatechin gallate, a promising antioxidant for topical skin cancer prevention. J. Pharm. Sci., 2002, 91, 111-116.
[102]
de Pace, R.C.; Liu, X.; Sun, M.; Nie, S.; Zhang, J.; Cai, Q.; Gao, W.; Pan, X.; Fan, Z.; Wang, S. Anticancer activities of (−) - epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells. J. Liposome Res., 2013, 23, 187-196.
[103]
Bischoff, S.C. Quercetin: potentials in the prevention and therapy of disease. Curr. Opin. Clin. Nutr. Metab. Care, 2008, 11, 733-740.
[104]
Kumari, A.; Kumar, V.; Yadav, S.K. Plant extract synthesized PLA nanoparticles for controlled and sustained release of quercetin: A green approach. PLoS One, 2012, 7, e41230.
[105]
Wang, G.; Wang, J.J.; Yang, G.Y.; Du, S.M.; Zeng, N.; Li, D.S.; Li, R.M.; Chen, J.Y.; Feng, J.B.; Yuan, S.H.; Ye, F. Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. Int. J. Nanomed, 2012, 7, 271-280.
[106]
Wang, G.; Wang, J.J.; Chen, X.L.; Du, S.M.; Li, D.S.; Pei, Z.J.; Lan, H.; Wu, L.B. The JAK2/STAT3 and mitochondrial pathways are essential for quercetin nanoliposome-induced C6 glioma cell death. Cell Death Dis., 2013, 4, e746.
[107]
Hu, J.; Wang, J.; Wang, G.; Yao, Z.; Dang, X. Pharmacokinetics and antitumor efficacy of DSPE-PEG2000 polymeric liposomes loaded with quercetin and temozolomide: Analysis of their effectiveness in enhancing the chemosensitization of drug-resistant glioma cells. Int. J. Mol. Med., 2016, 37, 690-702.
[108]
Wang, X.C.; Hou, S.X.; Li, W.; Li, X.Y.; Zhou, Y.W. Study on drug release in vitro and rat intestinal absorption of resveratrol nanoliposomes. Zhongguo. Zhong. Yao. Za. Zhi., 2007, 32, 1084-1088.
[109]
Mohan, A.; Narayanan, S.; Sethuraman, S.; Krishnan, U.M. Novel resveratrol and 5-Fluorouracil coencapsulated in PEGylated nanoliposomes improve chemotherapeutic efficacy of combination against head and neck squamous cell carcinoma. Biomed Res. Int., 2014, 2014, 424239.
[110]
Shishodia, S.; Sethi, G.; Aggarwal, B.B. Curcumin: Getting back to the roots. Ann. N. Y. Acad. Sci., 2005, 1056, 206-217.
[111]
Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res., 2003, 23, 363-398.
[112]
Sharma, R.A.; Steward, W.P.; Gescher, A.J. Pharmacokinetics and pharmacodynamics of curcumin. Adv. Exp. Med. Biol., 2007, 595, 453-470.
[113]
Rahman, S.; Cao, S.; Steadman, K.J.; Wei, M.; Parekh, H.S. Native and beta-cyclodextrin-enclosed curcumin: Entrapment within liposomes and their in vitro cytotoxicity in lung and colon cancer. Drug Deliv., 2012, 19, 346-353.
[114]
Thangapazham, R.L.; Puri, A.; Tele, S.; Blumenthal, R.; Maheshwari, R.K. Evaluation of a nanotechnology-based carrier for delivery of curcumin in prostate cancer cells. Int. J. Oncol., 2008, 32, 1119-112.
[115]
Narayanan, N.K.; Nargi, D.; Randolph, C.; Narayanan, B.A. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int. J. Cancer, 2009, 125, 1-8.
[116]
Esfahan, M.K.M.; Alavi, S.E.; Akbarzadeh, A.; Ghassemi, S.; Saffari, Z.; Farahnak, M.; Chiani, M. Pegylation of nanoliposomal paclitaxel enhances its efficacy in breast cancer. Trop. J. Pharm. Res., 2014, 13, 1195-1198.
