Aspects of Nanomaterials in Wound Healing

Author(s): Srijita Chakrabarti, Pronobesh Chattopadhyay*, Johirul Islam, Subhabrata Ray, Pakalapati Srinivas Raju, Bhaskar Mazumder.

Journal Name: Current Drug Delivery

Volume 16 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Wound infections impose a remarkable clinical challenge that has a considerable influence on morbidity and mortality of patients, influencing the cost of treatment. The unprecedented advancements in molecular biology have come up with new molecular and cellular targets that can be successfully applied to develop smarter therapeutics against diversified categories of wounds such as acute and chronic wounds. However, nanotechnology-based diagnostics and treatments have achieved a new horizon in the arena of wound care due to its ability to deliver a plethora of therapeutics into the target site, and to target the complexity of the normal wound-healing process, cell type specificity, and plethora of regulating molecules as well as pathophysiology of chronic wounds. The emerging concepts of nanobiomaterials such as nanoparticles, nanoemulsion, nanofibrous scaffolds, graphene-based nanocomposites, etc., and nano-sized biomaterials like peptides/proteins, DNA/RNA, oligosaccharides have a vast application in the arena of wound care. Multi-functional, unique nano-wound care formulations have acquired major attention by facilitating the wound healing process. In this review, emphasis has been given to different types of nanomaterials used in external wound healing (chronic cutaneous wound healing); the concepts of basic mechanisms of wound healing process and the promising strategies that can help in the field of wound management.

Keywords: Angiogenesis, cell proliferation, controlled release, nanomaterials, reepithelialization, tissue regeneration, wound healing process, wound management.

[1]
Ariga, K.; Minami, K.; Ebara, M.; Nakanishi, J. What are the emerging concepts and challenges in NANO? Nanoarchitectonics, hand-operating nanotechnology and mechanobiology. Polym. J., 2016, 48, 371-389.
[2]
Hamzeh, M.; Sunahara, G.I. In vitro cytotoxicity and genotoxicity studies of titanium dioxide (TiO2) nanoparticles in Chinese hamster lung fibroblast cells. Toxicol. In Vitro, 2013, 27, 864-873.
[3]
Mazzola, L. Commercializing nanotechnology. Nat. Biotechnol., 2003, 21, 1137-1143.
[4]
Paull, R.; Wolfe, J.; Hébert, P.; Sinkula, M. Investing in nanotechnology. Nat. Biotechnol., 2003, 21, 1144-1147.
[5]
Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R.A.; Alves, F.; Andrews, A.M.; Ashraf, S.; Balogh, L.P.; Ballerini, L.; Bestetti, A.; Brendel, C.; Bosi, S. Diverse applications of nanomedicine. ACS Nano, 2017, 11, 2313-2381.
[6]
Komiyama, M.; Yoshimoto, K.; Sisido, M.; Ariga, K. Chemistry can make strict and fuzzy controls for bio-systems: DNA nanoarchitectonics and cell-macromolecular nanoarchitectonics. Bull. Chem. Soc. Jpn., 2017, 90, 967-1004.
[7]
Ariga, K.; Kawakami, K.; Ebara, M.; Kotsuchibashi, Y.; Ji, Q.; Hill, J.P. Bioinspired nanoarchitectonics as emerging drug delivery systems. New J. Chem., 2014, 38, 5149-5163.
[8]
Nakanishi, W.; Minami, K.; Shrestha, L.K.; Ji, Q.; Hill, J.P.; Ariga, K. Bioactive nanocarbon assemblies: Nanoarchitectonics and applications. Nano Today, 2014, 9, 378-394.
[9]
Hare, J.I.; Lammers, T.; Ashford, M.B.; Puri, S.; Storm, G.; Barry, S.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev., 2017, 108, 25-38.
[10]
Matsuura, K. Construction of functional biomaterials by biomolecular self-assembly. Bull. Chem. Soc. Jpn., 2017, 90, 873-884.
[11]
Li, B.L.; Setyawati, M.I.; Chen, L.; Xie, J.; Ariga, K.; Lim, C.T.; Garaj, S.; Leong, D.T. Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery. ACS Appl. Mater. Interfaces, 2017, 9, 15286-15296.
[12]
Pandian, G.N.; Sugiyama, H. Nature-inspired design of smart biomaterials using the chemical biology of nucleic acids. Bull. Chem. Soc. Jpn., 2016, 89, 843-868.
[13]
Robinson, J.R.; Lee, V.H.L. Controlled drug delivery: Fundamentals and applications, 2nd ed; Marcel Dekker: New York, 1987.
[14]
Jantzen, J.M.; Robinson, J.R. Sustained and controlled release drug delivery systems; G.S. Banker.; C.T. Rhodes, 4th ed.; Marcel Dekker: New York, 2002.
