Neuroprotective Effects of Trolox, Human Chorionic Gonadotropin, and Carnosic Acid on Hippocampal Neurodegeneration After Ischemiareperfusion Injury

Author(s): Asrin Babahajian, Arash Sarveazad, Fereshteh Golab, Gelareh Vahabzadeh, Akram Alizadeh, Homa Rasoolijazi, Naser Amini, Maedeh Entezari, Mansoureh Soleimani*, Majid Katebi*, Seyed Mohammad Amin Haramshahi.

Journal Name: Current Stem Cell Research & Therapy

Volume 14 , Issue 2 , 2019

Become EABM
Become Reviewer

Abstract:

Introduction: One of the serious complications of stroke is memory impairment, which is considered as one of the complications of reperfusion of tissue. The present study was designed to compare the effect of administration of Trolox, carnosic acid and Human Chorionic Gonadotropin (HCG) immediately after reperfusion of the stroke tissue on the memory and hippocampal histology.

Method: Ischemia-Reperfusion Model (IRI) was created by bilateral occlusion of the common carotid artery for 15 minutes and the first dose was administered immediately after reperfusion. 10 days after ischemia, passive avoidance memory test and apoptotic protein levels were evaluated.

Results: Cerebral Ischemia perfusion reduced the time of latency in entering the dark box in the ischemic group. Administration of Trolox and HCG increased this latency time, while treatment with carnosic acid had no effect. Also, IRI significantly reduced the number of healthy cells in the hippocampus. Administration of Trolox, carnosic acid and HCG increased the number of healthy cells and decreased the expression of Caspase-3 and Bax, but significantly increased the expression of Bcl-2 compared to the ischemic group.

Conclusion: Findings indicate the beneficial effects of HCG and Trolox on the improvement of memory and the number of healthy cells in the hippocampal region. It is worth noting that the amount of apoptosis in the hippocampus was significantly reduced by Trolox, HCG and Carnosic acid.

Keywords: Ischemia, memory, hippocampus, apoptosis, trolox, human chorionic gonadotropin, carnosic acid.