[117]
Zhang, J.A.; Anyarambhatla, G.; Ma, L.; Ugwu, S.; Xuan, T.; Sardone, T.; Ahmad, I. Development and characterisation of a novel Cremophor EL free liposome based paclitaxel (LEP-ETU) formulation. Eur. J. Pharm. Biopharm., 2005, 59, 177-187.
[118]
Strieth, S.; Eichhirn, M.E.; Werner, A.; Sauer, B.; Teifeil, M.; Michaelis, U.; Berghaus, A.; Dellian, M. Paclitaxel encapsulated in cationic liposomes increases tumor microvessel leakiness and improves therapeutic efficacy in combination with cisplatin. Clin. Cancer Res., 2008, 14, 4603-4611.
[119]
Nie, S.; Hsiao, W.L.; Pan, W.; Yang, Z. Thermoreversible Pluronic F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: In vitro drug release, cell cytotoxicity, and uptake studies. Int. J. Nanomed, 2011, 6, 151-166.
[120]
Biswas, S.; Dodwadkar, N.S.; Deshpande, P.P.; Torchilin, V.P. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J. Control. Release, 2012, 159, 393-402.
[121]
Patel, N.R.; Rathi, A.; Mongayt, D.; Torchilin, V.P. Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. Int. J. Pharm., 2011, 416, 296-299.
[122]
Huang, Y.; Chen, X.M.; Zhao, B.X.; Ke, X.Y.; Zhao, B.J.; Zhao, X.; Wang, Y.; Zhang, X.; Zhang, Q. Antiangiogenic activity of sterically stabilized liposomes containing paclitaxel (SSL-PTX): In vitro and in vivo. AAPS PharmSciTech, 2010, 11, 752-759.
[123]
Du, R.; Zhong, T.; Zhang, W.Q.; Song, P.; Song, W.D.; Zhao, Y.; Wang, C.; Tang, Y.Q.; Zhang, X.; Zhang, Q. Antitumor effect of iRGD-modified liposomes containing conjugated linoleic acid-paclitaxel (CLA-PTX) on B16-F10 melanoma. Int. J. Nanomed, 2014, 9, 3091-3105.
[124]
Liu, G.X.; Fang, G.Q.; Xu, W. Dual targeting biomimetic liposomes for paclitaxel/DNA combination cancer treatment. Int. J. Mol. Sci., 2014, 15, 15287-15303.
[125]
Hu, L.; Liang, G.; Yuliang, W.; Bingjing, Z.; Xiangdong, Z.; Rufu, X. Assessing the effectiveness and safety of liposomal paclitaxel in combination with cisplatin as first-line chemotherapy for patients with advanced NSCLC with regional lymph-node metastasis: Study protocol for a randomized controlled trial (PLC-GC trial). Trials, 2013, 14, 45.
[126]
Kan, P.; Tsao, C.W.; Wang, A.J.; Su, W.C.; Liang, H.F. A liposomal formulation able to incorporate a high content of paclitaxel and exert promising anticancer effect. J. Drug Deliv., 2011, 2011, 629234.
[127]
Stathopoulos, G.P.; Antoniou, D.; Dimitroulis, J.; Michalopoulou, P.; Bastas, A.; Marosis, K.; Stathopoulos, J.; Provata, A.; Yiamboudakis, P.; Veldekis, D.; Lolis, N.; Georgatou, N.; Toubis, M.; Pappas, C.H.; Tsoukalas, G. Liposomal cisplatin combined with paclitaxel versus cisplatin and paclitaxel in non-small-cell lung cancer: A randomized phase III multicenter trial. Ann. Oncol., 2010, 22, 2227-2232.
[128]
Gibbs, D.D.; Pyle, L.; Allen, M.; Vaughan, M.; Webb, A.; Johnston, S.R.; Gore, M.E. A phase I dose-finding study of a combination of pegylated liposomal doxorubicin (Doxil), carboplatin and paclitaxel in ovarian cancer. Br. J. Cancer, 2002, 86, 1379-1384.