[15]
Zeng, R.; Lin, C.; Lin, Z.; Chen, H.; Lu, W.; Lin, C.; Li, H. Approaches to cutaneous wound healing: basics and future directions. Cell Tissue Res., 2018, 1-16.
[16]
Walker, M.; Metcalf, D.; Parsons, D.; Bowler, P. A real-life clinical evaluation of a next-generation antimicrobial dressing on acute and chronic wounds. J. Wound Care, 2015, 24, 11-22.
[17]
Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med., 2014, 6, 265sr6.
[18]
Sen, C.K.; Gordillo, G.M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T.K.; Gottrup, F.; Gurtner, G.C.; Longaker, M.T. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen., 2009, 17, 763-771.
[19]
Sarabahi, S. Recent advances in topical wound care. Indian J. plast. Surg., 2012, 45, 379.
[20]
Lau, P.; Bidin, N.; Islam, S.; Norsyuhada, W.; Shukri, B.W.M.; Zakaria, N. Influence of gold nanoparticles on wound healing treatment in rat model: Photobiomodulation therapy. Lasers Surg. Med., 2017, 49, 380-386.
[21]
Wilkinson, L.J.; White, R.J.; Chipman, J.K. Silver and nanoparticles of silver in wound dressings: A review of efficacy and safety. J. Wound Care, 2011, 20, 543-549.
[22]
Cortivo, R.; Vindigni, V.; Iacobellis, L.; Abatangelo, G.; Pinton, P.; Zavan, B. Nanoscale particle therapies for wounds and ulcers. Nanomedicine , 2010, 5, 641-656.
[23]
Hamdan, S.; Pastar, I.; Drakulich, S.; Dikici, E.; Tomic-Canic, M.; Deo, S.; Daunert, S. Nanotechnology-driven therapeutic interventions in wound healing: Potential uses and applications. ACS Cent. Sci., 2017, 3, 163-175.
[24]
Lee, H.; Kim, Y.H. Nanobiomaterials for pharmaceutical and medical applications. Arch. Pharm. Res., 2014, 37, 1-3.
[25]
Sandhiya, S.; Dkhar, S.A.; Surendiran, A. Emerging trends of nanomedicine-an overview. Fundam. Clin. Pharmacol., 2009, 23, 263-269.
[26]
Suri, S.; Fenniri, H.; Singh, B. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol., 2007, 2, 16.
[27]
Tran, Q.H.; Nguyen, V.Q. A.T., Le. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci.: Nanosci. Nanotechnol, 2013, 4, 1-20.
[28]
Klasen, H.J. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns, 2000, 26, 131-138.
[29]
Edwards-Jones, V. The benefits of silver in hygiene, personal care and healthcare. Lett. Appl. Microbiol., 2009, 49, 147-152.
[30]
Stadelmann, W.K.; Digenis, A.G.; Tobin, G.R. Physiology and healing dynamics of chronic cutaneous wounds. Am. J. Surg., 1998, 176, 26S-38S.
[31]
Steed, D.L. The role of growth factors in wound healing. Surg. Clin. North Am., 1997, 77, 575-586.
[32]
Tocco, I.; Zavan, B.; Bassetto, F.; Vindigni, V. Nanotechnology-based therapies for skin wound regeneration. J. Nanomater., 2012, 2012, 4.
[33]
Janmey, P.A.; Winer, J.P.; Weisel, J.W. Fibrin gels and their clinical and bioengineering applications. J. R. Soc. Interface, 2009, 6, 1-10.
[34]
Eming, S.A.; Krieg, T.; Davidson, J.M. Inflammation in Wound Repair: Molecular and Cellular Mechanisms. J. Invest. Dermatol., 2007, 127, 514-525.
[35]
Holland, T.A.; Tessmar, J.K.V.; Tabata, Y.; Mikos, A.G. Transforming growth factor-beta 1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J. Control. Release, 2004, 94, 101-114.
[36]
Kawai, K.; Suzuki, S.; Tabata, Y.; Nishimura, Y. Accelerated wound healing through the incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis using a pressure-induced decubitus ulcer model in genetically diabetic mice. Br. J. Plast. Surg., 2005, 58, 1115-1123.
[37]
Johnstone, C.C.; Farley, A.; Hendry, C. The physiological basics of wound healing. Nurs. Stand., 2005, 19, 59-65.
[38]
Cooper, D.M. Optimizing wound healing. A practice within nursing’s domain. Nurs. Clin. North Am., 1990, 25, 165-180.
[39]
Hantash, B.M.; Zhao, L.; Knowles, J.A.; Lorenz, H.P. Adult and fetal wound healing. Front. Biosci., 2008, 13, 51-61.
[40]
McPherson, J.M.; Piez, K.A. Collagen in dermal wound repair. In: The molecular and cellular biology of wound repair; Springer US: Boston, MA, 1988; pp. 471-496.
[41]
Baum, C.L.; Arpey, C.J. Normal cutaneous wound healing: Clinical correlation with cellular and molecular events. Dermatol. Surg., 2005, 31, 674-686.