[1]
Flynn R, MacWalter R, Doney A. The cost of cerebral ischaemia. Neuropharmacology 2008; 55(3): 250-6.
[2]
O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 1971; 34(1): 171-5.
[3]
Lee H, Ghim J-W, Kim H, Lee D, Jung M. Hippocampal neural correlates for values of experienced events. J Neurosci 2012; 32(43): 15053-65.
[4]
Albasser MM, Amin E, Lin T-CE, Iordanova MD, Aggleton JP. Evidence that the rat hippocampus has contrasting roles in object recognition memory and object recency memory. Behav Neurosci 2012; 126(5): 659.
[5]
Sarveazad A, Babahajian A, Yari A, Goudarzi F, Soleimani M, Nourani M. Neuroprotective Role of Trolox in Hippocampus after Ischemia Reperfusion Injury in Mouse. Int J Vitam Nutr Res 2017; 1(1): 1-7.
[6]
Shahpouri MM, Mousavi S, Khorvash F, Mousavi SM, Hoseini T. Anticoagulant therapy for ischemic stroke: A review of literature. J Res Med Sci 2012; 17(4): 396.
[7]
Del Zoppo GJ. Acute anti‐inflammatory approaches to ischemic stroke. Ann N Y Acad Sci 2010; 1207(1): 143-8.
[8]
Abe K, Yamashita T, Takizawa S, Kuroda S, Kinouchi H, Kawahara N. Stem cell therapy for cerebral ischemia: From basic science to clinical applications. J Cereb Blood Flow Metab 2012; 32(7): 1317-31.
[9]
Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology 2008; 55(3): 310-8.
[10]
González RG, Hirsch JA, Koroshetz W, Lev MH, Schaefer PW. Acute ischemic stroke. Springer 2006.
[11]
Andriantsitohaina R, Duluc L, García-Rodríguez JC, et al. Systems biology of antioxidants. Clin Sci (Lond) 2012; 123(3): 173-92.
[12]
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999; 26(9): 1231-7.
[13]
Gupta S, Sharma SS. Neuroprotective effects of trolox in global cerebral ischemia in gerbils. Biol Pharm Bull 2006; 29(5): 957-61.
[14]
Satoh T, Izumi M, Inukai Y, et al. Carnosic acid protects neuronal HT22 Cells through activation of the antioxidant-responsive element in free carboxylic acid-and catechol hydroxyl moieties-dependent manners. Neurosci Lett 2008; 434(3): 260-5.
[15]
Munné-Bosch S, Alegre L. Subcellular compartmentation of the diterpene carnosic acid and its derivatives in the leaves of rosemary. Plant Physiol 2001; 125(2): 1094-102.
[16]
McFarland K, Sprengel R, Phillips HS, Kohler M, Rosemblit N. Lutropin-choriogonadotropin receptor: An unusual member of the G protein-coupled receptor family. Science 1989; 245(4917): 494.
[17]
Lukacs H, Hiatt E, Lei Z, Rao CV. Peripheral and intracerebroventricular administration of human chorionic gonadotropin alters several hippocampus-associated behaviors in cycling female rats. Horm Behav 1995; 29(1): 42-58.
[18]
Belayev L, Khoutorova L, Zhao KL, Davidoff AW, Moore AF, Cramer SC. A novel neurotrophic therapeutic strategy for experimental stroke. Brain Res 2009; 1280: 117-23.
[19]
Jin L, Tu J, Jia J, et al. Drug-repurposing identified the combination of Trolox C and Cytisine for the treatment of type 2 diabetes. J Transl Med 2014; 12: 153.
[20]
Azad N, Rasoolijazi H, Joghataie MT, Soleimani S. Neuroprotective effects of carnosic Acid in an experimental model of Alzheimer’s disease in rats. Cell J 2011; 13(1): 39-44.
[21]
Movsas TZ, Weiner RL, Greenberg MB, Holtzman DM, Galindo R. Pretreatment with human chorionic gonadotropin protects the neonatal brain against the effects of hypoxic-ischemic injury. Front Pediatr 2017; 5: 232.
[22]
Singh N, Agrawal M, Doré S. Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models. ACS Chem Neurosci 2013; 4(8): 1151-62.
[23]
Zamani M, Soleimani M, Golab F, Mohamadzadeh F, Mehdizadeh M, Katebi M. NeuroProtective effects of adenosine receptor agonist coadministration with ascorbic acid on CA1 hippocampus in a mouse model of ischemia reperfusion injury. Metab Brain Dis 2013; 28(3): 367-74.
[24]
Ding D. Neuroprotection following acute ischemic stroke: efficacy of preconditioning and antioxidants. Neurol Sci 2015; 36(4): 631.
[25]
Babahajian A, Rasouli H, Katebi M, Sarveazad A, Soleimani M, Nobakht M. Effect of human chorionic gonadotropin and vitamine E on cellular density of CA1 hippocampal area, learning ability and memory, following ischemia-reperfusion injury in mice. J Gorgan Univ Med Sci 2013; 15(4): 23-8.
[26]
Cramer SC, Fitzpatrick C, Warren M, et al. The Beta-hCG+ Erythropoietin in Acute Stroke (BETAS) Study. Stroke 2010; 41(5): 927-31.
[27]
Colucci-D’Amato L, Bonavita V, Di Porzio U. The end of the central dogma of neurobiology: Stem cells and neurogenesis in adult CNS. Neurol Sci 2006; 27(4): 266-70.
[28]
Gage FH. Mammalian neural stem cells. Science 2000; 287(5457): 1433-8.
[29]
Gage FH. Neurogenesis in the adult brain. J Neurosci 2002; 22(3): 612-3.
[30]
Lei Z, Rao CV, Eds. editors Neural actions of luteinizing hormone and human chorionic gonadotropin Semin Reprod Med; 2001: Copyright © 2001 by Thieme Medical Publishers, Inc, 333 Seventh Avenue, New York, NY 10001, USA Tel: + 1 (212) 584-4662. 2001.
[31]
Davidoff A, Hill M, Cramer S, Yang Y, Moore A. Open labeled, uncontrolled pharmacokinetic study of a single intramuscular hCG dose in healthy male volunteers. Int J Clin Pharmacol Ther 2009; 47(8): 516-24.
[32]
Post A, Rucker M, Ohl F, et al. Mechanisms underlying the protective potential of [alpha]-tocopherol (vitamin E) against haloperidol-associated neurotoxicity. Neuropsychopharmacology 2002; 26(3): 397.
[33]
Li PF, Dietz R, Von Harsdorf R. p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c‐independent apoptosis blocked by Bcl‐2. EMBO J 1999; 18(21): 6027-36.
[34]
Toshiyuki M, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80(2): 293-9.
[35]
Miyashita T, Krajewski S, Krajewska M, et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 1994; 9(6): 1799-805.
[36]
Martini SR, Kent TA. Hyperglycemia in acute ischemic stroke: A vascular perspective. J Cereb Blood Flow Metab 2007; 27(3): 435-51.
[37]
Camerino DC, Tricarico D, Desaphy J-F. Ion channel pharmacology. Neurotherapeutics 2007; 4(2): 184-98.
[38]
Hou C-W, Lin Y-T, Chen Y-L, et al. Neuroprotective effects of carnosic acid on neuronal cells under ischemic and hypoxic stress. Nutr Neurosci 2012; 15(6): 257-63.
[39]
Tilly JL, Tilly K, Kenton ML, Johnson A. Expression of members of the bcl-2 gene family in the immature rat ovary: equine chorionic gonadotropin-mediated inhibition of granulosa cell apoptosis is associated with decreased bax and constitutive bcl-2 and bcl-xlong messenger ribonucleic acid levels. Endocrinology 1995; 136(1): 232-41.
[40]
Eykelbosh AJ, Van Der Kraak G. A role for the lysosomal protease cathepsin B in zebrafish follicular apoptosis. Comp Biochem Physiol A Mol Integr Physiol 2010; 156(2): 218-23.
[41]
Chen S-U, Chen R-J, Shieh J-Y, et al. Human chorionic gonadotropin up-regulates expression of myeloid cell leukemia-1 protein in human granulosa-lutein cells: Implication of corpus luteum rescue and ovarian hyperstimulation syndrome. J Clin Endocrinol Metab 2010; 95(8): 3982-92.
[42]
Loosfelt H, Misrahi M, Atger M, et al. Cloning and sequencing of porcine LH-hCG receptor cDNA: variants lacking transmembrane domain. Science 1989; 245(4917): 525-8.
[43]
Nguyen T, Jayaraman A, Quaglino A, Pike CJ. Androgens selectively protect against apoptosis in hippocampal neurones. J Neuroendocrinol 2010; 22(9): 1013-22.
[44]
Berry A, Tomidokoro Y, Ghiso J, Thornton J. Human chorionic gonadotropin (a luteinizing hormone homologue) decreases spatial memory and increases brain amyloid-β levels in female rats. Horm Behav 2008; 54(1): 143-52.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 2
Year: 2019
Page: [177 - 183]
Pages: 7
DOI: 10.2174/1574888X13666180918093822
Price: $58

Article Metrics

PDF: 21
HTML: 4