[129]
Gao, M.; Xu, Y.; Qiu, L. Enhanced combination therapy effect on paclitaxel-resistant carcinoma by chloroquine co-delivery via liposomes. Int. J. Nanomed, 2015, 10, 6615-6632.
[130]
Bafaloukos, D.; Papadimitriou, C.; Linardou, H.; Aravantinos, G.; Papakostas, P.; Skarlos, D.; Kosmidis, P.; Fountzilas, G.; Gogas, H.; Kalofonos, C.; Dimopoulos, A.M. Combination of pegylated liposomal doxorubicin (PLD) and paclitaxel in patients with advanced soft tissue sarcoma: a phase II study of the Hellenic Cooperative Oncology Group. Br. J. Cancer, 2004, 91, 1639-1644.
[131]
Mayer, L.D.; Bally, M.B.; Loughrey, H.; Masin, D.; Cullis, P.R. Liposomal vincristine preparations which exhibit decreased drug toxicity and increased activity against murine L1210 and P388 tumors. Cancer Res., 1990, 50, 575-579.
[132]
Mayer, L.D.; Nayar, R.; Thies, R.L.; Boman, N.L.; Cullis, P.R.; Bally, M.B. Identification of vesicle properties that enhance the antitumour activity of liposomal vincristine against murine L1210 leukemia. Cancer Chemother. Pharmacol., 1993, 33, 17-24.
[133]
Sapra, P.; Moase, E.H.; Ma, J.; Allen, T.M. Improved therapeutic responses in a xenograft model of human B lymphoma (Namalwa) for liposomal vincristine versus liposomal doxorubicin targeted via anti-CD19 IgG2a or Fab’ fragments. Clin. Cancer Res., 2004, 10, 1100-1111.
[134]
Sapra, P.; Allen, T.M. Improved outcome when B-cell lymphoma is treated with combinations of immunoliposomal anticancer drugs targeted to both the CD19 and CD20 epitopes. Clin. Cancer Res., 2004, 10, 2530-2537.
[135]
Rodriguez, M.A.; Pytlik, R.; Kozak, T.; Chhanabhai, M.; Gascoyne, R.; Lu, B.; Deitcher, S.R.; Winter, J.N. Vincristine sulfate liposomes injection (Marqibo) in heavily pretreated patients with refractory aggressive non-Hodgkin lymphoma: report of the pivotal phase 2 study. Cancer, 2009, 115, 3475-3482.
[136]
Park, J.W. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res., 2002, 4, 95-99.
[137]
Hong, R.L. Liposmal anti-cancer drug researches the myth of long circulation. J. Chinese. Oncol. Soc., 2004, 20, 10-21.
[138]
Takeuchi, H.; Kojima, H.; Toyoda, T.; Yamamoto, H.; Hino, T.; Kawashima, Y. Prolonged circulation time of doxorubicin-loaded liposomes coated with amodified polyvinyl alcohol after intravenous injection in rats. Eur. J. Pharm. Biopharm., 1999, 48, 123-129.
[139]
Li, X.; Ding, L.; Xu, Y.; Wang, Y.; Ping, Q. Targeted delivery of doxorubicin using stealth liposomes modified with transferring. Int. J. Pharm., 2009, 373, 116-123.
[140]
Song, C.K.; Jung, S.H.; Kim, D.D.; Jeong, K.S.; Shin, B.C.; Seong, H. Disaccharide-modified liposomes and their in vitro intracellular uptake. Int. J. Pharm., 2009, 380, 161-169.
[141]
Gaillard, P.J.; Appeldoorn, C.C.M.; Dorland, R.; Kregten, J.; Manca, F.; Vugts, D.J.; Windhorst, B.; Guus, D.A.M.S.; Vries, H.E.; Maussang, D.; Tellingen, O. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLoS One, 2014, 9, e82331.
[142]
Moussa, M.; Goldberg, S.N.; Tasawwar, B.; Sawant, R.R.; Levchenko, T.; Kumar, G.; Torchilin, V.P.; Ahmed, M. Adjuvant liposomal doxorubicin markedly affects radiofrequency ablation-induced effects on periablational microvasculature. J. Vasc. Interv. Radiol., 2013, 24, 1021-1033.