[42]
Esser, S.; Wolburg, K.; Wolburg, H.; Breier, G.; Kurzchalia, T.; Risau, W. Vascular endothelial growth factor induces endothelial fenestrations in vitro. J. Cell Biol., 1998, 140, 947-959.
[43]
Lisa, B.P. Biomaterials: Polymers in controlled drug delivery. November ed.; Med Device Link, CA: Med Plastics Biomater: Los Angeles, 1997.
[44]
Pachuau, L. Recent developments in novel drug delivery systems for wound healing. Expert Opin. Drug Deliv., 2015, 12, 1895-1909.
[45]
Singer, A.J.; Dagum, A.B. Current management of acute cutaneous wounds. N. Engl. J. Med., 2008, 359, 1037-1046.
[46]
Seetharam, R.N. Nanomedicine-emerging area of nanobiotechnology research. Curr. Sci., 2006, 91, 260.
[47]
Jain, J.; Arora, S.; Rajwade, J.M.; Omray, P.; Khandelwal, S.; Paknikar, K.M. Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use. Mol. Pharm., 2009, 6, 1388-1401.
[48]
Arora, S.; Jain, J.; Rajwade, J.M.; Paknikar, K.M. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol. Appl. Pharmacol., 2009, 236, 310-318.
[49]
Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol. Biol. Med, 2010, 6, 103-109.
[50]
Kwan, K.H.L.; Liu, X.; To, M.K.T.; Yeung, K.W.K.; Ho, C.; Wong, K.K.Y. Modulation of collagen alignment by silver nanoparticles results in better mechanical properties in wound healing. Nanomed Nanotechnol. Biol. Med, 2011, 7, 497-504.
[51]
Tian, J.; Wong, K.K.Y.; Ho, C.M.; Lok, C.N.; Yu, W.Y.; Che, C.M.; Chiu, J.F.; Tam, P.K.H. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem, 2007, 2, 129-136.
[52]
Widgerow, A.D. Nanocrystalline silver, gelatinases and the clinical implications. Burns, 2010, 36, 965-974.
[53]
Haag, S.M.; Hauck, E.W.; Eickelberg, O.; Szardening-Kirchner, C.; Diemer, T.; Weidner, W. n.d. Investigation of the antifibrotic effect of IFN-g on fibroblasts in a cell culture model of Peyronie’s disease. Sex. Med. Rev., 2016, 4, 85-94.
[54]
Liu, X.; Lee, P.; Ho, C.; Lui, V.C.H.; Chen, Y.; Che, C.; Tam, P.K.H.; Wong, K.K.Y. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem, 2010, 5, 468-475.
[55]
Cardoso, V.S.; Quelemes, P.V.; Amorin, A.; Primo, F.L.; Gobo, G.G.; Tedesco, A.C.; Mafud, A.C.; Mascarenhas, Y.P.; Corrêa, J.R.; Kuckelhaus, S.A.; Eiras, C.; Leite, J.R.S.; Silva, D. dos Santos Júnior, J.R. Collagen-based silver nanoparticles for biological applications: Synthesis and characterization. J. Nanobiotechnol, 2014, 12, 36.
[56]
Shi, G.; Chen, W.; Zhang, Y.; Dai, X.; Zhang, X.; Wu, Z. An antifouling hydrogel contained silver nanoparticles for modulating therapeutic immune response in chronic wound healing. Langmuir, 2018.
[http://dx.doi.org/10.1021/acs.langmuir.8b01834]
[57]
Abramyan, A.A.; Afanasyev, M.M.; Beklemyshev, V.I.; Filippov, K.V.; Makhonin, I.I.; Maugeri, U.O.G.; Solodovnikov, V.A. Composition to act in prevention and to take care of diabetic foot. WO 2012038333 A3. 2012.
[58]
White, R. Silver and nanoparticles of silver in wound dressings: A review of efficacy and safety. J. Wound Care, 2011, 20, 543-549.
[59]
Leu, J.G.; Chen, S.A.; Chen, H.M.; Wu, W.M.; Hung, C.F.; Yao, Y.D.; Tu, C.S.; Liang, Y.J. The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomed Nanotechnol. Biol. Med., 2012, 8, 767-775.
[60]
Medhe, S.; Bansal, P.; Srivastava, M.M. Enhanced antioxidant activity of gold nanoparticle embedded 3,6-dihydroxyflavone: a combinational study. Appl. Nanosci., 2014, 4, 153-161.
[61]
Yakimovich, N.O.; Ezhevskii, A.A.; Guseinov, D.V.; Smirnova, L.A.; Gracheva, T.A.; Klychkov, K.S. Antioxidant properties of gold nanoparticles studied by ESR spectroscopy. Russ. Chem. Bull., 2008, 57, 520-523.
[62]
Muthuvel, A.; Adavallan, K.; Balamurugan, K.; Krishnakumar, N. Biosynthesis of gold nanoparticles using Solanum nigrum leaf extract and screening their free radical scavenging and antibacterial properties. Biomed. Prev. Nutr, 2014, 4, 325-332.
[63]
Chen, S.A.; Chen, H.M.; Yao, Y.D.; Hung, C.F.; Tu, C.S.; Liang, Y.J. Topical treatment with anti-oxidants and Au nanoparticles promote healing of diabetic wound through receptor for advance glycation end-products. Eur. J. Pharm. Sci., 2012, 47, 875-883.
[64]
Akturk, O.; Kismet, K.; Yasti, A.C.; Kuru, S.; Duymus, M.E.; Kaya, F.; Caydere, M.; Hucumenoglu, S.; Keskin, D. Collagen/gold nanoparticle nanocomposites: A potential skin wound healing biomaterial. J. Biomater. Appl., 2016, 31, 283-301.
[65]
Alkilany, A.M.; Murphy, C.J. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res., 2010, 12, 2313-2333.
[66]
Agren, M.S.; Chvapil, M.; Franzén, L. Enhancement of re-epithelialization with topical zinc oxide in porcine partial-thickness wounds. J. Surg. Res., 1991, 50, 101-105.
[67]
Vasile, B.S.; Oprea, O.; Voicu, G.; Ficai, A.; Andronescu, E.; Teodorescu, A.; Holban, A. Synthesis and characterization of a novel controlled release zinc oxide/gentamicin–chitosan composite with potential applications in wounds care. Int. J. Pharm., 2014, 463, 161-169.
[68]
Kumar, S.P.T.; Lakshmanan, V.K.; Raj, M.; Biswas, R.; Hiroshi, T.; Nair, S.V.; Jayakumar, R. Evaluation of wound healing potential of β-chitin hydrogel/nano zinc oxide composite bandage. Pharm. Res., 2013, 30, 523-537.
[69]
Galindo, R.B.; Martínez, J.B.; Manriquez, A.C.; Orta, C.Á.; Urbina, B.P. Zinc oxide nanoparticles control skin infection and improve dermal wound healing in humans. J. Bioremed. Biodeg., 2016, 7.
[70]
Wright, J.A.; Richards, T.; Srai, S.K.S. The role of iron in the skin and cutaneous wound healing. Front. Pharmacol., 2014, 5, 156.
[71]
Anghel, I.; Grumezescu, A.M.; Holban, A.M.; Ficai, A.; Anghel, A.G.; Chifiriuc, M.C. Biohybrid nanostructured iron oxide nanoparticles and Satureja hortensis to prevent fungal biofilm development. Int. J. Mol. Sci., 2013, 14, 18110-18123.
[72]
Zanganeh, S.; Hutter, G.; Spitler, R.; Lenkov, O.; Mahmoudi, M.; Shaw, A.; Pajarinen, J.S.; Nejadnik, H.; Goodman, S.; Moseley, M.; Coussens, L.M.; Daldrup-Link, H.E. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol., 2016, 11, 986-994.
[73]
Grumezescu, A.M.; Holban, A.M.; Andronescu, E.; Mogoşanu, G.D.; Vasile, B.S.; Chifiriuc, M.C.; Lazar, V.; Andrei, E.; Constantinescu, A.; Maniu, H. Anionic polymers and 10 nm Fe3O4@UA wound dressings support human foetal stem cells normal development and exhibit great antimicrobial properties. Int. J. Pharm., 2014, 463, 146-154.
[74]
Mitra, A.; Cholkar, K.; Mandal, A. Emerging nanotechnologies for diagnostics, drug delivery and medical devices, 1st ed; Amsterdam, Netherlands, 2017.
[75]
Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.S. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater., 2015, 16, 23501.
[76]
Feng, B.; Weng, J.; Yang, B.C.; Qu, S.X.; Zhang, X.D. Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials, 2003, 24, 4663-4670.
[77]
Nygren, H.; Tengvall, P.; Lundström, I. The initial reactions of TiO2 with blood. J. Biomed. Mater. Res., 1997, 34, 487-492.
[78]
Yoshinari, M.; Oda, Y.; Kato, T.; Okuda, K. Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials, 2001, 22, 2043-2048.
[79]
Yogi, C.; Kojima, K.; Wada, N.; Tokumoto, H.; Takai, T.; Mizoguchi, T.; Tamiaki, H. Photocatalytic degradation of methylene blue by TiO2 film and Au particles-TiO2 composite film. Thin Solid Films, 2008, 516, 5881-5884.
[80]
Sankar, R.; Dhivya, R.; Shivashangari, K.S.; Ravikumar, V. Wound healing activity of Origanum vulgare engineered titanium dioxide nanoparticles in Wistar Albino rats. J. Mater. Sci. Mater. Med., 2014, 25, 1701-1708.