[143]
Xing, M.; Yan, F.; Yu, S.; Shen, P. Efficacy and cardiotoxicity of liposomal doxorubicin-based chemotherapy in advanced breast cancer: A meta-analysis of ten randomized controlled trials. PLoS One, 2015, 10, e0133569.
[144]
Anders, C.K.; Adamo, B.; Karginova, O.; Deal, A.M.; Rawal, S.; Darr, D.; Schorzman, A.; Santos, C.; Bash, R.; Kafri, T.; Carey, L.; Miller, C.R.; Perou, C.M.; Sharpless, N.; Zamboni, W.C. Pharmacokinetics and efficacy of PEGylated liposomal doxorubicin in an intracranial model of breast cancer. PLoS One, 2013, 8, e61359.
[145]
Staropoli, N.; Ciliberto, D.; Botta, C.; Fiorillo, L.; Grimaldi, A.; Lama, S.; Caraglia, M.; Salvino, A.; Tassone, P.; Tagliaferri, P. Pegylated liposomal doxorubicin in the management of ovarian cancer: A systematic review and metaanalysis of randomized trials. Cancer Biol. Ther., 2014, 15, 707-720.
[146]
Fan, Y.; Lin, N.M.; Luo, L.H.; Fang, L.; Huang, Z.Y.; Yu, H.F.; Wu, F.Q. Pharmacodynamic and pharmacokinetic study of pegylated liposomal doxorubicin combination (CCOP) chemotherapy in patients with peripheral T-cell lymphomas. Acta Pharmacol. Sin., 2011, 32, 408-414.
[147]
Gibson, J.M.; Alzghari, S.; Ahn, C.; Trantham, H.; La-Beck, N.M. The role of pegylated liposomal doxorubicin in ovarian cancer: A meta-analysis of randomized clinical trials. Oncologist, 2013, 18, 1022-1031.
[148]
Eckes, J.; Schmah, O.; Siebers, J.W.; Groh, U.; Zschiedrich, S.; Rautenberg, B.; Hasenburg, A.; Jansen, M.; Hug, M.J.; Winkler, K.; Pütz, G. Kinetic targeting of pegylated liposomal doxorubicin: a new approach to reduce toxicity during chemotherapy (CARL-trial). BMC Cancer, 2011, 11, 337.
[149]
Wu, S.K.; Chiang, C.F.; Hsu, Y.H.; Lin, T.H.; Liou, H.C.; Fu, W.M.; Lin, W.L. Short-time focused ultrasound hyperthermia enhances liposomal doxorubicin delivery and antitumor efficacy for brain metastasis of breast cancer. Int. J. Nanomed, 2014, 9, 4485-4494.
[150]
Chang, D.K.; Li, P.C.; Lu, R.M.; Jane, W.N.; Wu, H.C. Peptide-mediated liposomal Doxorubicin enhances drug delivery efficiency and therapeutic efficacy in animal models. PLoS One, 2013, 8, e83239.
[151]
Kaye, S.B.; Colombo, N.; Monk, B.J.; Tjulandin, S.; Kong, B.; Roy, M.; Chan, S.; Filipczyk-Cisarz, E.; Hagberg, H.; Vergote, I.; Lebedinsky, C.; Parekh, T.; Santabárbara, P.; Park, Y.C.; Nieto, A.; Poveda, A. Trabectedin plus pegylated liposomal doxorubicin in relapsed ovarian cancer delays third-line chemotherapy and prolongs the platinum-free interval. Ann. Oncol., 2011, 22, 49-58.
[152]
Baselga, J.; Manikhas, A.; Cortés, J.; Llombart, A.; Roman, L.; Semiglazov, V.F.; Byakhov, M.; Lokanatha, D.; Forenza, S.; Goldfarb, R.H.; Matera, J.; Azarnia, N.; Hudis, C.A.; Rozencweig, M. Phase III trial of nonpegylated liposomal doxorubicin in combination with trastuzumab and paclitaxel in HER2-positive metastatic breast cancer. Ann. Oncol., 2014, 25, 592-598.