[81]
Archana, D.; Singh, B.K.; Dutta, J.; Dutta, P.K. In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr. Polym., 2013, 95, 530-539.
[82]
Pan, Z.; Lee, W.; Slutsky, L.; Clark, R.A.F.; Pernodet, N.; Rafailovich, M.H. Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small, 2009, 5, 511-520.
[83]
Sivaranjani, V.; Philominathan, P. Synthesize of Titanium dioxide nanoparticles using Moringa oleifera leaves and evaluation of wound healing activity. Wound Med, 2016, 12, 1-5.
[84]
El-Aassar, M.R. El fawal, G.F.; El-Deeb, N.M.; Hassan, H.S.; Mo, X. Electrospun polyvinyl alcohol/pluronic F127 blended nanofibers containing titanium dioxide for antibacterial wound dressing. Appl. Biochem. Biotechnol., 2016, 178, 1488-1502.
[85]
Osumi, K.; Matsuda, S.; Fujimura, N.; Matsubara, K.; Kitago, M.; Itano, O.; Ogino, C.; Shimizu, N.; Obara, H.; Kitagawa, Y. Acceleration of wound healing by ultrasound activation of TiO2 in Escherichia coli -infected wounds in mice. J. Biomed. Mater. Res. Part B Appl. Biomater., 2017, 105, 2344-2351.
[86]
Alarifi, S.; Ali, D.; Al-Doaiss, A.A.; Ali, B.A.; Ahmed, M.; Al-Khedhairy, A.A. Histologic and apoptotic changes induced by titanium dioxide nanoparticles in the livers of rats. Int. J. Nanomed, 2013, 8, 3937-3943.
[87]
Tucci, P.; Porta, G.; Agostini, M.; Dinsdale, D.; Iavicoli, I.; Cain, K.; Finazzi-Agró, A.; Melino, G.; Willis, A. Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes. Cell Death Dis., 2013, 4, e549.
[88]
Bhattacharya, K.; Davoren, M.; Boertz, J.; Schins, R.P.; Hoffmann, E.; Dopp, E. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part. Fibre Toxicol., 2009, 6, 17.
[89]
Linnainmaa, K.; Kivipensas, P.; Vainio, H. Toxicity and cytogenetic studies of ultrafine titanium dioxide in cultured rat liver epithelial cells. Toxicol. In Vitro, 1997, 11, 329-335.
[90]
Warheit, D.B.; Brown, S.C.; Donner, E.M. Acute and subchronic oral toxicity studies in rats with nanoscale and pigment grade titanium dioxide particles. Food Chem. Toxicol., 2015, 84, 208-224.
[91]
Wang, Z.; Wang, Z.; Lu, W.W.; Zhen, W.; Yang, D.; Peng, S. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater., 2017, 9, e435.
[92]
Lee, J.; Blaber, M. Increased functional half-life of fibroblast growth factor-1 by recovering a vestigial disulfide bond. J. Prot. Proteomics., 2013, 1, 47-53.
[93]
Liechty, W.B.; Kryscio, D.R.; Slaughter, B.V.; Peppas, N.A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng., 2010, 1, 149-173.
[94]
Corrigan, O.I.; Li, X. Quantifying drug release from PLGA nanoparticulates. Eur. J. Pharm. Sci., 2009, 37, 477-485.
[95]
Knighton, D.R.; Ciresi, K.F.; Fiegel, V.D.; Austin, L.L.; Butler, E.L. Classification and treatment of chronic nonhealing wounds. Successful treatment with autologous platelet-derived wound healing factors (PDWHF). Ann. Surg., 1986, 204, 322-330.
[96]
Peterson, L.R. Bad Bugs, No Drugs: No ESCAPE Revisited. Clin. Infect. Dis., 2009, 49, 992-993.
[97]
DeRosa, F.; Kibbe, M.R.; Najjar, S.F.; Citro, M.L.; Keefer, L.K.; Hrabie, J.A. Nitric oxide-releasing fabrics and other acrylonitrile-based diazeniumdiolates. JACS, 2007, 129, 3786-3787.
[98]
Weller, R.; Price, R.J.; Ormerod, A.D.; Benjamin, N.; Leifert, C. Antimicrobial effect of acidified nitrite on dermatophyte fungi, Candida and bacterial skin pathogens. J. Appl. Microbiol., 2001, 90, 648-652.
[99]
Pelegrino, M.T.; Weller, R.B.; Chen, X.; Bernardes, J.S.; Seabra, A.B. Chitosan nanoparticles for nitric oxide delivery in human skin. Med. Chem. Commun., 2017, 8, 713-719.
[100]
Kim, I.S.; Lee, S.K.; Park, Y.M.; Lee, Y.B.; Shin, S.C.; Lee, K.C.; Oh, I.J. Physicochemical characterization of poly(l-lactic acid) and poly(d,l-lactide-co-glycolide) nanoparticles with polyethylenimine as gene delivery carrier. Int. J. Pharm., 2005, 298, 255-262.
[101]
Chellat, F.; Grandjean-Laquerriere, A.; Naour, R.Le Fernandes, J.; Yahia, L.; Guenounou, M.; Laurent-Maquin, D. Metalloproteinase and cytokine production by THP-1 macrophages following exposure to chitosan-DNA nanoparticles. Biomaterials, 2005, 26, 961-970.
[102]
Andreadis, S.T. Gene-modified tissue-engineered skin: The next generation of skin substitutes. Adv. Biochem. Eng. Biotechnol., 2007, 103, 241-274.
[103]
Nath, R.K.; Somasundaram, C.; Xiong, W.; Li, J.; Bian, K.; Murad, F. Protective effect of type I collagen antisense oligonucleotides on bleomycin induced pulmonary fibrosis. Open Conf. Proc. J., 2010, 1, 141-149.
[104]
Yang, F.; Cho, S.W.; Son, S.M.; Bogatyrev, S.R.; Singh, D.; Green, J.J.; Mei, Y.; Park, S.; Bhang, S.H.; Kim, B.S.; Langer, R.; Anderson, D.G. Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc. Natl. Acad. Sci. USA, 2010, 107, 3317-3322.
[105]
Laurila, J.P.; Laatikainen, L.; Castellone, M.D.; Trivedi, P.; Heikkila, J.; Hinkkanen, A.; Hematti, P.; Laukkanen, M.O. Human embryonic stem cell-derived mesenchymal stromal cell transplantation in a rat hind limb injury model. Cytotherapy, 2009, 11, 726-737.
[106]
Galvan, L. Effects of heparin on wound healing. J.wound. Ostomy. Cont. Nurs., 1996, 23, 224-226.
[107]
Tarvady, S.; Anguli, V.C.; Pichappa, C.V. Effect of heparin on wound healing. J. Biosci., 1987, 12, 33-40.
[108]
Zhang, Z.; Tsai, P.C.; Ramezanli, T.; Michniak-Kohn, B.B. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2013, 5, 205-218.
[109]
Hetrick, E.M.; Shin, J.H.; Paul, H.S.; Schoenfisch, M.H. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials, 2009, 30, 2782-2789.
[110]
Yukuyama, M.; Kato, E.; Löbenberg, R.; Bou-Chacra, N. Challenges and future prospects of nanoemulsion as a drug delivery system. Curr. Pharm. Des., 2016, 22, 1-1.
[111]
Tadros, T. Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Adv. Colloid Interface Sci., 2004, 108-109, 227-258.
[112]
Sugumar, S.; Ghosh, V.; Nirmala, M.J.; Mukherjee, A.; Chandrasekaran, N. Ultrasonic emulsification of eucalyptus oil nanoemulsion: Antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrason. Sonochem., 2014, 21, 1044-1049.
[113]
Hemmila, M.R.; Mattar, A.; Taddonio, M.A.; Arbabi, S.; Hamouda, T.; Ward, P.A.; Wang, S.C.; Baker, J.R. Topical nanoemulsion therapy reduces bacterial wound infection and inflammation after burn injury. Surgery, 2010, 148, 499-509.
[114]
Guler, E.; Barlas, F.B.; Yavuz, M.; Demir, B.; Gumus, Z.P.; Baspinar, Y.; Coskunol, H.; Timur, S. Bio-active nanoemulsions enriched with gold nanoparticle, marigold extracts and lipoic acid: In vitro investigations. Colloids Surf. B Biointerfaces, 2014, 121, 299-306.
[115]
Turos, E.; Shim, J.Y.; Wang, Y.; Greenhalgh, K.; Reddy, G.S.K.; Dickey, S.; Lim, D.V. Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents. Bioorg. Med. Chem. Lett., 2007, 17, 53-56.
[116]
Lovelyn, C.; Attama, A.A. Current state of nanoemulsions in drug delivery. J. Biomater. Nanobiotechnol., 2011, 2, 626-639.
[117]
Chen, X.; Peng, L.H.; Shan, Y.H.; Li, N.; Wei, W.; Yu, L.; Li, Q.M.; Liang, W.Q.; Gao, J.Q. Astragaloside IV-loaded nanoparticle-enriched hydrogel induces wound healing and anti-scar activity through topical delivery. Int. J. Pharm., 2013, 447, 171-181.
[118]
Küchler, S.; Wolf, N.B.; Heilmann, S.; Weindl, G.; Helfmann, J.; Yahya, M.M.; Stein, C.; Schäfer-Korting, M. 3D-Wound healing model: Influence of morphine and solid lipid nanoparticles. J. Biotechnol., 2010, 148, 24-30.
[119]
Bigliardi, P.L.; Tobin, D.J.; Gaveriaux-Ruff, C.; Bigliardi-Qi, M. Opioids and the skin-where do we stand? Exp. Dermatol., 2009, 18, 424-430.