[153]
Al-Batran, S.E.; Güntner, M.; Pauligk, C.; Scholz, M.; Chen, R.; Beiss, B.; Stopatschinskaja, S.; Lerbs, W.; Harbeck, N.; Jäger, E. Anthracycline rechallenge using pegylated liposomal doxorubicin in patients with metastatic breast cancer: A pooled analysis using individual data from four prospective trials. Br. J. Cancer, 2010, 103, 1518-1523.
[154]
Little, R.F.; Aleman, K.; Kumar, P.; Wyvill, K.M.; Pluda, J.M.; Read-Connole, E.; Wang, V.; Pittaluga, S.; Catanzaro, A.T.; Steinberg, S.M.; Yarchoan, R. Phase 2 study of pegylated liposomal doxorubicin in combination with interleukin-12 for AIDS-related Kaposi sarcoma. Blood, 2007, 110, 4165-4171.
[155]
Forssen, E.A.; Coulter, D.M.; Proffitt, R.T. Selective in vivo localisation of daunorubicin small unilamellar vesicles in solid tumours. Cancer Res., 1992, 52, 3255-3261.
[156]
Lowis, S.; Lewis, I.; Elsworth, A.; Weston, C.; Doz, F.; Vassal, G.; Bellott, R.; Robert, J.; Pein, F.; Ablett, S.; Pinkerton, R.; Frappaz, D. A phase I study of intravenous liposomal daunorubicin (DaunoXome) in paediatric patients with relapsed or resistant solid tumours. Br. J. Cancer, 2006, 95, 571-580.
[157]
O’Byrne, K.J.; Thomas, A.L.; Sharma, R.A.; DeCatris, M.; Shields, F.; Beare, S.; Steward, W.P. A phase I dose-escalating study of DaunoXome, liposomal daunorubicin, in metastatic breast cancer. Br. J. Cancer, 2002, 87, 15-20.
[158]
Sano, K.; Nakajima, T.; Choyke, P.L.; Kobayashi, H. The effect of photoimmunotherapy followed by liposomal daunorubicin in a mixed tumor model: A demonstration of the super-enhanced permeability and retention effect after photoimmunotherapy. Mol. Cancer Ther., 2014, 13, 426-432.
[159]
Feldman, E.J.; Lancet, J.E.; Kolitz, J.E.; Ritchie, E.K.; Roboz, G.J.; List, A.F.; Allen, S.L.; Asatiani, E.; Mayer, L.D.; Swenson, C.; Louie, A.C. First-in-man study of CPX-351: A liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia. J. Clin. Oncol., 2011, 29, 979-985.
[160]
Versluis, A.J.; Rensen, P.C.; Rump, E.T.; Van Berkel, T.J.; Bijsterbosch, M.K. Low-density lipoprotein receptor-mediated delivery of a lipophilic daunorubicin derivative to B16 tumours in mice using apolipoprotein E-enriched liposomes. Br. J. Cancer, 1998, 78, 1607-1614.
[161]
Hempel, G.; Reinhardt, D.; Creutzig, U.; Boos, J. Population pharmacokinetics of liposomal daunorubicin in children. Br. J. Clin. Pharmacol., 2003, 56, 370-377.
[162]
Li, X.T.; Ju, R.J.; Li, X.Y.; Zeng, F.; Shi, J.F.; Liu, L.; Zhang, C.X.; Sun, M.G.; Lou, J.N.; Lu, W.L. Multifunctional targeting daunorubicin plus quinacrine liposomes, modified by wheat germ agglutinin and tamoxifen, for treating brain glioma and glioma stem cells. Oncotarget, 2014, 5, 6497-6511.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 1
Year: 2019
Page: [3 - 17]
Pages: 15
DOI: 10.2174/1567201815666180918112139
Price: $58

Article Metrics

PDF: 36
HTML: 5
EPUB: 1
PRC: 1