[120]
Wolf, S.E.; Sterling, J.P.; Hunt, J.L.; Arnoldo, B.D. The year in burns 2010. Burns, 2011, 37, 1275-1287.
[121]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71, 349-358.
[122]
Gainza, G.; Villullas, S.; Pedraz, J.L.; Hernandez, R.M.; Igartua, M. Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine , 2015, 11, 1551-1573.
[123]
Chu, Y.; Yu, D.; Wang, P.; Xu, J.; Li, D.; Ding, M. Nanotechnology promotes the full-thickness diabetic wound healing effect of recombinant human epidermal growth factor in diabetic rats. Wound Repair Regen., 2010, 18, 499-505.
[124]
Hansom, L.R.; William, H.F.; Hoekman, J.D.; Pohl, J. Lipid growth factor formulations. US 20100074959 A1 2010.
[125]
Singh, A.; Garg, G.; Sharma, P.K. Nanospheres: A novel approach for targeted drug delivery system. Int. J. Pharm. Sci. Rev. Res., 2010, 5, 84-88.
[126]
Zhang, Q.; Shen, Z.; Nagai, T. Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int. J. Pharm., 2001, 218, 75-80.
[127]
Anumolu, S.S.; Menjoge, A.R.; Deshmukh, M.; Gerecke, D.; Stein, S.; Laskin, J.; Sinko, P.J. Doxycycline hydrogels with reversible disulfide crosslinks for dermal wound healing of mustard injuries. Biomaterials, 2011, 32, 1204-1217.
[128]
Moritz, S.; Wiegand, C.; Wesarg, F.; Hessler, N.; Müller, F.A.; Kralisch, D.; Hipler, U.C.; Fischer, D. Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int. J. Pharm., 2014, 471, 45-55.
[129]
Li, X.; Chen, S.; Zhang, B.; Li, M.; Diao, K.; Zhang, Z.; Li, J.; Xu, Y.; Wang, X.; Chen, H. In situ injectable nano-composite hydrogel composed of curcumin, N,O-carboxymethyl chitosan and oxidized alginate for wound healing application. Int. J. Pharm., 2012, 437, 110-119.
[130]
Zhou, W.; Zhao, M.; Zhao, Y.; Mou, Y. A fibrin gel loaded with chitosan nanoparticles for local delivery of rhEGF: Preparation and in vitro release studies. J. Mater. Sci. Mater. Med., 2011, 22, 1221-1230.
[131]
Friedman, A.J.; Han, G.; Navati, M.S.; Chacko, M.; Gunther, L.; Alfieri, A.; Friedman, J.M. Sustained release nitric oxide releasing nanoparticles: Characterization of a novel delivery platform based on nitrite containing hydrogel/glass composites. Nitric Oxide, 2008, 19, 12-20.
[132]
Hajimiri, M.; Shahverdi, S.; Esfandiari, M.A.; Larijani, B.; Atyabi, F.; Rajabiani, A.; Dehpour, A.R.; Amini, M.; Dinarvand, R. Preparation of hydrogel embedded polymer-growth factor conjugated nanoparticles as a diabetic wound dressing. Drug Dev. Ind. Pharm., 2016, 42, 707-719.
[133]
Lao, G.; Yan, L.; Yang, C.; Zhang, L.; Zhang, S.; Zhou, Y. Controlled release of epidermal growth factor from hydrogels accelerates wound healing in diabetic rats. J. Am. Podiatr. Med. Assoc., 2012, 102, 89-98.
[134]
Neamtu, I.; Rusu, A.G.; Diaconu, A.; Nita, L.E.; Chiriac, A.P. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv., 2017, 24, 539-557.
[135]
Choi, J.S.; Kim, H.S.; Yoo, H.S. Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery. Drug Deliv. Transl. Res., 2015, 5, 137-145.
[136]
Kim, B.J.; Cheong, H.; Choi, E.S.; Yun, S.H.; Choi, B.H.; Park, K.S.; Kim, I.S.; Park, D.H.; Cha, H.J. Accelerated skin wound healing using electrospun nanofibrous mats blended with mussel adhesive protein and polycaprolactone. J. Biomed. Mater. Res. B., 2017, 105, 218-225.
[137]
Waghmare, V.S.; Wadke, P.R.; Dyawanapelly, S.; Deshpande, A.; Jain, R.; Dandekar, P. Starch based nanofibrous scaffolds for wound healing applications. Bioact. Mater., 2018, 3, 255-266.
[138]
Rieger, K.A.; Birch, N.P.; Schiffman, J.D. Designing electrospun nanofiber mats to promote wound healing–A review. J. Mater. Chem., 2013, B1, 4531.
[139]
Zilberman, M.; Golerkansky, E.; Elsner, J.J.; Berdicevsky, I. Gentamicin-eluting bioresorbable composite fibers for wound healing applications. J. Biomed. Mater. Res. Part A, 2009, 89A, 654-666.
[140]
Fu, S.Z.; Meng, X.H.; Fan, J.; Yang, L.L.; Wen, Q.L.; Ye, S.J.; Lin, S.; Wang, B.Q.; Chen, L.L.; Wu, J.B.; Chen, Y.; Fan, J.M.; Li, Z. Acceleration of dermal wound healing by using electrospun curcumin-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous mats. J. Biomed. Mater. Res. Part B Appl. Biomater., 2014, 102, 533-542.
[141]
Merrell, J.G.; McLaughlin, S.W.; Tie, L.; Laurencin, C.T.; Chen, A.F.; Nair, L.S. Curcumin-loaded poly(ε-caprolactone) nanofibres: Diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clin. Exp. Pharmacol. Physiol., 2009, 36, 1149-1156.
[142]
Schneider, A.; Wang, X.Y.; Kaplan, D.L.; Garlick, J.A.; Egles, C. Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater., 2009, 5, 2570-2578.
[143]
Huang, M.H.; Yang, M.C. Evaluation of glucan/poly(vinyl alcohol) blend wound dressing using rat models. Inter. J. Pharm., 2008, 346, 38-46.
[144]
Sell, S.A.; Minden-Birkenmaier, B.A. Saint Louis University, Honey and growth factor eluting scaffold for wound healing and tissue engineering. U.S. Patent Application 14/337,925 2014.
[145]
Alberti, T.; S , Coelho. D.; Voytena, A.; Pitz, H.; de Pra, M.; Mazzarino, L.; Kuhnen, S.; M Ribeiro-do-Valle, R.; Maraschin, M.; Veleirinho, B. Nanotechnology: A Promising Tool Towards Wound Healing. Curr. Pharm. Des., 2017, 23, 3515-3528.
[146]
Baiguera, S.; Urbani, L.; Del Gaudio, C. Tissue engineered scaffolds for an effective healing and regeneration: reviewing orthotopic studies. Biomed Res. Int., 2014, 2014, 398069.
[147]
Hosseinkhani, M.; Mehrabani, D.; Karimfar, M.H.; Bakhtiyari, S.; Manafi, A.; Shirazi, R. Tissue engineered scaffolds in regenerative medicine. World J. Plast. Surg., 2014, 3, 3-7.
[148]
Del Gaudio, C.; Baiguera, S.; Ajalloueian, F.; Bianco, A.; Macchiarini, P. Are synthetic scaffolds suitable for the development of clinical tissue-engineered tubular organs? J. Biomed. Mater. Res. Part A, 2014, 102, 2427-2447.
[149]
Goenka, S.; Sant, V.; Sant, S. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release, 2014, 173, 75-88.
[150]
Santos, J.C.C.; Mansur, A.A.P.; Ciminelli, V.S.T.; Mansur, H.S. Nanocomposites of poly(vinyl alcohol)/functionalized-multiwall carbon nanotubes conjugated with glucose oxidase for potential application as scaffolds in skin wound healing. Int. J. Polym. Mater. Polym. Biomater, 2014, 63, 185-196.
[151]
de Faria, A.F.; Martinez, D.S.T.; Meira, S.M.M.; de Moraes, A.C.M.; Brandelli, A.; Filho, A.G.S.; Alves, O.L. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf. B Biointerfaces, 2014, 113, 115-124.
[152]
Lu, Z.; Gao, J.; He, Q.; Wu, J.; Liang, D.; Yang, H.; Chen, R. Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydr. Polym., 2017, 156, 460-469.
[153]
Das, S.; Baker, A.B. Biomaterials and nanotherapeutics for enhancing skin wound healing. Front. Bioena. Biotechnol., 2016, 4, 82.
[154]
Shubhika, K. Nanotechnology and medicine–The upside and the downside. Int. J. Drug Dev. Res., 2013, 5, 1-10.
[155]
Caccavo, D.; Cascone, S.; Lamberti, G.; Barba, A.A.; Larsson, A. Drug delivery from hydrogels: A general framework for the release modeling. Curr. Drug Deliv., 2017, 14, 179-189.
[156]
156. Kikuchi, I.S.; Cardoso Galante, R.S.; Dua, K.; Malipeddi, V.R.; Awasthi, R.; Ghisleni, D.D.; de Jesus Andreoli Pinto, T. Hydrogel based drug delivery systems: A review with special emphasis on challenges associated with decontamination of hydrogels and biomaterials. Curr. Drug Deliv., 2017, 14, 917-925.
[157]
Subedi, S.K. An introduction to nanotechnology and its implications. Himalayan Physics, 2013, 4, 78-81.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 16
ISSUE: 1
Year: 2019
Page: [26 - 41]
Pages: 16
DOI: 10.2174/1567201815666180918110134
Price: $58

Article Metrics

PDF: 30
HTML: 5